## What's in a cell?

ChE 170, F10



Figure 1-1 Essential Cell Biology (© Garland Science 2010)



3







Figure 1-6 Essential Cell Biology (© Garland Science 2010)



Figure 1-9 Essential Cell Biology (© Garland Science 2010)

|                                        |             | STRENGTH IN kcal/mole |           |  |
|----------------------------------------|-------------|-----------------------|-----------|--|
| BOND TYPE                              | LENGTH (nm) | IN VACUUM             | IN WATER  |  |
| Covalent                               | 0.15        | 90 (377)**            | 90 (377)  |  |
| Noncovalent: ionic bond*               | 0.25        | 80 (335)              | 3 (12.6)  |  |
| hydrogen bond                          | 0.30        | 4 (16.7)              | 1 (4.2)   |  |
| van der Waals<br>attraction (per atom) | 0.35        | 0.1 (0.4)             | 0.1 (0.4) |  |

<sup>\*</sup>An ionic bond is an electrostatic attraction between two fully charged atoms.

<sup>\*\*</sup>Values in parentheses are kJ/mole. 1 calorie = 4.184 joules.





#### surfactant







Figure 2-13 Essential Cell Biology (© Garland Science 2010)









Figure 2-4 Essential Cell Biology (© Garland Science 2010)

# TABLE 2-2 THE APPROXIMATE CHEMICAL COMPOSITION OF A BACTERIAL CELL

|                                                                              | PERCENTAGE OF TOTAL CELL WEIGHT | NUMBER OF TYPES OF EACH MOLECULE |
|------------------------------------------------------------------------------|---------------------------------|----------------------------------|
| Water                                                                        | 70                              | 1                                |
| Inorganic ions                                                               | 1                               | 20                               |
| Sugars and precursors                                                        | 1                               | 250                              |
| Amino acids and precursors                                                   | 0.4                             | 100                              |
| Nucleotides and precursors                                                   | 0.4                             | 100                              |
| Fatty acids and precursors                                                   | 1                               | 50                               |
| Other small molecules                                                        | 0.2                             | ~300                             |
| Macromolecules (proteins, nucleic acids, polysaccharides, and phospholipids) | 26                              | ~3000                            |

### **SUBUNIT**

#### **MACROMOLECULE**















Figure 2-16 Essential Cell Biology (© Garland Science 2010)



20



Figure 2-18 Essential Cell Biology (© Garland Science 2010)



22







25



Figure 2-25 Essential Cell Biology (© Garland Science 2010)

## Thymine Adenine





| CID |                                                             | SIDE CHAIN                                            |
|-----|-------------------------------------------------------------|-------------------------------------------------------|
| Asp | D                                                           | negative                                              |
| Glu | E                                                           | negative                                              |
| Arg | R                                                           | positive                                              |
| Lys | K                                                           | positive                                              |
| His | Н                                                           | positive                                              |
| Asn | N                                                           | uncharged polar                                       |
| Gln | Q                                                           | uncharged polar                                       |
| Ser | S                                                           | uncharged polar                                       |
| Thr | Т                                                           | uncharged polar                                       |
| Tyr | Υ                                                           | uncharged polar                                       |
|     | Asp<br>Glu<br>Arg<br>Lys<br>His<br>Asn<br>Gln<br>Ser<br>Thr | Asp D Glu E Arg R Lys K His H Asn N Gln Q Ser S Thr T |

| AMINO ACID    |     |   | SIDE CHAIN |
|---------------|-----|---|------------|
| Alanine       | Ala | Α | nonpolar   |
| Glycine       | Gly | G | nonpolar   |
| Valine        | Val | V | nonpolar   |
| Leucine       | Leu | L | nonpolar   |
| Isoleucine    | lle | 1 | nonpolar   |
| Proline       | Pro | Р | nonpolar   |
| Phenylalanine | Phe | F | nonpolar   |
| Methionine    | Met | M | nonpolar   |
| Tryptophan    | Trp | W | nonpolar   |
| Cysteine      | Cys | C | nonpolar   |

POLAR AMINO ACIDS

(hydrophilic)

NONPOLAR AMINO ACIDS -

(hydrophobic)

30



### **SUBUNIT**

#### **MACROMOLECULE**





















36







(A)

Figure 11-13 Essential Cell Biology (© Garland Science 2010)









42





Figure 1-28 Essential Cell Biology (© Garland Science 2010)



Figure 1-15 Essential Cell Biology (© Garland Science 2010)



46



47





49



Figure 1-18 Essential Cell Biology (© Garland Science 2010)





Figure 1-20 Essential Cell Biology (© Garland Science 2010)





E. coli



 $10\,\mu m$ 

S. cerevisiae





1 mm drosophila melanogaster 57







59