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Abstract

Dynamical Characterization and Feedback Control of Oscillatory Neural Systems

by

Per Danzl

Oscillatory spiking neurons have been shown to play an important role in dynamical
diseases of the nervous system, particularly Parkinson’s disease. This dissertation
seeks to understand the population-level response dynamics of such neurons, and
proposes several event-based feedback control strategies to control their spike timing
and degree of synchronization. These control schemes are a significant departure
from the existing open-loop electrical deep brain stimulation protocols.

In the first part of this dissertation, we consider population-level dynamics of os-
cillatory neurons. We study the ensemble response to independent spike trains with
interspike intervals drawn from a Poisson distribution, which has been shown to be a
reasonable representation of background spiking activity in the brain. The concept
of partial phase synchronization, a quantitative tool with which to characterize the
state of a population, is presented and shown to provide useful information that is
distinct from measurements of spiking synchrony. Then, we investigate parametric
resonance to sinusoidal stimulus, and how nonlinearity and coupling lead to a wide
variety of stable and unstable solutions, which are categorized based on symmetry
considerations and solution types.

In the second part of the dissertation, we consider several event-based feed-
back control schemes for spike timing control. The first approach uses biologically-
inspired impulsive and quasi-impulsive stimulus protocols to drive a neural oscil-
lator to spike in phase with a reference oscillator. We show how these control
schemes can be used to desynchronize populations of neurons that, in absence of
control, are driven to spike in synchrony by a pacemaker. The second approach
uses a minimum-time-to-reach optimal control scheme, based on the Hamilton-
Jacobi-Bellman framework, to drive a neural oscillator’s state to a point at which
its asymptotic phase is extremely sensitive to background noise, which in prac-
tice provides effective phase randomization. An extension of this control scheme
is presented which prevents pathological synchronous spiking in a network of all-
to-all coupled neurons. Finally, we propose a set of algorithms for stabilizing the
interspike time interval between a pair of oscillatory neurons that is tailored to
experimental implementation.
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Chapter 1

Introduction

This dissertation investigates the dynamical characteristics of oscillatory spiking
neurons and proposes novel feedback-based stimulation protocols for controlling
their spiking behavior. We restrict our study to relatively idealistic mathematical
models, but the results presented here are best interpreted in the larger context of
physiology and human disease.

Many human diseases have dynamical mechanisms involved in either their causes
or symptoms, including those affecting the nervous system, endocrine system, car-
diac and respiratory systems, circadian rhythms, hearing, vision, and hormone
systems [54]. It has been noted that tools of dynamical systems, such as bifurca-
tion and stability analysis, are naturally suited for understanding these dynamical
diseases [7]. Synchronization is a particularly interesting dynamical behavior, es-
pecially in the context of neuronal systems where it has been observed to play a
significant role in pathological tremor and epilepsy [98, 103, 15].

An important example of a dynamical disease is Parkinson’s disease, a chronic
progressive neurodegenerative disorder characterized by tremor, rigidity, and bradyki-
nesia [12]. There is evidence to suggest that the pathological tremors associated
with Parkinson’s disease occur when groups of oscillatory neurons in the motor con-
trol region of the brain spike in synchrony [77, 34]. Such oscillatory spiking behavior
has also been observed in extensive experimental investigations of the mammalian
brain in the context of motor control, movement, and the sleep-wake cycle [24, 92].

Synchrony is an interesting phenomenon from a dynamical systems perspective.
Most often in neuroscience, synchrony is discussed in terms of spike times [43, 72].
Phase synchronization is also an important characteristic that provides different
information about the state of a population of oscillatory neurons. In this disser-
tation we will investigate the onset of spiking synchrony and phase synchrony as
a function of background noise parameters with the goal of characterizing popula-
tion level responses. By understanding the phase distribution, models of oscillatory
neuronal populations involved in pathology, like Parkinsonian tremor, can be more
accurately initialized and studied.

Parkinson’s disease and its associated pathology, including neuronal synchrony,
present interesting opportunities and challenges for controls engineering. Electrical
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Deep Brain Stimulation (EDBS) is an FDA-approved treatment for Parkinson’s dis-
ease (which has also been shown to be effective for the treatment of depression and
epilepsy). The current EDBS technology consists of a single electrode, implanted
deep in the brain, that applies a high-frequency (on the order of 100 Hz) open-loop
periodic stimulus waveform that can silence pathological tremors [10]. The efficacy
of this treatment shows that it is possible to use implanted hardware to control
pathological neuronal behavior.

Unfortunately, the current EDBS technology has several shortfalls. The efficacy
of the EDBS system varies widely from patient to patient, and is governed by
empirically derived stimulus waveforms with tunable parameters. Its open-loop
nature means that the stimulus is always applied to the tissue, even if the patient
is not currently experiencing symptoms. Over time, this can lead to excessive
tissue damage which lessens efficacy and may ultimately lead to a situation where
the EDBS system is no longer able to mitigate the symptoms.

There is much interest in designing EDBS control systems that use additional
electrodes for feedback, thereby making the stimulus “demand-controlled” [98, 99].
A feedback-based approach is attractive from a clinical perspective in that the
biological tissue is only stimulated when necessary, thereby reducing the overall
accumulation of negative side effects of electrical stimulation, and also the amount
of power required from the implanted battery.

The neuronal networks that constitute the motor control system in human brain
are exceptionally complex, so we take a more modest approach by considering only
single neurons or simple networks. From an experimental perspective, it is possible
to isolate single neurons from a slice of excised rat brain in the laboratory, and equip
them with sensory electrodes and stimulus electrodes. Using recently developed
experimental techniques, one can gather data and implement novel closed-loop
control algorithms on living cells in real time [94].

There are, however, challenges to implementing feedback control for neurons.
First, the conductance-based formalism first proposed by Hodgkin and Huxley in
[50], a general modeling methodology in neuroscience, yields systems of continuous-
time ordinary differential equations that tend to be highly nonlinear. Many tradi-
tional feedback control system designs require the controlled system to be either
linear or only weakly nonlinear. A second challenge is that a control scheme can-
not stimulate biological tissue with arbitrarily large signals. The magnitude of the
electrical stimulus must be constrained to acceptable ranges for hardware imple-
mentation and biological tissue tolerance. A third challenge is the fact that the
only state that is directly observable is the neuron’s membrane voltage. A con-
trol system cannot measure the dynamic states of the many ion channels that play
a critical role in the oscillatory behavior of neural spiking. This poses particular
problems for implementing traditional nonlinear feedback control systems, which
depend on continuous measurements of state [55]. The control strategies proposed
in this dissertation are intended to at least partially overcome these challenges.

An outline of this dissertation is as follows. In Chapter 2, we review the model-
ing methodologies will we will use to model individual neurons. This includes the
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“full-dimensional” conductance-based models in the Hodgkin-Huxley formalism, as
well as reduced dimensional models including fast-slow planar models, nonlinear
phase oscillators, and parametric resonators. We will also review some central con-
cepts of model identification, to enable the construction of appropriate models from
experimental data. Chapter 3 presents results on the population-level dynamics.
We investigate the response of ensembles of neurons to background noise in the form
of spikes with interspike intervals drawn from a Poisson distribution. This chapter
will introduce a phase sampling algorithm that allows conductance-based model
data to be correctly interpreted in the context of equivalent phase models. Then,
in Chapter 4, we consider small populations of coupled nonlinear resonators, ad-
dressing their bifurcation structure and symmetries, and their response to periodic
input. In Chapters 5-7, we shift our focus to feedback control of neural oscillators.
Spike timing control from a reference phase tracking perspective is discussed in
Chapter 5. We develop event-based feedback schemes based on impulsive stimuli
and extend our results to the quasi-impulsive case that is experimentally realizable.
Results are presented that show how this scheme can desynchronize a population
of spiking neurons, even when the ensemble is driven by an uncontrollable pace-
maker neuron. Chapter 6 presents another event-based control scheme, based on
the Hamilton-Jacobi-Bellman time-optimal framework, that effectively randomizes
the asymptotic phase of the controlled neuron using constrained stimulus. We de-
velop an extension that is shown to randomize phase in an all-to-all coupled network
where every neuron receives the same stimulus. Some surprising connections are
drawn between computational methods for optimal control and dynamical charac-
teristics of the underlying neuron model, namely the isochrons. Chapter 7 details
recent collaborations with experimentalists wherein we have developed a pair-wise
spike timing algorithm that stabilizes a desired interspike interval even if the pair
of neurons have different natural frequencies. In Chapter 8 we discuss the main
conclusions drawn from this work, and also discuss future directions.
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Chapter 2

Neuron models

In this chapter, we introduce a set of dynamical models for the activity of os-
cillatory neurons and we provide some tools to fit such models to experimental
observations. We focus on nonlinear ordinary differential equation (ODE) models
based on the Hodgkin-Huxley formalism. Several techniques are used to generate
reduced-order models that are useful from the perspective of dynamical character-
ization, numerical simulation, and control. Phase-reduction is introduced, which
provides nonlinear phase oscillator models that will be of central importance to
many of the results presented later in this dissertation.

Background information and context is presented in Section 2.1 along with a
brief literature overview. In Section 2.2, we discuss an important approach to mod-
eling neuronal dynamics, namely the conductance-based methodology first proposed
by Nobel laureates Hodgkin and Huxley in their seminal work [50]. Also included
in this section are two methods for reducing dimensionality of the resulting ODEs
to planar systems. The concept of phase is introduced in Section 2.3, along with the
related notions of isochrons and phaseless sets. Section 2.4 provides an overview of
phase reduction methods, that allow us to model the dynamics of a higher dimen-
sional nonlinear oscillatory ODEs as a one-dimensional phase oscillator. We also
discuss the concepts of isochrons and phaseless sets. We introduce another type of
oscillator model based on parametric resonance in Section 2.5, which extends the
applicability of some of the results presented in this dissertation to microelectrome-
chanical systems (MEMS). In Section 2.6, we briefly review optimization-based
methods methods for fitting model parameters to experimental time-series data.

2.1 Introduction and background

Many methods of modeling single neurons have been developed to address
the wide variety of perspectives and paradigms of interest in the neuroscience
field [40]. Simple mathematical model types include integrate and fire, spike re-
sponse, spike rate models, and mean field models like the Kuramoto model [59, 48,
96]. More detailed modeling paradigms include the conductance-based formalism
and its stochastic extensions, as well as spatio-temporal and information theoretic
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approaches. The voltage across the cell membrane is a fundamental measurable
quantity that determines how neurons communicate with each other.

Nonlinear models of oscillatory neurons, such as the Hodgkin-Huxley model,
display bifurcations in which oscillatory behavior can arise from a stable equilibrium
due to the variation of a single parameter. Other oscillatory biological systems also
display bifurcations [6] such as the development of abnormal tremor in tardive
dyskinesia [74], respiratory arrest [78], and the focus of this study, Parkinsonian
tremor [12, 13].

