

Figure 15-2 Essential Cell Biology (© Garland Science 2010)

TABLE 15-2 THE RELATIVE VOLUMES OCCUPIED BY THE MAJOR MEMBRANE-ENCLOSED ORGANELLES IN A LIVER CELL (HEPATOCYTE)

INTRACELLULAR COMPARTMENT	PERCENTAGE OF TOTAL CELL VOLUME	APPROXIMATE NUMBER PER CELL
Cytosol	54	1
Mitochondria	22	1700
Endoplasmic reticulum	12	1
Nucleus	6	1
Golgi apparatus	3	1
Peroxisomes	1	400
Lysosomes	1	300
Endosomes	1	200

Figure 15-5 Essential Cell Biology (© Garland Science 2010)

TABLE 15-3 SOME TYPICAL SIGNAL SEQUENCES		
FUNCTION OF SIGNAL	EXAMPLE OF SIGNAL SEQUENCE	
Import into ER	[†] H ₃ N-Met-Met-Ser-Phe-Val-Ser-Leu-Leu-Leu-Val-Gly- Ile-Leu-Phe-Trp-Ala-Thr-Glu-Ala-Glu-Gln-Leu-Thr-Lys- Cys-Glu-Val-Phe-Gln-	
Retention in lumen of ER	-Lys-Asp-Glu-Leu-COO	
Import into mitochondria	⁺ H ₃ N-Met-Leu-Ser-Leu-Arg-Gln-Ser-Ile-Arg-Phe-Phe- Lys-Pro-Ala-Thr-Arg-Thr-Leu-Cys-Ser-Ser-Arg-Tyr-Leu- Leu-	
Import into nucleus	-Pro-Pro-Lys-Lys-Arg-Lys-Val-	
Import into peroxisomes	-Ser-Lys-Leu-	

Positively charged amino acids are shown in *red*, and negatively charged amino acids in *blue*. An extended block of hydrophobic amino acids is shown in *green*. [†]H₃N indicates the N-terminus of a protein; COO⁻ indicates the C-terminus. The ER retention signal is commonly referred to by its single-letter amino acid abbreviation, KDEL.

6

8

Figure 15-13 Essential Cell Biology (© Garland Science 2010)

14

Figure 15-17 Essential Cell Biology (© Garland Science 2010)

Figure 15-18 Essential Cell Biology (© Garland Science 2010)

18

19

Figure 15-27 Essential Cell Biology (© Garland Science 2010)

Figure 17-16 Essential Cell Biology (© Garland Science 2010)

Figure 15-33 Essential Cell Biology (© Garland Science 2010)

27

Figure 15-35 Essential Cell Biology (© Garland Science 2010)

29