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Energy, thermodynamics, and molecular processes 

Overview 

Leading question: do cells use energy? 

Cells consume negative entropy, i.e., generate positive entropy 

Life = negative entropy generation 

Cells are bound by the laws of thermodynamics?  Yes 

The central question is: how can complex, seemingly highly ordered processes and biological 

structures emerge “spontaneously” in living things 

Review of thermodynamics 

What do we need to do here?  Cells are very small, so we need to understand thermodynamics 

at a molecular level.  This is somewhat different than thermodynamics for macroscopic 

systems.   

In macroscopic, bulk systems, everything appears to be constant – the density, temperature, 

pressure, heat capacity, etc.  At the molecular level, however, there is a constant molecular 

dance and things fluctuate.  We don’t notice these fluctuations at the macroscopic level 

because they are so small. 

Example: the density in a fluid. 

The first law 

Thermodynamics defines a system and an environment, separated by a system boundary 

The first law is a statement of the conservation of energy for a process that involves a change 

to the system 

Here we consider closed systems for simplicity, although living systems are certainly open  

Closed systems = those with no mass exchange with the environment, but can exchange energy 

Differential form (small changes) for closed systems: 

�� � �� � �� 

Integrated form (state changes) for closed systems: 
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Δ� � � � � 

Here, 

• � is the total internal energy in the system.  In other words, it is the total potential 

energy due to molecular interactions as well as kinetic energy due to the velocities of 

the molecules 

• � is the heat exchanged with the environment; it comes from energies stored in random 

molecular motions � positive for heat added to system 

• � is the work done on the system; it comes from energies due to concerted molecular 

motions � positive for work done on system 

We can define pressure-volume work as  

� � 	 
 ��� 

Notice that the internal energy is a property of the system, whereas � and � describe flows 

between the system and environment 

� is a state function.  Thermodynamics defines state functions as quantities that depend only 

on the current state of a system (e.g., T and P), and not the path by which they got there. 

Therefore, Δ� does not depend on the path the process takes (e.g., the rate at which it 

happens), but only on the states at the beginning and end of the process 

On the other hand, Q and W are not state functions and do depend on the path 

Interestingly, the sum of Q and W is a state function.  That means that any path-dependence of 

these quantities exactly cancels out.  There can be many processes that take a system between 

two states 1 and 2 with very different Q and W, but their sum must be the same. 

The second law 

Again, here we consider the case of a closed system 

The second law states that 

Δ
 � 0 for any spontaneous process in an isolated macroscopic system 

The entropy is a measure of the number of the number of microscopic states, or microstates, 

that the system has available to it.  You can think of a microstate as one configuration of atoms. 
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 � �� ln Ω 

where �� is Boltzmann’s constant, equal to the gas constant on a per-molecule rather than per-

mol basis. 

Entropy is also a state function. 

We can also measure the change in entropy between two states using a reversible process, 

Δ
 � 
 ������  

The second law for systems at constant T and P 

What about non-isolated systems?  Does the entropy always increase? 

Here, we have to consider the surroundings.  If the surroundings are large such that we can 

treat them as a big, constant temperature heat bath, we can write 

Δ
surr � �surr�  

Here the total isolated system is the surroundings plus the system.  Therefore we have 

Δ
 � Δ
���� � 0 

Δ
 � �surr� � 0 

Δ
 	 �� � 0 

Multiplying by T and using the first law, 

�Δ
 	 �Δ� 	 �� � 0 

If we have a constant pressure process, 

� � 	 
 ��� � 	� 
 �� � 	�Δ� � 	Δ���� 

Substituting, 

�Δ
 	 Δ� 	 Δ���� � 0 

Alternatively, 

Δ� 	 �Δ
 � Δ����  0 
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We define the Gibbs free energy using 

! " � 	 �
 � �� 

Notice that G is a state function since it is a combination of state functions. 

Thus we have, 

Δ!  0 

This is a fundamental equation in the thermodynamics of systems that are at constant T and P.  