Networks of neurons present a wide variety of modeling paradigms as well [49]
and pose additional challenges due to the fact that neural networks often have
densely coupled architectures that are difficult, if not impossible, to experimentally
map in vivo. The network topology also tends to change over time in living tissue.

We will focus on ODEs for modeling neural dynamics of individual neurons,
and consider only the simplest of network topologies for the population-level results
presented in this dissertation.

2.2 Conductance-based models

A neuron’s cellular membrane separates the ionic concentrations on the outside
of the cell from those on the inside. By virtue of this separation of charge, the
membrane may be viewed as a capacitor. Pores in the cell membrane allow the
ions to migrate through, driven by the differences in concentrations on each side
of the membrane. Collectively, these microscopic pores can be modeled as gating
variables which determine how the set of ionic channels conduct ionic flow across
the membrane. By viewing the cellular membrane as a capacitor in parallel with
these ionic channels, one can construct a model of membrane voltage dynamics
using electrical circuit analysis. The models arising from this methodology are
known as “conductance-based” models.

A. L. Hodgkin and A. F. Huxley pioneered such a modeling framework in the
early 1950’s. Using the squid Loligo giant axon, they were able to deduce the
macroscopic behavior of the ionic channels and empirically fit curves describing
the nonlinearities to such accuracy that simulations of the resulting models agreed
well with experimental measurements. Since its inception, this modeling framework
has been used by many researchers to characterize a wide variety of neurons from
crustacean axons [25] to guinea pig pyramidal cells [102] to bursting pacemaker
neurons responsible for respiratory rhythm generation in the pre-Botzinger complex
in mammals [21]. In the case of long axons, Hodgkin and Huxley proposed a spatial
extension of this framework [50], but for this work, we will consider the “space-
clamped” ODE form; this formulation assumes spatially uniform membrane voltage,
which is an appropriate simplification for modeling the general spiking behavior of
oscillatory neurons. The general form for a space-clamped conductance-based ODE
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system is

cV̇ = Ig(V,n) + Ib + I(t), (2.1)

ṅ = G(V,n). (2.2)

Here, V ∈ R is the voltage across the membrane, n ∈ R
d
[0,1] is the vector of ionic

channel gating variables, c ∈ R
+ is the membrane capacitance, Ig : R × R

d → R

is the sum of the membrane currents, Ib ∈ R is a constant baseline current, and
Ii : R→ R is the current stimulus.

We now describe several specific conductance-based models of this form for
neurons which will be used throughout this dissertation.

2.2.1 Hodgkin-Huxley

A. L. Hodgkin and A. F. Huxley developed a four-dimensional model of the
squid giant axon in 1952 [50]. Since its inception, this has served as a prototype
for modeling membrane excitation of a class of neuron cells termed “Type II” [18]
or “Class II” [51]. The system has also become important as a building block
in systems of weakly connected neurons [51]. Following [18], the Hodgkin-Huxley
equations are presented using several simplifications. The scaling of the model has
been adjusted to give voltage in mV, current in mA, and time in msec. Although
the following model was developed to characterize the membrane voltage dynamics
of the squid giant axon, we will use it as a primary example of an oscillatory
neuron for the simple reason that it is perhaps the most studied neuron model in
mathematical neuroscience.

V̇ = (Ib + I(t)− ḡNah(V − VNa)m
3 − ḡK(V − VK)n4 − ḡL(V − VL))/c ,

ṁ = am(V )(1−m)− bm(V )m ,

ḣ = ah(V )(1− h)− bh(V )h ,

ṅ = an(V )(1− n)− bn(V )n ,

αm(V ) = 0.1(V + 40)/(1− exp(−(V + 40)/10)) ,

βm(V ) = 4 exp(−(V + 65)/18) ,

αh(V ) = 0.07 exp(−(V + 65)/20) ,

βh(V ) = 1/(1 + exp(−(V + 35)/10)) ,

αn(V ) = 0.01(V + 55)/(1− exp(−(V + 55)/10)) ,

βn(V ) = 0.125 exp(−(V + 65)/80) .

VNa = 50 mV , VK = −77 mV , VL = −54.4 mV , ḡNa = 120 mS/cm2 ,

ḡK = 36 mS/cm2 , ḡL = 0.3 mS/cm2 , c = 1 µF/cm2.

In this model, ḡNa, ḡK, and ḡL represent the conductances of the sodium, potas-
sium, and leakage channels. The reversal potentials of these channels are VNa,
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VK, and VL. The baseline current Ib will be treated as a bifurcation parameter.
Figure 2.1 shows the bifurcations of the Hodgkin-Huxley system in the region of
interest of Ib parameter space. For small values of Ib, the system has a single stable

Ib (mA)

V (mV )

Figure 2.1: Hodgkin-Huxley Ib bifurcation diagram. The vertical axis displays voltage values for
the fixed points and the maximum and minimum voltage values for the periodic orbits. Stable
fixed points along the thick black line, unstable fixed points along dashed line. Stable periodic
orbits indicated by filled circles, unstable periodic orbits as open circles. Bifurcation types as
noted.

fixed point. This stable fixed point becomes unstable when the system undergoes a
subcritical Hopf bifurcation that creates an unstable periodic orbit that then under-
goes bifurcations and becomes stable through a saddle-node bifurcation. We note
that at Ib = 10, the value used for much of the work presented in this dissertation,
the fixed point is unstable and the large amplitude periodic orbit is stable.

2.2.2 2D Hodgkin-Huxley reduction

For the results presented later in Chapter 6, it will be useful to approximate
the four-dimensional Hodgkin-Huxley system by a two-dimensional system. A pla-
nar system allows for complete visualization of the phase space on the plane, and
allows the visualization of optimal cost functions as surfaces above this plane. We
consider the two-dimensional reduction of the Hodgkin-Huxley model analyzed in,
for example, [69, 54].

To motivate the dimension reduction, we note that the gating variables in m,
h, and n in (2.3) can be represented by equations of the form:

τj(V )
dj

dt
= j∞(V )− j, (2.3)

where

j∞(V ) ≡
αj(V )

αj(V ) + βj(V )
(2.4)
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and

τj(V ) ≡
1

αj(V ) + βj(V )
. (2.5)

The n and h variables evolve much more slowly than the V and m states over
the domain of interest. This is because the Na+ channels activate quickly and the
membrane potential changes quickly compared to the slow inactivation of the Na+

channels and the slow activation of the K+ ion channels. For this reason, we replace
m by m∞(V ), which is the value to which m would relax if V were constant [54].
Furthermore, it has been noted that, for the full four-dimensional Hodgkin-Huxley
model in the oscillatory regime, the following relationship holds between n and h:

n+ h ≈ 0.8. (2.6)

We therefore make the substitution h = 0.8− n.
The dynamics for this reduced model are represented by the following ODE

system:

V̇ =
(

I(t) + Dη(t) + Ib − ḡNa[m∞(V )]3(0.8− n)(V − VNa)

−ḡKn4(V − VK)− ḡL(V − VL)
)

/c

ṅ = αn(V )(1− n)− βn(V )n,

(2.7)

where

αn(V ) =
0.01(V + 50)

1− exp[−(V + 55)/10]

βn(V ) = 0.125 exp[−(V + 65)/80]

m∞(V ) =
αn(V )

αn(V ) + βn(V )

VNa = 50mV, VK = 77mV, VL = 54.4mV,

C = 1F/cm2, ḡNa = 120mS/cm2,

ḡK = 36mS/cm2, ḡL = 0.3mS/cm2.

As stated earlier, we will use a baseline current Ib = 10 mA, for which the system
has a stable periodic orbit shown in Figure 2.2. The term η(t) is a zero-mean
white noise signal, with strength D intended to represent background noise in the
neurological context. Notice, here we have explicitly separated the noise process
Dη(t) from the injected stimulus I(t). Though it is a slightly different notation
convention from the other ODE models presented here, it will greatly clarify the
presentation of the results in Chapter 6.

In the forthcoming theoretical development, we will consider the noiseless de-
terministic case when D = 0. We will return to the case of non-zero noise after we
have computed the optimal control stimulus. The membrane capacitance is c = 1.0
in the units of (2.7), so for notational convenience in the following section, we will
incorporate it into our input variable u(t) = I(t)/c.
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Also, in Chapter 6 we will use the following shorthand notation for the right
hand side of (2.7):

V̇ = fV (V, n) + u,
ṅ = fn(V, n).

(2.8)

Figure 2.2: Stable periodic orbit for the reduced Hodgkin-Huxley model with Ib = 10 mA (red
curve). Isochrons, spaced uniformly in phase, are shown as dashed lines. The location of the
unstable equilibrium point, where the isochrons converge, is shown by a black X. The spike point
(maximum membrane voltage) is shown by the blue square.

2.2.3 Fast-slow reduction: FitzHugh-Nagumo

Next we consider another classical neural model, the FitzHugh-Nagumo model
[37, 71] in a dimensionless form taken from [54]:

δ V̇ = V (V + a)(1− V )− w + u
ẇ = V − 0.5w.

(2.9)

Here, u represents the input to the neuron. The parameter a determines the location
of the unstable equilibrium point inside the periodic orbit. In the results presented
in this dissertation we will take a = 0.6. The fast-slow time scale separation
is readily apparent, and scales with the δ parameter, which we will take to be
0.01. An advantage of this model is that it displays the fundamental dynamical
characteristics of the Hodgkin-Huxley system, but with much simpler equations.
The nullclines, surfaces for which a dimension of the right hand side of the ODE is
equal to zero, are simply represented by polynomial functions. We view this model
as the distillation of the most important parts of an oscillatory neuron ODE.
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2.2.4 Hindmarsh-Rose

As a prototypical Type I (meaning that positive input always advances spike
timing) neuron model, we consider the Hindmarsh-Rose equations [85], which rep-
resent a reduction of the Connor model for crustacean axons [25]:

V̇ = [Ib + Ii(t)− ḡNam∞(V )3(−3(q −Bb∞(V )) + 0.85)(V − VNa)

−ḡKq(V − VK)− ḡL(V − VL)]/c ,

q̇ = (q∞(V )− q)/τq(V ),

q∞(V ) = n∞(V )4 +Bb∞(V ) , b∞(V ) = (1/(1 + exp(γb(V + 53.3))))4 ,

m∞(V ) = αm(V )/(αm(V ) + βm(V )) , n∞(V ) = αn(V )/(αn(V ) + βn(V )) ,

τq(V ) = (τb(V ) + τn(V ))/2 , τn(V ) = Tn/(αn(V ) + βn(V )) ,

τb(V ) = Tb(1.24 + 2.678/(1 + exp((V + 50)/16.027))) ,

αn(V ) = 0.01(V + 45.7)/(1− exp(−(V + 45.7)/10)) ,

αm(V ) = 0.1(V + 29.7)/(1− exp(−(V + 29.7)/10)) ,

βn(V ) = 0.125 exp(−(V + 55.7)/80) , βm(V ) = 4 exp(−(V + 54.7)/18) .

