White noise
is the formal derivative of a Wiener process
(this is a formal derivative because
has probability one of being
nondifferentiable). White noise has the properties
For example, consider the stochastic differential equation
| (2) |
![]() |
(3) |
| (4) |
In general, for the stochastic differential equation
| (5) |
| (6) |
For example, suppose that we want to solve the formal equation
| (7) |
| (9) |
The following program em_simple.m is a slight modification of the program em.m from the article by Higham; it numerically solves equation (8) and compares to the exact solution.
%EM Euler-Maruyama method on linear SDE
%
% SDE is dX = lambda*X dt + mu*X dW, X(0) = Xzero,
% where lambda = 2, mu = 1 and Xzero = 1.
%
% Discretized Brownian path over [0,1] has dt = 2^(-8).
% Euler-Maruyama uses timestep dt.
randn('state',100)
lambda = 2 % problem parameters
mu = 1;
Xzero = 1;
T = 1;
N = 2^8;
dt = 1/N;
dW = sqrt(dt)*randn(1,N); % Brownian increments
W = cumsum(dW); % discretized Brownian path
Xtrue = Xzero*exp((lambda-0.5*mu^2)*([dt:dt:T])+mu*W);
plot([0:dt:T],[Xzero,Xtrue],'m-'), hold on
Xem = zeros(1,N); % preallocate for efficiency
Xem(1) = Xzero + dt*lambda*Xzero + mu*Xzero*dW(1);
for j=2:N
Xem(j) = Xem(j-1) + dt*lambda*Xem(j-1) + mu*Xem(j-1)*dW(j);
end
plot([0:dt:T],[Xzero,Xem],'b--*'), hold off
xlabel('t','FontSize',12)
ylabel('x','FontSize',16,'Rotation',0,'HorizontalAlignment','right')
emerr = abs(Xem(end)-Xtrue(end))
![]() |