It says that  

• spontaneous processes always decrease the Gibbs free energy of a system 

• the system is at a minimum value of the Gibbs free energy at equilibrium 

• processes always tend towards free energy minima 

Other state functions and thermodynamic variables 

We also have the enthalpy 

# " � � �� � ! � �
 

And the Helmholtz free energy 

$ " � 	 �
 � ! 	 �� 

The heat capacities of the system can be related to changes in � and # at different conditions 

%& " '����(& � � '�
��(&         %* " '�#��(* � � '�
��(* 

Microscopic origins of thermodynamics 

Statistical mechanics provides a microscopic (molecular) basis for the thermodynamic laws that 

we know and love 

You’ve already seen one aspect, 
 � �� ln Ω 

We won’t pursue a detailed treatment of statistical mechanics, but rather one main aspect 

• At equilibrium, the molecules of a system are constantly moving around 
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• We can’t pinpoint the specific configuration or microstate that the system will be in 

• We can however determine the probability with which we would find the system’s 

molecules in a particular collective configuration.  

• This probability is equivalent to the fraction of time the system spends in that 

configuration. 

Statistical mechanics says that the probabilities of microstates follow the Boltzmann 

distribution.  Consider a particular configuration of atoms denoted by +.  The probability of 

that configuration is given by 

,- . /0 12345 

Here, �- is the energy of the configuration +.  One could determine it by examining all of the 

interactions present, e.g., hydrogen bonds, vdW, electrostatic, etc. 

This expression implies a constant of proportionality.  Let’s rewrite it with that constant, %, 

,- � %/0 12345 

How do we determine the constant of proportionality?  Simple… we demand that the 

probabilities sum to one.   

6 ,-
-

� 1 

6 %/0 12345
-

� 1 

% 6 /0 12345
-

� 1 

% � 86 /0 12345
-

9
0:

 

Therefore, if we have 10 configurations, the probability of configuration 1 is given by 

,: � /0 1;345
/0 1;345 � /0 1<345 � = � /0 1;>345
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Therefore, to derive the probabilities of a system, we need to have a list of all possible 

configurations and their energies so that we can perform the sum in the denominator. 

Example 

Two molecules are adsorbed on a two-dimensional cell surface, which we will describe as a 

lattice.  There are M total lattice sites where the molecules can adsorb.  If the two molecules 

are at adjacent sites, van der Waals interactions between them result in a negative potential 

energy in the amount of – A; otherwise, the molecules do not interact.  What is the probability 

that the molecules will be in contact at a given temperature �? 

For this problem, we have to think about what microstates are possible in the system.  Here are 

some possibilities for a system with M � 16: 

 

We notice that each lattice site has a total of four neighbors, with the exception of the edge 

sites.  However, the number of edge sites will be much less than the total number of sites M if 

M is large, therefore we can neglect this subtle effect. 

First, count the total number of states.  There are C�C 	 1� of them. 

The probability of states 2, 4, 5, and any other “bound” states is 

, . / D345 

The probability of all other states is  

, . /0 E345 � 1 

To figure out the sum needed to normalize the probabilities, we need to know how many 

bound and unbound microstates there are.  The number of possible E � 	A microstates is just 

the total number of ways we can place the first molecule times the number of possible 

neighbors to it: 

# bound states � M N 4 

On the other hand, the total number of configurations is just the M number of spots to put the 

first molecule, times the �M 	 1� number of spots to then place the second.  Therefore, 

� � 0 � � 	P � � 0 � � 	P � � 	P 

1 

2 1 2 

1 

2 

1 

2 1 

2 
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# unbound states � M�M 	 1� 	 4M 

Therefore the normalization factor is 

4C/ D345 � �CQ 	 5C� 

The probability that the molecules are bound is the sum of all the probabilities for each of the 

bound microstates.  There are 4M of these: 

,�STUV�� � 4C N / D345
4C/ D345 � �CQ 	 5C� 

� W1 � C 	 54 /0 D345X0:
 

Examine temperature limits. 