VNa = 55 mV , VK = −72 mV , VL = −17 mV , ḡNa = 120 mS/cm2 ,

ḡK = 20 mS/cm2 , ḡL = 0.3 mS/cm2 , gA = 47.7 mS/cm2 ,

c = 1 µF/cm2 , γb = 0.069 mV−1 ,

Tb = 1 msec , Tn = 0.52 msec , B = 1.26.

Type I models yield non-negative phase response curves, which translate into func-
tionally different response dynamics.

2.3 Phase, isochrons, and phaseless sets

The phase of an oscillator is a measure of the time it has spent evolving since
it last passed through the marker event which defines zero phase. For neuron
models, the spiking point, which for the 2D Hodgkin-Huxley model is the blue
square shown in Figure 2.2, is conventionally taken as the marker event defining
zero phase. Phase is an important concept for studying periodically spiking neuron
models because it also indicates when the neuron will spike next in the absence of
stimulus. Following [58], this extended concept of phase is called asymptotic phase
and can be defined as follows:

Consider an arbitrary autonomous ODE

ẋ = f(x), x ∈ R
p, p ≥ 2 (2.10)

with a stable hyperbolic limit cycle γ(t) with natural period T , i.e. γ(t+T ) = γ(t)
for all t. For each point x in the basin of attraction of the limit cycle γ, there exists
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a unique asymptotic phase φ(x) such that

lim
t→∞
|x(t)− γ(t+ φ(x))| = 0. (2.11)

State space is foliated with (p−1)-dimensional hypersurfaces called isochrons, which
are level sets of asymptotic phase [45]. For planar (p = 2) systems, the isochrons
are simply lines of equal asymptotic phase. A set of isochrons for the reduced
Hodgkin-Huxley model are shown as dashed lines in Figure 2.2. Points in state
space where phase is not defined are called phaseless sets.

In Figure 2.2, one can see that the isochrons are most dense near the unstable
equilibrium point at (Vs, ns) = (−59.6, 0.403). This unstable equilibrium point does
not have a well-defined phase because it is not technically in the basin of attraction
of the limit cycle. It is the only phaseless set “inside” the periodic orbit and is an
attractive target for phase randomization. Later, in Chapter 6, we will show how to
construct a stimulus to reach an arbitrarily small neighborhood of this point, then
the noise process will randomly perturb the state onto a nearby isochron, effectively
randomizing the asymptotic phase of the neuron.

2.4 Phase-reduced models

We choose baseline current, Ib, values such that each neuron’s only attractor
is a stable periodic orbit: for example, Ib = 5 mA for the Hindmarsh-Rose model,
and Ib = 10 mA for the Hodgkin-Huxley model. Since each system has a stable
periodic orbit at the prescribed Ib value, it is useful to map the system to phase
coordinates [108, 45, 59, 109, 18]. Following [45], there exists a homeomorphism h:
R×R

d → S
1 mapping any point on the periodic orbit γ to a unique point the unit

circle θ ∈ [0,2π). Furthermore, in a neighborhood of the periodic orbit, the phases
are determined by isochrons, whose level-sets are the sets of all initial conditions for
which the distance between trajectories starting on the same isochron goes to zero
as t → ∞ [58]. By convention, when θ = 0 the neuron fires. In the limit of small
perturbations, the stimulus spikes serve to nudge the state slightly off the periodic
orbit. In this way, the state may be moved onto a different isochron resulting in
a difference in phase, with a magnitude and direction determined by the phase
response curve (PRC). This reduction enables the dynamics of an (d + 1)-ODE
neuron model to be represented by the evolution of a scalar phase variable. A
recent discussion of this framework was communicated in [47].

We can therefore model a neural population by a set of one-dimensional phase
models - one for each neuron. In the presence of individual stimuli Ii(t), this phase
reduction yields the following uncoupled N -dimensional system of equations for the
phases θi of an uncoupled population of N identical neurons [18, 47]:

dθi
dt

= ω +
ZV (θi)

c
Ii(t), i = 1, · · ·N. (2.12)
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Here θi ∈ [0, 2π), ω = 2π/T where T is the period of the periodic orbit, and
Z(θ) is the PRC. Of particular interest are perturbations in the voltage direc-
tion, i.e. ZV (θ) = ∂θ

∂V
. The software package XPPAUT [36] was used to numer-

ically calculate PRCs for the Hindmarsh-Rose and Hodgkin-Huxley models. For
computational convenience, we use approximations to these PRCs shown in Fig-
ure 2.3: the Hindmarsh-Rose PRC is approximated by a curve-fit of the form
ZV (θ) ≈ K

ω
(1 − cos(θ)) where K ≈ 0.0036 (mV-msec)−1 for Ib = 5 mA [18, 19],

cf. [35]; the Hodgkin-Huxley PRC is approximated as a Fourier series with 21 terms.

0 pi/2 pi 3pi/2 2pi
−0.2

−0.1

0

0.1

0.2

0.3

0.4
Hindmarsh−Rose
Hodgkin−Huxley

ZV (θ) (rad/mV-msec)

θ (rad)

π

2
3π

2
2ππ

Figure 2.3: Phase response curve approximations for the Hindmarsh-Rose model with Ib = 5 mA
(solid) and the Hodgkin-Huxley model with Ib = 10 mA (dashed).

2.4.1 Type II phase response curves

We will consider neurons which possess a so-called “Type II” phase response
curve [51], like the Hodgkin-Huxley model, seen in Figure 2.3. These phase response
curves arise for systems exhibiting a Hopf (or Bautin) bifurcation [18]. In Figure
2.4, we show the Hodgkin-Huxley phase response curve labeled with the following
important points:

α = argmin(Z(θ)) , Zmin = Z(α)
β = argmax(Z(θ)) , Zmax = Z(β).

In general, phase response curves for Type II neurons are characterized by the
following properties:

Z(0) = 0 , Z ′(0) < 0
Z(γ) = 0 , Z ′(γ) > 0
Zmax > 0 , Zmin < 0

0 < α < γ < β < 2π .

(2.13)

Type II phase response curves present special challenges to control, notably the
fact that they are not sector bounded. A positive stimulus can either advance or
retard the phase depending on the phase at which it is administered.
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Figure 2.4: Phase response curve calculated for the Hodgkin-Huxley neuron model for Ib = 10
mA [86]. Important points are labeled as follows: α is the phase at which the phase response
curve takes on its minimal value, Zmin, β is where it takes on its maximal value Zmax, and γ is
the interior zero-crossing.

2.5 Parametric resonance models

We remark that there are many other types of oscillators besides neurons. Fur-
thermore, their oscillation can be due to external periodic forcing. In Chapter 4, we
will consider another class of ODE models that arise from a form of the nonlinear
Mathieu equation for a damped, parametrically forced oscillator, shown below:

ẍ+ bẋ+ x+ x3 = xF cos(ωf t). (2.14)

Here the term bẋ represents damping (we assume b > 0), the term x+x3 represents a
nonlinear restoring force, and the term xF cos(ωf t) represents parametric excitation
which can be viewed as a time-periodic modulation of the linear part of the restoring
force.

This model presents a particularly interesting phenomenon of resonance due to
a driving force with frequency ωf . By studying models of this type, we can extend
the applicability of some of our results to microelectromechanical oscillators that
could have utility as motion sensors and energy harvesters.

2.6 Model identification

Given a parametrized ODE neuron model and a set of experimental input-
output data, we will show how one can obtain reasonable estimates of the pa-
rameters using an optimization-based parameter estimation approach. The treat-
ment presented here is simplified; we refer to [32] for a more complete overview of
optimization-based approaches for parameter estimation.
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We note that filter-based methods, an alternative to the methods presented
here, have also been used to estimate parameters for neuroscience models. A par-
ticular application is reported in [87], and, for a general review, we refer to [106].
These types of methods are particularly well suited when noise is present in the
experimental data – a significant factor that we do not consider here.

Most often in experimental neuroscience, the only available experimental data is
a length-N time-series voltage trace, Vexp(tk), sampled uniformly in time (t1 = ∆t,
t2 = 2∆t, . . . , N∆t), where ∆t is the sampling period. The input to the neuron,
I(tk), is experimentally generated and therefore known (or at least measurable).

The first step in model identification is to choose a parametrized model that
will be fit to the experimental data. The conductance-based models presented
in Section 2.2 are admissible types, as well as many other ODE models in the
neuroscience literature. One groups all the unknown parameters, including the
initial value of all unobservable states into a vector p ∈ R

Np , where Np is the
cardinality of this vector. In most cases, the unknown parameters will be known
to lie in some subset P ⊂ R

Np . Given the nonlinearity of the underlying dynamical
models, this parameter estimation approach works best when P can be bounded
reasonably close to the actual value of the unknowns.

The objective is to find the “true” value of the unknown parameter vector, p,
which for clarity will be denoted by ptrue. We approach this as a constrained opti-
mization problem, and will use numerical simulation to generate voltage trajectories
for models with different guesses for p, denoted by the variable pguess. We define
the cost function for a generic choice of p as:

C(p) = ||Vsim(p)− Vexp||
2 (2.15)

where Vsim(p) is a length-N time-series voltage trace computed from numerically
simulating the underlying dynamical system using parameter value p. We choose
the Euclidean 2-norm for the function || · ||. We note that the initial value of the
voltage is simply the first value of the experimental data Vexp, and is therefore
known. Recall from above, the initial values of the unobservable states are not
known and are treated as additional parameters in p. So, the cost function C(pguess)
is simply a measure of the distance between the simulated data and the experimental
data for a given guess of the parameter value pguess.

We employ the MATLAB (R) Optimization Toolbox constrained minimization
routine fmincon to take the initial parameter guess pguess ∈ P, assess the cost
C(pguess), and develop a refined guess p+

guess. The optimizer iterates on this procedure
using the active set line search method until either a local minimum is found, or
the problem is declared unsolvable.

Convergence of this optimization procedure is not guaranteed, but in practice
the optimizer tends to find local minima as long as the subset P is not too large.
The local optimal estimated parameter vector popt is given by the following:

popt = arg min
p∈P
{C(p)}.
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We reiterate here the importance of the fact that this popt is a local optimum.
Since, for the models we consider, the underlying dynamics are highly nonlin-

ear, it is advisable to iterate on this constrained optimization process, each time
beginning from a different initial guess pjguess drawn from a uniform distribution
over P . For each of the Nit iterations, successful convergence produces a local min-
imum pjopt. From this set {pjopt}, we choose the parameter vector that yields the
lowest cost by Equation (2.15) as our final estimate for the parameter estimation
algorithm.

Though there is no mathematically formal guarantee of success, this method
provides a practical means to develop ODE-based models for real neurons in the
laboratory, which is an important experimental connection to the theoretical results
presented in this dissertation.

2.6.1 Example: FitzHugh-Nagumo

We now present an example of how to fit a parametrized model to experimental
data using the FitzHugh-Nagumo model (2.9). First, we generate a set of time
series voltage data, shown as the solid blue line in Figure 2.5(a). This data has
been generated by simulation, but in practice it would be measured experimentally.
The goal is to identify the parameters a and δ, as well as the initial condition, w0,
of the unobservable state w. So in this case p = [a δ w0]

T . The simulated
experimental data was generated using

ptrue = [0.6 0.01 0.1]T . (2.16)

We now seek to develop some reasonable bounds on the domain P of the pa-
rameters. For the FitzHugh-Nagumo system, it is known that a will be positive and
of order one, and that the time scale separation variable δ will likely be between
0.001 and 0.1. The domain of the unobservable variable w is roughly bounded in
magnitude by 0.5. Using this information, we propose the following bounds:

P = (0.1, 1.0)× (.001, 0.1)× (−0.5, 0.5). (2.17)

Twenty runs of the optimization procedure were conducted with different p0

values chosen at random from the set P . One of the convergent runs began at
p0 = [.4235 .0908 .2265]T and convergence was achieved after 18 internal fmin-

con iterations. Figure 2.5(b) shows the convergence in cost function (2.15) of the
optimizer. The cost of the initial guess is 4.23 × 103. After 18 internal iterations,
the cost is 3.36× 10−6. The final estimate of the parameters is:

popt = [0.60001 0.09999 0.10000],

which is extremely close to the parameter value used to generate the observed data.
This example is highly idealized in that the bounds on the parameter values

were known, the experimental data was noiseless, and the model being fit to the
data had the identical structure of the model that generated the data. It shows that
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Figure 2.5: (a) Simulated experimental voltage data (solid blue line) and voltage trace from
estimated model (dashed green line). (b) Convergence of the cost function (2.15) for the parameter
estimation procedure over 18 internal fmincon iterations.

the proposed procedure can successfully identify parameters, but more advanced
methods may be required if noise and model selection are significant issues in the
experiment.

17



Chapter 3

Population Dynamics: Response

to Poisson Noise

The study presented in this chapter shows that populations of identical uncou-
pled neurons exhibit partial phase synchronization when stimulated with indepen-
dent, random unidirectional current spikes with interspike time intervals drawn from
a Poisson distribution. We characterize this partial synchronization using the phase
distribution of the population, and consider analytical approximations and numeri-
cal simulations of phase-reduced models and the corresponding conductance-based
models of typical Type I (Hindmarsh-Rose) and Type II (Hodgkin-Huxley) neu-
rons, showing quantitatively how the extent of the partial phase synchronization
depends on the magnitude and mean interspike frequency of the stimulus. Fur-
thermore, we present several simple examples that disprove the notion that phase
synchrony must be strongly related to spike synchrony. Instead, the importance
of partial phase synchrony is shown to lie in its influence on the response of the
population to stimulation, which we illustrate using first spike time histograms.

Section 3.1 provides some introductory background and a brief overview of the
existing literature. We precisely describe the set of random stimuli in Section 3.2.
Section 3.3 gives an intuitive description of the mechanism by which partial phase
synchronization occurs, and presents a detailed theory for the long-time probability
distribution function for the phase. In Section 3.4, we describe our simulation meth-
ods for both conductance-based models and phase models. This section provides
the numerical tools necessary to interpret conductance-based model observations
from the phase-based perspective. Section 3.5 gives quantitative details of how
the extent of the phase synchronization depends on the magnitude of the stim-
ulus and the mean interspike frequency of the stimulus for Hodgkin-Huxley and
Hindmarsh-Rose neurons. We show that the simulation results for a population of
phase oscillators very closely match those for a population of conductance-based
neuron models exposed to the same type of stimulus, and both sets of simulation
data yield long-time phase distributions that are very similar to the theoretical
predictions. This verifies that the concept of phase synchronization, although de-
veloped based on phase oscillators, is an effective and accurate tool for modeling
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populations of conductance-based neuron models. We discuss the practical impli-
cations of partial phase synchrony to the response of the population in Section 3.6.

3.1 Introduction and background

As discussed in Chapter 1, synchronized neural activity is believed to be impor-
tant for various brain functions, including visual processing [44, 105], odor identi-
fication [38], signal encoding [93], cortical processing [88], learning [90], and mem-
ory [56]. It can also be detrimental. For example, resting tremor in patients with
Parkinson’s disease has been linked to synchronization of a cluster of neurons in the
thalamus and basal ganglia [77]. Similarly, essential tremor and epileptic seizures
are commonly associated with synchronously firing neurons [34, 103], which can
become (partially or fully) synchronized due to coupling and/or stimulation by
common inputs.

Even common inputs that are random or noisy can lead to synchronization [42,
43, 72]. This applies to a broad range neuron models [84, 100], with little constraint
on intrinsic properties. It has also been shown experimentally that some neurons, in
particular olfactory bulb mitral cells, can synchronize in this manner in vitro [39].
This is relevant to spike timing reliability experiments, which found that repeated
injection of the same fluctuating current into a single cortical neuron leads to a more
reproducible spiking pattern than injection of a constant current [63]. Indeed, an
experiment in which multiple uncoupled neurons are subjected to a common input
is equivalent to an experiment in which a single neuron is subjected to the same
input over multiple trials, as in [63], so that spike timing reliability can be viewed
as synchronization across trials.

Typically, as in the references cited above, synchrony in the context of neuro-
science is discussed in terms of synchronization of action potentials (spikes). Syn-
chronization of spike times is a natural way to quantify the dynamic behavior of a
population of neurons, since typically the only observable quantities are voltages.
There is, however, another form of synchrony that can play an important role in
the dynamic response of a population of oscillatory neurons to stimulus.

In this chapter, we consider partial phase synchronization, a characteristic that
provides information about the dynamical state of a population of oscillatory neu-
rons not easily obtained by studying spike synchrony alone. The concept of partial
phase synchronization applies to populations of oscillatory neurons, each of which
evolves in time according to dynamics that can be represented by a one-dimensional
phase oscillator (a “simple clock”, in the terminology of [109]). As we discussed
earlier in Section 2.3, the phase of a neuron relates its state, in time, to the firing
of an action potential (or other marker event on its periodic orbit), as described
for example in [45] and [18]. The dynamical state of a population of phase oscilla-
tors can be characterized by the distribution of their phases (over the unit circle).
Partial phase synchronization refers to the degree to which this phase distribution
possesses a single dominant mode, meaning that there is a higher density of neu-
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rons with phases near this region than anywhere else on the circle. Complete phase
synchronization is the limiting case of partial phase synchronization where all the
neurons have exactly the same phase, which yields a phase distribution in the form
of a Dirac delta function.

We will now proceed to examine how an uncoupled ensemble of neurons can
develop phase synchronization due to independent random stimuli. Such stimuli
represent background activity of other neurons, based on the experimental evidence
presented in [89].

3.2 Stimulus model

To model the independent random stimuli, we suppose that each neuron receives
δ-function current inputs of strength Ī at times determined by a Poisson process
with mean frequency α:

Ii(t) = Ī
∑

k

δ(t− tki ), (3.1)

where tki is the time of the kth input to the ith neuron. The times of these inputs
are determined by drawing the interspike intervals from the distribution

p(τ ;α) = αe−ατ . (3.2)

We emphasize that the neurons in our models are not coupled to each other, and
that each one receives the same baseline current Ib but a different current stimulus
Ii(t).

In our analysis, we are interested in determining how the population-level be-
havior depends on α and Ī. Experimentalists have found that the mean excita-
tory spike frequency in certain brain neurons is about 83 Hz or α = .083 ≈ 0.1
spikes/msec [89]. This falls at the high end of the gamma-rhythm range [57], and
sets the scale for biologically relevant α values. We base our Ī scaling on a unit 1
mA, so that a spike gives an instantaneous voltage change of order Ī/c = 1 mV.
Since the dynamic range of a periodically firing neuron is approximately 100 mV,
this corresponds to a small perturbation in the depolarizing direction [99].

3.3 Mechanism for partial phase synchronization

3.3.1 Intuitive description

We take partial phase synchronization to mean that there is a higher probability
of a neuron having a certain range of phases than another range of equal size. The
following illustrates qualitatively how partial phase synchronization can occur for
a population of neurons subjected to the previously described stimuli. We consider
neurons that are modeled as phase oscillators, per Section 2.4. Take, for example,
the PRC ZV (θ) = 1 − cos(θ). Recall the time evolution of a neuron is governed
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by (2.12). Now imagine a set of four such neurons on the unit circle with this
PRC starting at {θ1, . . . , θ4} = {0, π

2
, π, 3π

2
}. These are shown as black markers on

Figure 3.1(a) and are labeled according to their ith indices. Figure 3.1(a) also shows
the phase of the four neurons in the absence of stimuli after some time interval ∆t
has elapsed: each neuron has advanced in phase by ∆θ = ω∆t to positions indicated
with open markers, labeled i′. This behavior is termed drift and is simply due to
the natural frequency of the neurons. If each of the neurons was exposed to a unit
stimulus during this same time interval ∆t, their phases advance additionally, as
determined by the PRC, by ∆θ = ZV (θ)Ī/c (if the PRC contains negative values,
the phase can also be retarded). The position of each of the neurons after drift and
stimulus is indicated by striped markers labeled by i′′. Notice that the position of
neuron 1 (starting at θ = 0) with stimulus (1′′) is the same as without stimulus
(1′). This is because ZV (0) = 0 for this example.

Figure 3.1: Initial phases as black markers labeled i, phase after drift as open markers labeled i′,
and phase after drift and stimulus as striped markers labeled i′′ (a). Distribution of many neurons
after exposure to stimulus (b).

If all four neurons are subjected to stimulus, it is apparent from the i′′ locations
in Figure 3.1(a) that the distribution of neurons has changed. What began as
uniform has become asymmetric. The situation becomes more apparent if many
more neurons are displayed, as in Figure 3.1(b). Here we see a definite “bunching”
around θ = 0. Many neurons have similar phases, hence phase synchronization has
occured.