Role of free energies 

Sometimes we don’t care about the probability of an individual configuration, but rather, the 

probability of some state that could be one of many configurations. 

In the last example, we were only interested in the bound and unbound states.  For each of 

these, we could have one of many configurations. 

We might have written 

,�STUV�� . Ω�STUV��/ D345 

where Ω�STUV�� gives the number of configurations for the bound state.  Similarly, 

,�UVSTUV�� . Ω�UVSTUV��/E 

We can then write the absolute probabilities as 

,�STUV�� � Ω�STUV��/ D345
Ω�STUV��/ D345 � Ω�UVSTUV��/E 

But note that Ω�STUV�� � /Y�Z[\]^�_4`  by Boltzmann’s law.  Therefore, we could write: 

 ,�STUV�� . exp c
�STUV���� 	 ��STUV����� d 
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where ��STUV�� � 	P.  The combination of S and U in this fashion should be familiar.  Note 

that $ � � 	 �
 for the Helmholtz free energy.   Therefore, we can write 

,�STUV�� . exp c	 $�STUV����� d       $�STUV�� � ��STUV�� 	 �
�STUV�� 

Similarly, 

,�UVSTUV�� . exp c	 $�UVSTUV����� d        $�UVSTUV�� � ��UVSTUV�� 	 �
�UVSTUV�� 

Even though this is a specific example, there is an underlying general trend here: 

The probability of seeing a state that may correspond to many configurations 

relates to the free energy of that state 

,�efgf/� . Ω�efgf/� exp c	 ��efgf/���� d 

� exp c	 $�efgf/���� d 

That is, free energies dictate populations at equilibrium. 

Notice that if the state consists of only one configuration, Ω � 1 and 
 � 0 such that $ � � 

and we recover the usual Boltzmann law. 

The previous results apply to the case in which our system is at constant volume.  However, 

most processes are at constant pressure.  In this case, the rule uses the Gibbs rather than the 

Helmholtz free energy because of the inclusion of �� work in the energies: 

At constant pressure, 

,�efgf/� . exp c	 !�efgf/���� d 

This important equation will be useful for understanding the equilibrium properties of 

molecules in cells.  In particular, it will tell us the fraction of the time that molecules spend in 

one conformation or interaction mode versus another. 

Units 

Note the similarity between �� and h, the ideal gas constant: 

• �� is on a per-molecule basis 
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• h is on a per-mole basis 

��ij � h 

When using these expressions it is vital that the constant used has the same units as that of the 

free energy. 

If !�efgf/� quoted in per-molecule units, use: 

,�efgf/� . exp c	 !�efgf/���� d 

If !�efgf/� quoted in per-mol units, use: 

,�efgf/� . exp c	 !�efgf/�h� d 

Keep in mind that if you match units correctly (mol-mol and molecule-molecule) you should not 

have trouble.  For the remainder of this lecture we will take the per-mol convention: 

,�efgf/� . exp c	 !�efgf/�h� d 

Microscopic dynamics and diffusive processes 

Are cells at equilibrium?  Not really, but equilibrium is still relevant 

• driving forces for processes (minimizing free energies) 

• quasi-equilibrium in many respects 

Thermodynamics says nothing about kinetics, but it places limits on the kinds of processes that 

can occur 

Here we consider basic, undriven molecular motion, typical of the kind you might find for a 

system at equilibrium 

• undriven – no change in free energies during process 

• molecular motion – molecules are constantly moving about, even at equilibrium 

Random walk 

Consider a sea of molecules.  Pinpoint one molecule and note its starting position at time 0. 
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Due to thermal motion, the particle on average makes a random jump of length k every l units 

of time.  The jump is random in the radial direction.  This is called a random walk. 

Repeat this process for many jumps n and interrogate the final distance of the particle from its 

starting point 

 

We could imagine doing many such experiments.  What would be the expected mno, mpo, mqo as a 

function of V? 

mno � 0   mpo � 0   mqo � 0 

since the process is spherically symmetric. 