The above description assumed each neuron receives the same input. Concep-
tually, one can envision a similar argument if all neurons receive unidirectional
independent Poisson-type stimuli with the same statistics, i.e. mean interspike
frequency α and magnitude Ī.
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3.3.2 Theoretical development

Suppose that each neuron in a population received the same non-random stim-
ulus I(t). For example, I(t) might be a step function stimulus [18] or a sinusoidal
stimulus. We are interested in the probability that a neuron will have a phase
between θ and θ + dθ at time t, given by ρ(θ, t)dθ, where ρ(θ, t) is the probability
distribution function for the population of neurons. The phase synchronization can
be represented by the shape of ρ(θ, t) over θ ∈ [0, 2π) at time t. The following
partial differential equation can be derived for N → ∞ for such a population of
neurons (e.g., [18]):

∂ρ

∂t
= −

∂

∂θ
[(ω + Z(θ)I(t)/c)ρ(θ, t)] . (3.3)

For the present problem with independent random inputs Ii(t), the situation is
more complicated. We proceed by deriving an expansion of the density evolution
that is conducive to perturbation methods consistent with the neuron models and
random inputs under consideration. For the values of mean spike frequency, α, and
neuron natural firing frequency, ω, used in this chapter, it is reasonable to consider
the ratio ω/α as O(1) = O(ǫ0) for the Hodgkin-Huxley model and O(ǫ) for the
Hindmarsh-Rose model, where ǫ is a small parameter.

Kramers-Moyal Expansion

The probability distribution ρ(θ, t) obeys the Kramers-Moyal expansion [23]

∂ρ(θ, t)

∂t
=

∞
∑

n=1

(

−
∂

∂θ

)n

[D(n)(θ)ρ(θ, t)], (3.4)

where

D(n)(θ0) =
1

n!
lim

∆t→0

E[(θ(∆t)− θ0)
n]

∆t
. (3.5)

Here E denotes the expected value, and θ(0) = θ0 for the realizations used to
calculate D(n)(θ0). Now

θ(∆t) = θ0 + ω∆t+ ∆θ,

where ∆θ is the total jump in θ due to the random Poisson inputs in [0,∆t). For
sufficiently small ∆t, we expect that either no inputs occur, in which case ∆θ = 0,
or one input occurs, giving

∆θ ≈ ĪZ(θ0)/c ≡ (∆θ)jump. (3.6)

For n = 1 and sufficiently small ∆t, we have

E[θ(∆t)−θ0] = ω∆t+E[∆θ|input]×p(input)+E[∆θ|no input]×p(no input). (3.7)

Using
E[∆θ|input] = (∆θ)jump, E[∆θ|no input] = 0,
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p(input) = α∆t, p(no input) = 1− α∆t

gives

E[θ(∆t)− θ0] = ω∆t+ α∆t
Z(θ0)Ī

c
, (3.8)

so that

D(1)(θ0) = ω + α
Z(θ0)Ī

c
. (3.9)

Similarly for n > 1,

E[(θ(∆t)− θ0)
n] = E[(ω∆t+ ∆θ)n] = α∆t

(

ĪZ(θ0)

c

)n

+O((∆t)2), (3.10)

so that

D(n)(θ0) =
α

n!

(

ĪZ(θ0)

c

)n

n > 1. (3.11)

Finally, letting

Z(θ) = Zdψ(θ), ǫ =
ZdĪ

c
, (3.12)

where Zd and ǫ are nondimensional, we obtain the following equation for the steady
(∂/∂t = 0) density ρs(θ):

0 = −
ω

α

dρs
dθ

+
∞
∑

n=1

ǫn
(−1)n

n!

(

d

dθ

)n

[(ψ(θ))nρs(θ)]. (3.13)

We now consider the small ǫ limit, corresponding to random inputs with small
amplitude. We substitute

ρs(θ) = ρ0(θ) + ǫρ1(θ) + ǫ2ρ2(θ) + · · · (3.14)

into (3.13), and to solve at successive orders of ǫ. We divide this into two cases
based on the relative size of ω/α.

Hodgkin-Huxley: ω
α

= O(1)

This case applies when the ratio of natural frequency to mean spike frequency
is of order 1, which corresponds to the Hodgkin-Huxley model in our analysis.

At O(ǫ0), we find that

dρ0

dθ
= 0 ⇒ ρ0 = constant =

1

2π
, (3.15)

where the value of the constant follows from the normalization

1 =

∫ 2π

0

ρ0dθ. (3.16)
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At O(ǫ), we obtain

−
ω

α

dρ1

dθ
−
dψ

dθ
ρ0 = 0, (3.17)

which has solution
ρ1(θ) = −

α

2πω
ψ(θ) + k1. (3.18)

The value of the constant k1 is determined by the normalization condition

∫ 2π

0

ρ1(θ)dθ = 0 ⇒ k1 =
α

(2π)2ω

∫ 2π

0

ψ(θ)dθ. (3.19)

Thus, to O(ǫ),

ρs(θ) ≈
1

2π
+

αĪ

2πωc

(

−Z(θ) +
1

2π

∫ 2π

0

Z(θ)dθ

)

. (3.20)

At O(ǫ2), we obtain

−
ω

α

dρ2

dθ
−

d

dθ
[ψ(θ)ρ1(θ)] +

ρ0

2

d2

dθ2
[(ψ(θ))2] = 0. (3.21)

This has solution

ρ2(θ) = −
α

ω
ψ(θ)ρ1(θ) +

α

4πω

d

dθ
[(ψ(θ))2] + k2. (3.22)

Using the normalization condition

∫ 2π

0

ρ2(θ)dθ = 0, (3.23)

we obtain the following approximation for ρs(θ) accurate to O(ǫ2):

ρs(θ) ≈
1

2π
+

αĪ

2πωc

(

−Z(θ) +
1

2π

∫ 2π

0

Z(θ)dθ

)

+
α2Ī2

2πω2c2

{

[Z(θ)]2 −
1

2π
Z(θ)

∫ 2π

0

Z(θ)dθ

}

+
αĪ2

4πωc2
d

dθ
[(Z(θ))2] + k′2, (3.24)

where

k′
2 =

1

2π

∫ 2π

0

{

αĪ

ωc
Z(θ)

[

αĪ

2πωc

(

−Z(θ) +
1

2π

∫ 2π

0
Z(θ)dθ

)]

−
α

4πω

(

Ī

c

)2
d

dθ
[(Z(θ))2]

}

dθ.

(3.25)

The truncation at O(ǫ2) is equivalent to formulating the problem in terms of a
Fokker-Plank equation, the same form of which is known as the diffusion equation.
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Hindmarsh-Rose: ω
α

= O(ǫ)

This case applies when the natural frequncy is much smaller than the mean
spike frequency, which corresponds to the Hindmarsh-Rose model in the regime
studied in this chapter.

We let
ω

α
= ǫω̃, (3.26)

where ω̃ = O(1). At O(ǫ) we obtain

ω̃
dρ0

dθ
= −

d

dθ
[ψ(θ)ρ0(θ)]. (3.27)

This has solution
ρ0(θ) =

c0

ω + αĪ
c
Z(θ)

, (3.28)

where

1 =

∫ 2π

0

ρ0(θ)dθ ⇒ c0 =

(

∫ 2π

0

dθ

ω + αĪ
c
Z(θ)

)−1

. (3.29)

A useful interpretation for this result is that, on average, the current αĪ enters
each neuron during every time unit. If such current came in uniformly, so that
I(t) = αĪ, equation (3.3) would have a steady distribution given by (3.28).

At O(ǫ2) we obtain

ω̃
dρ1

dθ
= −

d

dθ
[ψ(θ)ρ1(θ)] +

1

2

d2

dθ2
[(ψ(θ))2ρ0(θ)]. (3.30)

This has solution

ρ1(θ) =
αĪZd

2c

d
dθ

[(ψ(θ))2ρ0(θ)] + c1

ω + αĪ
c
Z(θ)

. (3.31)

Using the normalization condition

0 =

∫ 2π

0

ρ1dθ, (3.32)

we obtain the following approximation for ρs(θ) accurate to O(ǫ):

ρs(θ) ≈
c0

ω + αĪ
c
Z(θ)

+
αĪ2

2c2

d
dθ

[(Z(θ))2ρ0(θ)] + c′1

ω + αĪ
c
Z(θ)

, (3.33)

where

c′1 = −c0

∫ 2π

0

d
dθ

[(Z(θ))2ρ0(θ)]

ω + αĪ
c
Z(θ)

dθ. (3.34)

A different approach for the derivation of the steady probability distribution
for a related problem is given in [72], which is primarily concerned with showing
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phase synchronization in the case in which all Ii(t) in (2.12) are identical. Here
the dynamics are reduced to a random phase map, and the evolution of the density
associated with this map is described by a generalized Frobenius-Perron equation.
The steady distribution can be found numerically, or analytically in certain limits.
We find that our theory described above gives good agreement with our numerical
results, and provides a straightforward alternative to the approach of [72].

3.4 Simulation methods: phase sampling

3.4.1 Conductance-based models

A numerical routine was constructed to simulate large populations of uncoupled
neurons described by (m + 1)-dimensional conductance-based models. Since the
neurons are not coupled, the simulations can be conducted on a neuron-by-neuron
basis. A second-order Runge-Kutta method with small fixed time step ∆t was
used for O((∆t)2) accuracy and compatibility with the Poisson-distributed stimuli.
In our numerical models, we approximate the δ-function by a rectangular spike of
duration ∆t and magnitude 1/∆t.

To obtain a uniform initial phase distribution across the population, the (m+1)-
dimensional periodic orbit is calculated at run-time as a set of (m+2)-tuples of the
states and time. The time is then scaled to [0, 2π), and initial states are assigned
by drawing a scalar θ0 from a uniform random number generator and using the
periodic orbit to interpolate the initial data. Once the initial condition has been
set, the system is integrated. Periodically throughout the time evolution of each
neuron, the program computes its phase using a routine which will presently be
described, yielding a sampled time-series of the neuron’s phase even though the
equations are not in phase-reduced form.

Intuitively, the phase should be related to the time it would take the neuron
to fire, beginning at its present state, in the absence of stimuli. Computationally,
some additional care is required. We use the Hodgkin-Huxley equations as an
example to illustrate some of the computational complexities. For the Ib values
considered, the vector field of this system contains a spiral source near the periodic
orbit [83], an example of a phase singularity [109]. Therefore, it is possible for a
trajectory on the periodic orbit passing near this source to be pushed arbitrarily
close to it by stimulus. A neuron with a state very near the spiral source may
take a significant amount of time to evolve back to a neighborhood close to the
periodic orbit, especially if the (positive) real parts of the unstable eigenvalues are
small. This situation is extremely rare for the models and parameter ranges we
consider. In fact, it did not occur for any of the simulations which generated the
data presented in this chapter. However, to be useful in a general setting, the phase
calculation scheme must be able to identify this case and alert the program that a
phase singularity has been reached. In most settings dealing with behavior of large
populations, these cases can be dismissed without loss of statistical significance,
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since they appear to occur on a set of extremely small measure.
To compute phase, we use the current state vector as the initial (t = 0) data for

a new simulation which is run in absence of stimulus. This simulation is integrated
until two spikes are observed. Let the time it takes for a spike (above a set voltage
threshold) to occur be T1 (a large upper bound on the allowable T1 is used to
identify possible phase singularities). Let the time at which the next spike occurs
be T2. The interspike interval between the two is then Tint = T2 − T1. Then phase
can be computed as

θ = 2π

(

1−
T1 (mod Tint)

Tint

)

. (3.35)

An important component of this algorithm is its ability to correctly identify a
spike. We use a selection of logical checks which test the voltage time series for
maxima above a set threshold, and have a prescribed minimum interspike time
interval. Obviously, some knowledge of the spike magnitude and period is essential,
but this is readily available since the computation of the periodic orbit at run-time
provides all the necessary information. Using this method, one can simulate N
neurons for P sample steps and receive, as output, an N ×P matrix containing the
discrete time evolution of θi as the values in row i.

The above method provides an accurate and robust way of simulating and deter-
mining phase information for large populations of uncoupled neurons of arbitrary
dimension with a wide range of forcing functions and environmental parameters.
Not limited to small perturbations, the utility of this method is constrained only by
the relative stiffness of the neuron model and the geometry of the basin of attraction
of the periodic orbit. However, such flexibility comes at the price of computational
speed, which is strongly dependent on the dimension of the neuron model and the
type of solver used.

3.4.2 Phase-reduced models

We are interested in the population dynamics over as wide a (α, Ī) range as
possible. In order to more efficiently map the parameter space, we use the phase-
reduced form of the neuron equations. We have implemented an algorithm which
very efficiently simulates (2.12) for large N and for long times. It exploits the
fact that equation (2.12) can be solved exactly for the time intervals for which no
inputs are present. One gets times at which inputs occur by recognizing that the
time interval τ between subsequent inputs for an individual neuron can be obtained
by sampling the distribution (3.2). When an input comes for the ith neuron, we
instantaneously let

θi → θi + ZV (θi)Ī/c.

Again, the uncoupled assumption of the population allows each θi to be simulated
independently, and the program creates an N × P output matrix of the discrete
time evolution of θi.
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3.5 Results

We simulate populations of uncoupled neurons each subjected to independent
spike trains of set magnitude, Ī, with interspike intervals drawn from a Poisson dis-
tribution parametrized by mean spike frequency α. Our results include grayscale
plots of ρ(θ, t) showing the time evolution of the phase distribution of the popu-
lation, time-averaged distribution curves, and mappings of the distribution peak
value and location as a function of Ī and α. Comparisons are made between simu-
lations of the full conductance-based models, simulations of the phase models, and
theoretical estimates.

For notational convenience, we will refer to the N ×P output matrix as Θ. We
remind the reader that the ith row of Θ represents the time-series values of θi, the
phase of neuron i, as it evolves from initial time t0 to final time tf . While the differ-
ential equations are solved using a small time step ∆t, we report phase using a larger
time step ∆p. This ensures the displayed data will not have spurious characteris-
tics due to limitations of graphics resolution, and results in a dramatic performance
increase in the simulations of the full conductance-based models. Therefore, the P
columns of Θ represent the (tf − t0)/∆p sample points, plus a left-concatenated
column of the initial phases, i.e. P = 1 + (tf − t0)/∆p.

3.5.1 Phase distribution dynamics

The phase density of the population at each sample point, ρ(θ, t) is computed
from Θ by taking an appropriately scaled histogram of the corresponding column
of Θ. For example, ρ(θ) at the kth sample point is calculated by

ρ(θ, t = k∆p) = hist(Θek, nbins)
nbins
2πN

, (3.36)

where hist(., .) is the standard histogram binning function, nbins is the number of
bins dividing the interval [0, 2π), and ek is an P × 1 vector of zeros with a 1 in
the kth entry. The argument Θek is simply the kth column of Θ, representing the
phase of all the neurons at time t = (k + 1)∆p, where k = 1 implies t = t0. The
scaling used in (3.36) gives the normalizing condition

nbins
∑

j=1

ρ

(

θ =
j

nbins2π
, t

)

∆θ = 1, ∀t, (3.37)

where ∆θ is the bin size 2π/nbins. Equation (3.36) returns a nbins × 1 vector dis-
cretization of ρ(θ, t).

Populations of 1000 neurons were simulated, beginning with a uniform phase
distribution at t0 = 0, and subjected to random sequences of spikes with magnitude
Ī = 1 mA. An integration time step of ∆t = 0.01 msec was used. Since the
time scales of the Hindmarsh-Rose and Hodgkin-Huxley equations are significantly
different, separate simulation parameters are necessary, as given in Table 3.1.

28



Parameter Hindmarsh-Rose Hodgkin-Huxley
Ib (mA) 5 10

α (spikes/msec) 0.1 1
tf (msec) 1000 100
∆p (msec) 1 0.1

Table 3.1: Simulation parameters for Figures 3.2 and 3.3.

Figures 3.2(a) and 3.2(b) show our results for the simulations of the full conductance-
based models, to be compared with Figures 3.2(c) and 3.2(d), which are the results
from the phase-reduced model simulations. It is apparent that the phase reduc-
tion yields both qualitatively and quantitatively similar results. Since the phase
response curve for the Hodgkin-Huxley system is of relatively small magnitude, we
have used an α value of 1, rather than 0.1, to more clearly illustrate the dynamic
behavior of the phase distribution.
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Figure 3.2: Simulation results, ρ(θ, t), for Hindmarsh-Rose (a), (c) and Hodgkin-Huxley (b),(d)
(resp., conductance-based model, phase-reduced model).

One notices in these figures a behavior that can be described as “breathing”,
i.e. there is an oscillation (with period of approximately 200 ms for the Hindmarsh-
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Rose model and approximately 15 ms for the Hodgkin-Huxley model) about a mean
distribution. We found numerically that such oscillations persist for long times of
the order of 106 msec. It is worth noting that this oscillatory behavior is exhibited
in both the phase-reduced and conductance-based model simulations, suggesting
that it may not be an artifact of the numerics, but rather something inherent in
the dynamics which is not predicted by the theoretical framework. For the purposes
of our subsequent analysis, we view these oscillations as a secondary effect, to be
pursued in future work. To illustrate the average shape of the ρ(θ, t) distribution
curves, we average each simulation over the last 25% of the integration time interval,
which filters the oscillatory effects of the “breathing” behavior.
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Figure 3.3: Comparison of theoretical distribution estimate with averaged simulation data for
both conductance-based and phase-reduced models for Hindmarsh-Rose (a) and Hodgkin-Huxley
(b). Solid lines represent full conductance-based model simulation data, dashed lines represent
phase-reduced model simulation data, and dotted lines represent the theoretical estimates.

Figure 3.3(a) shows that theoretical predictions match the numerical data very
closely for the Hindmarsh-Rose system. The results for the Hodgkin-Huxley sys-
tem are qualitatively similar, as illustrated in Figure 3.3(b), but display a slight
mismatch of the θ location of the distribution peak.

3.5.2 Parametric study

The computationally efficient phase-reduced model allows for a more complete
mapping of the population response in parameter space. As a characterization of
the population response, we consider the magnitude, ρmax, and location, θmax, of
the peak of the t → ∞ averaged probability distribution. As in Section 3.5.1, we
consider populations of 1000 neurons. The Hindmarsh-Rose neurons are simulated
for 1000 msec (natural period ≈ 312 msec). The Hodgkin-Huxley neurons are
simulated for 100 msec (natural period ≈ 14.6 msec).
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Figure 3.4 compares the phase model results to the theoretical prediction using
(3.33) for the Hindmarsh-Rose system over 0 < α ≤ 3 spikes/msec and 0 < Ī ≤ 5
mA, for the ρmax characteristic. We find qualitative and reasonable quantitative
agreement. For simulations of the full conductance-based model, simulations of
the phase model, and theoretical predictions, the location θmax of the probability
distribution function peak ρmax stays at θmax = 0. The plots in Figure 3.5 show
our results over the same ranges of α and Ī for the Hodgkin-Huxley system. Fig-
ure 3.5(a) illustrates the more complex parameter dependence of ρmax. While the
theory predicts that θmax will be independent of α and Ī, Figure 3.5(b) shows that
it is weakly dependent on them. Since our theory is based on the ratio ω/α being
order ǫ, we have plotted the theoretical results over a reduced region of α and Ī pa-
rameter space, as shown in Figure 3.5(d) to be compared with the simulation results
reproduced over this reduced range in Figure 3.5(c). We see that the theoretical re-
sults qualitatively capture the trend of the data, but start to differ quantitatively as
α and Ī increase. Importantly, for both the Hindmarsh-Rose and Hodgkin-Huxley
models, we have shown that the degree of synchronization, as measured by the peak
of the probability distribution function of the phase, increases with both the size
and frequency of the stimuli, and can become quite substantial.

3.6 Discussion

3.6.1 Relationship between partial phase synchrony and

spike synchrony

The importance of studying partial phase synchronization lies not in its rela-
tionship to spike synchrony, but in its characterization of the dynamical state of
the population, which governs the response of the population to future stimulus.
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Before addressing the practical implications of partial phase synchrony, we will il-
lustrate some important points regarding the relationship of phase synchrony and
spike synchrony by discussing several simple examples. We will show that, in the
general case of a population of stimulated neurons, the degree of partial phase
synchronization is only weakly related to spike synchrony.

In the following scenarios, we consider a population of N identical uncoupled
phase oscillators each obeying the following ODE:

θ̇i = ω + Z(θ)Ii(t)/c.

In the absence of input, i.e. Ii(t) ≡ 0, there is a strong relationship between phase
synchrony and spike synchrony for populations of uncoupled identical oscillators.
If all oscillators have identical phase, it is obvious that they will cross the 0/2π
spiking threshold at identical time. At the opposite extreme, if the distribution of
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the population is uniform, it follows that the spike times will be uniform in time
(and thus desynchronized).

In the presence of input, coupling, or large distributions of natural frequency,
this strong relationship no longer holds. Since we have restricted our attention to
populations of identical uncoupled neurons in this chapter, we will develop sev-
eral simple examples that illustrate the how this relationship breaks down in the
presence of input stimulus.