What about mrsQo? 

rsQ � nsQ � psQ � qsQ 

Consider the case in going from step n to n+1: 

rst:Q 	 rsQ � nst:Q 	 nsQ � pst:Q 	 psQ � qst:Q 	 qsQ � �ns � Δn�Q 	 nsQ � �ps � Δy�Q 	 psQ � �qs � Δq�Q 	 qsQ � �ns � Δn�Q 	 nsQ � �ps � Δy�Q 	 psQ � �qs � Δq�Q 	 qsQ � 2nsΔn � ΔnQ � 2psΔp � ΔpQ � 2qsΔq � ΔqQ 

Here, Δn, Δp, Δq are the random amounts by which we change the length at one step.  Notice 

that we have the constraint ΔnQ � ΔpQ � ΔqQ � kQ.  Therefore 

rst:Q 	 rsQ � 2nsΔn � 2psΔp � 2qsΔq � kQ 

Now, we average over all possible (random) trajectories for the same starting point: 

mrst:Q 	 rsQo � m2nsΔn � 2psΔp � 2qsΔqo � kQ 

However, since the Δn, Δp, Δq are random with zero mean, and uncorrelated to the current 

position of the molecule, the average on the RHS becomes 

mrst:Q 	 rsQo � kQ 

k 
r 
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Or 

mrst:Q o � mrsQo � kQ 

By recursion, therefore, we can write 

mrsQo � VkQ 

� fl kQ 

The LHS is called the mean squared displacement.  It tracks the average squared distance of a 

particle at time zero from its random location at time f. 

This kind of random movement is called Brownian motion and is a kind of diffusive process.  

Here, diffusive means that the motion is dominated by random fluctuations.  In contrast, 

activated processes require concerted movements over free energy barriers. 

In fact, we can define the diffusion constant x " y<
z{.  Then, 

mrQo � 6xf 

In the limit that both the step length and the step time go to zero, the random walk can be 

described by the diffusion equation: 

|,�n, p, q, f�|f � x }|Q,�n, p, q, f�|nQ � |Q,�n, p, q, f�|pQ � |Q,�n, p, q, f�|qQ ~ 

� x�Q,�n, p, q, f� 

Here, ,�n, p, q, f� gives the probability a molecule is at location n, p, q at time f.  You can think 

of it in the same sense as a concentration. 

Activated processes and reaction kinetics 

In contrast to diffusive processes, activated processes have a free energy barrier that prevents 

them from occurring spontaneously.   

Consider a typical reaction in which a molecule A converts to a type B.  This could be a chemical 

reaction, in which bonds break and form, or it could be a physical reaction, in which B is some 

conformational change of the molecule, e.g., rotation around a bond. $ � � 
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Recall the conditions at which the reaction will move forward.  Thermodynamics says that for 

process to spontaneously occur, the net effect of the reaction must be a decrease in free 

energy.   

Δ!��s � 0 �   reaction moves forward 

Δ!��s � 0 �   reaction will not move forward 

Even if the reaction moves forward, in activated processes it takes some time.  We can 

understand this effect with a typical reaction state diagram: 

 

Associated with this reaction is a free energy barrier that occurs at the transition state.   

In order for the reaction to occur, the system has to spontaneously increase its free energy 

enough to surmount the barrier.  This requires a rare fluctuation in energies at the molecular 

level.  The higher the barrier, the rarer the fluctuation and the longer the time it takes for the 

process to occur. 

Wait? How can the free energy increase?  It does so only in small increments at the molecular 

level.  This is not a violation of the second law, since small fluctuations in the free energy are 

allowed such that the average free energy, averaged over many molecules, does decrease. 

Transition states and reaction rates 

The rate at which the reaction occurs is given by 

reaction rate � 	 ��$��f � ��$� 

Here, the reaction rate constant is given by 

fr
e

e
 e

n
e

rg
y
  

reaction pathway 

Δ!‡ 

reactant 
product Δ!rxn 

A 

B 
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� � �E/0��‡�5  

if Δ! is given in units per molecule.  If it is instead given in units per mol, we use h instead of ��. 