Our primary concern is showing the mathematical relationship between phase
synchrony and spike synchrony, so we will assume that there are no constraints on
the inputs we can use, and the oscillators themselves are governed by phase response
curves that allow them to be controlled to achieve any prescribed dynamics:

θ̇i = f(θi).

This assumption is not true in general for real neurons (since the phase response
curves are often nonlinear and non-invertible). The question of whether population
of neurons with a given phase response curve can be driven to achieve specific
dynamics when stimulated by inputs from a restricted set is a control theoretic
problem and an aim of our future research. For the time being, we will follow our
controllability assumption, which will allow us to develop examples that are simple
and easy to verify.

In order to quantify partial phase synchronization, we introduce the Kuramoto
order parameter [59]:

r(t)e
√
−1ψ(t) =

1

N

N
∑

i=0

e
√
−1θi(t). (3.38)

In particular, we consider the magnitude of the order parameter, |r(t)|, which ranges
from zero for a uniform phase distribution to one for a completely synchronized
phase distribution (a Dirac delta function).

Example 1: Phase synchrony without spike synchrony

Consider a population of N (uncoupled) phase oscillators, labeled θ1, . . . , θN ,
evolving according to the following ODE:

θ̇i = f(θi) =

{

(π−∆)ωN
2π

if θi ∈ {[0, π −∆)
⋃

[π + ∆, 2π)}
∆ωN
π(N−2)

otherwise
(3.39)

with the following initial conditions:

θi(0) =

{

0 for i = 1

π −∆ + 2∆(i−2)
N−2

for i 6= 1.
(3.40)

This population will have uniform interspike intervals, i.e. no spike synchrony
whatsoever, while possessing an order parameter |r| → 1 as ∆ → 0 and N → ∞,
which indicates an arbitrarily high degree of phase synchronization.
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What has been done here is to define a neighborhood around θ = π, with in-
terval measure equal to 2∆, where the neurons move very slowly. Outside this
neighborhood the neurons advance very quickly. We have set up the initial condi-
tions such that most of the oscillators (all but two) are in the small region where
they move slowly. The one that starts at zero quickly moves to the starting edge
of the π-neighborhood phase interval. During the same time interval, the last os-
cillator, θN , advances quickly from the end of the π-neighborhood phase interval
around the circle to the 0/2π spiking threshold. Also during this time interval, all
the other neurons slowly advance in order along the π-neighborhood phase interval.
After the interspike time interval, the neurons have rotated positions, but the over-
all population distribution is identical to where it started from, so after relabeling
the oscillators, we are back to the starting configuration. Now if we make ∆ small,
we increase the level of phase synchronization, but the firing continues to be com-
pletely uniform (desynchronized). In fact, as ∆ approaches zero, all the neurons
except one will be arbitrarily close to π, so |r| → N−1

N
= 1 − 1

N
. Furthermore, as

we increase the number of neurons, |r| → 1 asymptotically. The value of |r| will,
of course, never reach 1, but it can made arbitrarily close.

We illustrate this with a numerical example consisting of a set of N = 6 phase
oscillators with natural frequency ω = 1. We set ∆ = 0.5 so that the trajectories
will not be overly crowded in the π-neighborhood and the plotted results can be
easily understood. Figure 3.6 (a) shows the trajectories generated by (3.39) along
with the magnitude of the order parameter |r(t)|. The interspike time intervals
here are uniformly equal to ratio of the natural period T to the number of neurons
N , so there is no spike synchrony whatsoever. Yet the magnitude of the order
parameter is at all times above 0.5. This value can be driven arbitrarily close
to one by increasing the number of neurons and decreasing ∆. We note that all
the phase trajectories are in solid black, because it is not important to be able to
differentiate between them. Any set of trajectories following such paths, regardless
of which neuron is on which trajectory at a given time, will generate the same
population-level results. This convention will be used in the next example, as well.

Example 2: Spike synchrony with minimal phase synchrony

To further simplify the following example, we will assume that we can prescribe
the phase trajectory for the ith oscillator directly, rather than via an ODE, according
to the following equation:

θi(t) =











π+2π(i−1)
nǫ

t (mod T ) if t (mod T ) ∈ [0, ǫ)
π+2π(i−1)

n
if t (mod T ) ∈ [ǫ, T − ǫ)

π+2π(i−1)
n

+ π+2π(n−i)
nǫ

(t (mod T )− (T − ǫ)) if t (mod T ) ∈ [T − ǫ, T )

(3.41)
The population of oscillators evolving according to (3.41) has complete spike

synchrony, but the trajectories have been configured such that the distribution will

34



be nearly uniform except near the spike times, where the distribution will collapse
toward a Dirac delta distribution, then expand again to be nearly uniform after the
spike. Thus we have shown that, even in the presence of complete spike synchrony,
the phase synchrony can be confined to intervals of arbitrarily small measure. To
quantify this, we note that the integral of the order parameter magnitude

R(t) ≡

∫ t

0

|r(t̃)|dt̃

can be made arbitrarily small by letting ǫ → 0. This means that the phase syn-
chrony of this population is zero except on a set of arbitrarily small (but still
positive) measure. We conclude that, although spike synchrony must be accompa-
nied by phase synchrony at the instants of the spikes, we cannot say more about
their relationship without considering controllability of the oscillators with respect
to possible trajectories.
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Figure 3.6: Illustrations showing that partial phase synchrony and spike synchrony need not be
strongly related. Plot (a) shows the scenario from Example 1 where there is a high degree of phase
synchronization but no spike synchronization. Plot (b) shows the scenario from Example 2 where
there is complete spike synchronization but only small time intervals of phase synchronization.
The bottom figures show a quantification of phase synchrony, as represented by the magnitude
of the Kuramoto order parameter. The results can be sharpened by increasing the number of
neurons, and reducing the parameters ∆ and ε.

We illustrate this point with a small population of 6 oscillators with natural
period T = 1. Figure 3.6(b) shows the trajectories generated by (3.41) as well as
the associated |r(t)|. For clarity, we choose ǫ = 0.1. The magnitude of the order
parameter is zero everywhere except in an ǫ-neighborhood of the spike times. All of
the oscillators spike together, which means that there is complete spiking synchrony.
By reducing ǫ, we can confine the periodic phase synchrony to arbitrarily small time
intervals centered at the spike time.
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Poisson inputs

For a population of neurons subjected to independent Poisson inputs as de-
scribed in Section 3.2, the independence of the inputs implies that the spike times
will be uncorrelated. It is intuitively clear from equation (3.38) and Figure 3.3, the
magnitude of the order parameter r can be non-zero when there are such inputs.

From a mathematical standpoint, we can illustrate this by considering the con-
tinuum limit as N →∞ and asymptotically as t→∞,

|r(t)| →

∣

∣

∣

∣

∫ 2π

0

ρs(θ)e
√
−1θdθ

∣

∣

∣

∣

∼
π

2
(ρmax − ρmin). (3.42)

The last relation follows from the fact that the absolute value of the integral is
equal to the magnitude of the first Fourier component: when ρs is unimodal and
not too sharply peaked, we expect that

ρs(θ) ∼
1

2π
+

1

2
(ρmax − ρmin) sin(θ − θ0)

for some θ0, from which the relation follows. The values of ρmax are precisely the
results computed in Section 3.5.2 and displayed in Figures 3.4 and 3.5. We note in
this case that ρmin ≈

1
π
−ρmax ≤

1
2π

. The neurons subjected to Poisson inputs thus
have partial phase synchronization, with an order parameter increasing with both
the magnitude of the stimulus and the mean spike frequency, although there is no
spike synchronization. In the next section, we will discuss how a population that
is partially phase-synchronized reacts differently to stimulus than if its phases were
uniformly distributed. This will illustrate the imporantance of considering phase
synchronization in addition to spike synchronization when studying the dynamical
properties of populations of oscillatory neurons.

3.6.2 Effects of partial phase synchronization

The degree of partial phase synchronization affects the manner in which the
population responds to stimulus, as can most clearly be seen by constructing a
histogram of the first spike times of each neuron after receiving a step stimulus of
1 mA. For both the Hindmarsh-Rose and Hodgkin-Huxley systems, populations of
1000 phase models are initialized with uniform phase distribution. We expose the
population to the step input and track when the next zero-crossing (firing) occurs.
Figure 3.7(a) shows the first spike time histogram (FSTH) for Hindmarsh-Rose
and Figure 3.7(b) shows the FSTH for Hodgkin-Huxley. To illustrate the effect of
partial phase synchronization, we repeat the above simulations starting from the
partially synchronized distribution shown in Figures 3.3(a) and (b). The results are
shown below the FSTH plots for the uniform cases, in Figures 3.7(c) and (d). We
see that for the Hindmarsh-Rose system, the partial phase synchronization tends
to flatten the FSTH somewhat. For the Hodgkin-Huxley system, using the curve
from the α = 1 case for consistency, we see a very pronounced change in shape of
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the FSTH. All four FSTH plots are tabulated over 1000 realizations, in order to
show the character of the distributions independent of the randomness inherent in
any individual realization. These results show that while partial phase synchrony
does not imply firing synchrony, it can play an important role in determining how
the population responds to a common stimulus.
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Figure 3.7: First Spike Time Histograms for Hindmarsh-Rose (a), (c) and Hodgkin-Huxley (b),(d).
Plots (a) and (b) begin from a uniform distribution. Plots (c) and (d) begin from the partially
synchronized distributions shown in Figure 3.3. This analysis tracks the time of the first spike
after the unit step-function stimulus is turned on. 1000 realizations are used.

We have shown that populations of identical uncoupled neurons exhibit partial
phase synchronization when stimulated with independent unidirectional current
spikes with interspike time intervals drawn from a Poisson distribution. We char-
acterized this partial synchronization by the phase distribution for the population,
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using analytical approximations and numerical simulations of phase-reduced mod-
els and conductance-based models of typical Type I (Hindmarsh-Rose) and Type
II (Hodgkin-Huxley) neurons. The results from the different approaches agree well
with each other. We found that the degree of partial phase synchronization, as
measured by the peak of the phase distribution, increases with both the size and
frequency of the stimuli, and can become quite substantial.