Why does the rate equation have this form?  Recall that the probability of a particular state is 

given by 

,�efgf/� . /0���������5  

The ratio of the probability to be at the transition state versus the initial state is 

,�fe�,�$� � /0������5
/0��j��5

� /0��‡�5  

Thus the rate is related to the probability that the system finds the transition state. 

Recall that we can write Δ! � Δ# 	 �Δ
 at constant temperature.  Substituting above, 

� � �E/0��‡�5 t��‡�  

Sometimes the change in entropy between the initial state and the transition state is very small 

such that we can neglect the second term in the exponential.  Under this approximation, 

� � �E/0��‡�5  

Catalysis 

Many, many reactions in cells are energetically favorable but do not spontaneously occur � 

would result in chaos! 

Instead, enzymes act as catalysts to lower the free energy barrier.  Enzymes are basically 

protein catalysts. 

Enzymes speed up reactions greatly but also act as regulators of what reactions occur. 
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Equilibrium constant and free energy of reaction 

The above considerations apply to a single reaction event, e.g., single sets of molecules.  We 

typically indicate this with the superscript “o”: 

Δ!��s° , Δ#��s° , Δ
��s°  

In reality there are concentration effects.  How does the free energy depend on concentration?   

For dilute systems, we can write: 

!j � !j° � ��� ln�$� 

for a species A, where the free energies are on a per-molecule basis.  Alternatively 

!j � !jE � h� ln�$� 

for a per-mol basis. 

Where does this expression come from?  Consider, 

,�$� . /0 ��345 

� /0 ��°345 N � 

� /0 ��°345
1 �⁄  

� /0 ��°345
�$�  

fr
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B 
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� /0��° t345 ���j�345  

Now consider Δ!��s for $ � �: 

Δ!��s � !� 	 !j � !�° 	 !j° � ����ln��� 	 ln�$�� 

� Δ!��s° � ��� ln ����$� 

On a per-mol basis: 

Δ!��s � Δ!��s° � h� ln ����$� 

What if Δ! � 0?  What if Δ! � 0? 

What happens at equilibrium?  Nothing spontaneously happens; nothing changes with time.  

This means there are no free energy gradients: 

Δ!��s � 0 

0 � Δ!��s° � h� ln ����$� 

����$� � exp }	 �!��s°
h� ~ 

But we make the definition 

��� " exp }	 �!��s°
h� ~ 

So that 

����$� � ��� 

How does ��� connect to the reaction rates?  At equilibrium, the net reaction from the forward 

and reverse processes becomes zero: 

��$��f � 	���$� � ����� � 0 
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  �����f � ���$� 	 ����� � 0 
Setting both equal to zero and solving gives 

����$� � ���� 

Thus we find that 

��� � ���� 

How does �� relate to the transition path diagram? 

Temperature dependence of free energies 

Oftentimes we want to investigate how the free energy of a particular reaction changes with � 

Δ!��� � !���� 	 !j��� � ? ? ? 

Say the heat capacity of species A and B is constant,  

%*,j �  TVef 

%*,� �  TVef 

Then it can be shown [first problem set] that the change in free energy has the following T-

dependence: 

Δ!��� � Δ#E '1 	 ��E( � Δ%¡ W� 	 �E 	 � ln ' ��E(X 

Here we have three parameters, two additional above the heat capacities 

Δ%* " %*,j 	 %*,� 

�E     reference temperature at which Δ! � 0 

Δ#E      enthalpy at �E 

Notice that if the heat capacities are approximately equal between A and B, we have 

Δ!��� � Δ#E '1 	 ��E( 
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(Free) energy sources, carriers, and storage in cells 

How do living systems perform complex, driven processes? 

Answer: they find ways (paths) for the processes that involve continuous decreases in free 

energy and hence increases in world entropy � called free energy transduction 

In order for this situation to exist in perpetuity, living systems need sources of high free energy 

and low entropy  

• chemical bonds – food 

• sunlight 

Photosynthesis generates high-free energy sugars using sunlight: 

light � %¤Q � #Q¤ � sugars � ¤Q 

This reaction is spontaneous, i.e., it results in a decrease in free energy and an increase in world 

energy.  Thus, heat is generated. 

Cells can then harness energy from sugars through decomposition reactions that are also free-

energetically favorable through glycolysis: 

%z#:Q¤z�glucose� � unloaded energy carriers � %¥#z¤¥0 � energy carriers 

The energy carriers are specialized molecules—“batteries”—that the cell uses to transport high-

free energy packets for use in many, many molecular interactions 

Unfavorable reactions 

How do we make a free-energetically unfavorable interaction proceed?  Many such interactions 

are required in biology: the synthesis of DNA, RNA, proteins, and sugars all entail increases in 

free energy 

Solution: couple unfavorable reactions with favorable ones so that the net free energy change 

is negative 

Example: 

$ � � � $�    Δ!j� � 0 

We might couple this to a favorable reaction: 

¦§ � ¦ � §    Δ!¨© � 0 

How can the coupling be performed?  Consider the sequence: 
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$ � ¦§ � $¦ � §        Δ!j¨© 

$¦ � � � $� � ¦        Δ!j¨� 

The net result of the two reactions is the same: 

$ � � � ¦§ � $� � ¦ � §        Δ!overall � Δ!j¨© � Δ!j¨� 

Since the beginning and endpoints are the same, the free energy difference is the same as if the 

two reactions occurred independently: 

Δ!ª����yy � Δ!j� � Δ!¨© 

Therefore, the net reaction will proceed if: 

• Δ!j� � Δ!¨© � 0 

• Δ!j¨© � 0 

• Δ!j¨� � 0 

This is how molecules are able to perform free-energetically unfavorable steps. 

ATP – the basic energy carrier 

Adenosine triphosphate (ATP) is the most widely used carrier of free energy.  

 

The phosphate groups store high free energy that can be used to drive many reactions. 

ATP is synthesized by the glycolysis of sugars in the mitochondria 

Recall that many reactions in biology require the synthesis of long polymeric molecules: DNA, 

RNA, proteins and polysaccharides.  Each of these is free energetically unfavorable.  In addition, 

each synthesis requires a condensation reaction: 

¦# � §¤# � ¦§ � #Q¤     Δ! � 0 

ATP readily enables this reaction through the following steps: 

$�� � §¤# � §¤�¤¥ � $x� 



© M. S. Shell 2010 19/20 last modified 10/4/2010 

 

¦# � §¤�¤¥ � ¦§ � �¤« 

where ADP is the diphosphate nucleotide and P is a phosphate group.  Thus, by 

dephosphorylation ATP can drive condensation reactions. 

NADH and NADPH – electron/proton carriers 

Another important class of carriers are nicotinamide adenine dinucleotide (NAD+/NADH) and 

nicotinamide adenine dinucleotide phosphate (NADP+/NADPH). 

  (NADPH) 

The difference between the NAD and NADP versions is the presence of a phosphate group at 

the bottom right. 

These molecules carry a proton and two electrons.  They can convert between two forms, an 

oxidized form and a reduced form: 

  Δ! � 0 for reduction, Δ! � 0 for oxidation 

Importantly, NADP and NADPH can facilitate reduction of other molecules by donating a proton 

to it: 

% � % � i$x�# � #t � %# 	 %# � i$x�t 

These molecules are very important in oxidation/reduction reactions inside the cell and are 

used extensively to synthesize other molecules 

ADP 

ribose 
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Why two molecules?  Allows a division of labor and regulation since the additional phosphate 

group in NADPH can allow it to be recognized by different binding proteins and substrates than 

NADH: 

• NADPH � works with enzymes to catalyze reactions that synthesize energy-rich 

biomolecules 

• NADH � used in the generation of ATP from food molecules 

Other carriers 

There are a number of other energy carriers that perform more specific roles in biology.  These 

are used to enable specific kinds of reactions beyond condensation and oxidation/reduction. 

  

 