We have shown that partial phase synchronization, a distinct phenomenon from
spike synchronization, is an important consideration when using phase reduced
models to infer dynamical characteristics of spiking neurons. Our results show that
neural populations subjected to background activity from other neurons do not have
a uniform distribution of phases, as is sometimes assumed in simulation studies. We
show that such non-uniformity leads to different population-level response to other
stimuli, suggesting that noisy inputs must be carefully incorporated into simulation
studies in order to obtain biologically realistic results.
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Chapter 4

Population Dynamics: Parametric

Resonance

In this chapter, we discuss existence, stability, and symmetry of solutions for
networks of parametrically-forced oscillators. In particular, we consider a nonlinear
oscillator model with strong 2:1 resonance via parametric excitation. For uncou-
pled systems, the 2:1 resonance property results in sets of solutions that we classify
using a combinatorial approach. The symmetry properties for solution sets are pre-
sented as are the group operators that generate the isotropy subgroups. We then
impose weak coupling and prove that solutions from the uncoupled case persist for
small coupling by using an appropriate Poincaré map and the Implicit Function
Theorem. Solution bifurcations are investigated as a function of coupling strength
and forcing frequency using numerical continuation techniques. We find that the
characteristics of the single oscillator system are transferred to the network under
weak coupling. We explore interesting dynamics that emerge with larger coupling
strength, including anti-synchronized chaos and unsynchronized chaos. A classifi-
cation for the symmetry-breaking that occurs due to weak coupling is presented for
a simple example network.

The study presented here is an extension of results investigated in [70], and is
organized as follows. We present introductory background material in Section 4.1.
In Section 4.2 we consider the dynamics of a specific single parametrically forced
oscillator and show that the origin is a stable equilibrium in the absence of forcing,
and that for certain ranges of forcing frequency there exists a stable periodic orbit.
Then, in Section 4.3.1, we consider a set of N uncoupled parametrically forced
oscillators, identifying different periodic states for such systems. In Section 4.3.2,
we study the symmetry properties of these models.

Section 4.4.1 shows that provided the periodic orbits for the uncoupled system
are hyperbolic, there will be periodic orbits for the weakly coupled system close
to the periodic states identified for the uncoupled system. In Section 4.4.2, we
investigate the N = 2 case in the presence of bidirectional coupling. We explore
the bifurcation structure of solutions with respect to both coupling strength and
forcing frequency. Interesting dynamics, such as anti-synchronized chaos, are found
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when the magnitude of the coupling strength is increased. Section 4.4.3 provides a
detailed analysis of the N = 3 case in the presence of bidirectional coupling for both
the ring topology and the line topology. We perform a set of numerical bifurcation
analyses to show how the magnitude and stability of the periodic oscillations vary
with forcing frequency. For the N = 3 case, we classify how the symmetry present
in the uncoupled solution is either preserved or destroyed due to coupling for a
simple example system for both the ring and the line topologies. We then relate
the two topologies using an intermediate morphing topology (a ring with a single
variable connection) and discuss how symmetry-related solutions organize differ-
ently depending on the network structure. We describe how these results can be
generalized to N coupled parametrically forced oscillators in Section 4.4.4. Finally,
we give conclusions in Section 4.5.

4.1 Introduction and background

The scientific study of coupled oscillators started with Christian Huygens’ ob-
servations in the seventeenth century of mutual synchronization of pendulum clocks
connected by a beam [52, 11]. More recently, it has been recognized that mutual
synchronization of coupled oscillators - the adjustment of rhythms of oscillating ob-
jects due to their weak interactions - occurs in many biological systems, including
neurons during epileptic seizures [103] and pacemaker cells in the human heart [65].
Coupled oscillators have also been studied in detail for technological systems, such
as arrays of lasers and superconducting Josephson junctions: see [96], [79], and [95],
a recent popular book on the topic, for many biological and technological examples
of synchronization for coupled oscillators.

We classify as autonomous oscillators those for which the stable oscillations
occur for an autonomous dynamical system, that is one for which there are no ex-
plicit time-dependent terms in the evolution equation. For example, the oscillations
might arise through a Hopf bifurcation. In the limit of weak coupling, it is possible
to reduce the dynamics of coupled autonomous oscillators to a phase model, with
a single variable describing the phase of each oscillator with respect to some refer-
ence state (see, e.g., [45, 59, 109, 18]). This typically leads to models for which the
dynamics depend only on the phase differences between different oscillators.

It is possible to show that several types of phase-locked solutions, for which
the phase of all oscillators increases at the same constant rate, are guaranteed
to exist in the weak coupling limit for any generic coupling function when the
coupling topology has appropriate symmetry properties [1, 75, 26, 17]; for the case
of identical all-to-all coupling for N oscillators, these are (i) in phase solution: all
N oscillators have the same phase; (ii) two-block solutions: there are two blocks
of oscillators, one in which p oscillators share the same phase, and one in which
N − p oscillators share the same phase; (iii) rotating block solutions: for N = mk,
there are m blocks with k oscillators in each block sharing the same phase, with
neighboring blocks differing in phase by 2π/m; (iv) double rotating block solutions:
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for N = m(k1 + k2), there are two rotating block solutions, one with m blocks with
k1 oscillators in each block sharing the same phase and with neighboring blocks
differing in phase by 2π/m, another with m blocks with k2 oscillators in each block
sharing the same phase and with neighboring blocks differing in phase by 2π/m,
where there is a phase difference 0 < φ < 2π/m between a block with k1 oscillators
and the closest phase-advanced block with k2 oscillators.

On the other hand, we classify as non-autonomous oscillators those for which
the stable oscillations only occur for a non-autonomous dynamical system, that is
one for which there are explicit time-dependent terms such as time-periodic forcing.
We will focus on parametrically forced oscillators, which are non-autonomous os-
cillators for which the forcing enters as a time-varying system parameter. Coupled
parametrically forced oscillators arise in MEMS [20, 60, 16] and other application
areas [101, 9, 8, 41], but have not received as much theoretical research attention as
coupled autonomous oscillator systems. The work presented in this chapter repre-
sents the first steps in developing a comprehensive theory of the dynamics of general
weakly coupled non-autonomous oscillators, in the spirit of the theory of general
weakly coupled autonomous oscillators described in [1, 17]. We hope that such a
theory will ultimately lead to novel sensing mechanisms using MEMS devices; for
simplicity, here we will consider a model system which represents only a caricature
of such devices.

The non-autonomous oscillator models presented in this chapter could also rep-
resent oscillatory neurons driven by periodic inputs. The current EDBS technology
uses periodic waveforms that, if tuned correctly, could realize similar phenomena
in vivo.

Specifically, in this chapter we describe interesting synchronization phenomena
that are possible for coupled parametrically forced oscillators. For example, con-
sider two uncoupled oscillators whose response is at half the frequency of the driving
voltage, as is common for MEMS devices [104]. Both oscillators could identically
lock to the forcing, or they could lock one forcing period apart - both situations
are allowable due to a discrete time-translation symmetry for the problem. We will
show that different combinations of these states will persist if the oscillators are
weakly coupled, with stability inherited from the stability properties of the periodic
orbits which exist for the uncoupled system.

4.2 A parametrically forced oscillator

Consider the equation for a damped, parametrically forced oscillator

ẍ+ bẋ+ x+ x3 = xF cos(ωf t). (4.1)

which was first presented in Section 2.5. Here the term bẋ represents damping
(we assume b > 0), the term x + x3 represents a nonlinear restoring force, and
the term xF cos(ωf t) represents parametric excitation which can be viewed as a
time-periodic modulation of the linear part of the restoring force. For this system,
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if F = 0 then x→ 0 as t→∞, as follows. Letting

V (x, ẋ) =
1

2
x2 +

1

4
x4 +

1

2
ẋ2, (4.2)

we find that dV
dt

= −bẋ2 ≤ 0, with equality only if ẋ = 0. The only point in
phase space which starts in the set of points for which V (x, ẋ) = 0 and remains in
this set for all time is (x, ẋ) = (0, 0); by the LaSalle Invariance Principle [107], all
trajectories thus approach this point as t→∞.

For appropriate F and ωf , the system has a periodic response. Indeed, treating
ωf as a bifurcation parameter for fixed F and b, we obtain the bifurcation diagram
shown in Fig. 4.1. (This and other numerical bifurcation analyses were done using
AUTO [33] or XPP [36].) The 0 solution is characterized by x = ẋ = 0 for all
time; it exists for all ωf , being unstable near ωf = 2 and stable otherwise for the
range shown. It loses stability in a bifurcation to a periodic orbit, with the periodic
orbit branch turning around in a saddle-node bifurcation so that there is a region
of bistability between the periodic orbit and the 0 solution. Such a bifurcation
structure is common for MEMS devices, see e.g. [111, 82].

Figure 4.2 indicates the types of dynamics which occur in different parameter
ranges, with the “parabola” corresponding to the loss of stability of the 0 state,
and the “straight line” corresponding to the saddle-node bifurcation of the periodic
orbit branch. As shown in Fig. 4.3, the response of this periodic orbit is at half the
frequency of the forcing, as is common for parametrically forced oscillators [73]. We
note that an equally valid periodic orbit for this forcing is shown in Fig. 4.4, which
is shifted by one period of the forcing from the solution shown in Fig. 4.3; clearly
these solutions are related by a time-translation symmetry. Indeed, our example
oscillator governed by Equation (4.1) has a very convenient form of discrete time
translation symmetry which is also related to phase space symmetry: translating
by one forcing period is equivalent to multiplying both states at time t by −1, so
(x(t + T ), ẋ(t + T )) = (−x(t),−ẋ(t)). These symmetry-related solutions will be
crucial for understanding the different possible solutions when such oscillators are
weakly coupled. We will find it convenient to distinguish the solutions shown in
Figs. 4.3 and 4.4 by referring to one of them as the A solution and the other as
the B solution. We introduce a new solution label z ∈ {A,B, 0}. The A and B
solutions have the same max(x) value, and the periodic orbit branch in Fig. 4.1
corresponds to both (symmetry-related) solutions. The z = 0 label corresponds to
the previously defined 0 solution, x = ẋ = 0. This notation will greatly simplify
the following presentation.

4.3 Uncoupled parametrically forced oscillators

4.3.1 Combinatorial considerations

Suppose b = 0.2, F = 0.5, ωf = 2, so that when c = 0 each oscillator could be
in a stable periodic state given by the A and B solutions, or it could be in the
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Figure 4.2: Existence and stability of solutions for different regions of parameter space for b = 0.2,
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unstable 0 solution. There will be 3N distinct periodic orbits for c = 0: oscillator 1
could be in A, B, or 0, oscillator 2 could be in A, B, or 0, etc. Of these solutions,
a total of

N !

pA!pB!p0!
(4.3)

solutions will have pz oscillators in each state z = A, B, or 0, where pA+pB+p0 = N .
This follows from the following combinatorial argument. Suppose we make a list
of N symbols such that the ith symbol is A, B, or 0 according to whether the ith

oscillator is in the A, B, or 0 state, respectively. In the N slots, there are

(

N
pA

)

=
N !

pA!(N − pA)!
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Figure 4.3: Stable periodic orbit for b = 0.2, F = 0.5, ωf = 2. The response is at half the frequency
of the forcing. We will refer to this as the A solution.

different ways to put the symbol A in pA of the slots. Of the remaining (N − pA)
slots, there are

(

N − pA
pB

)

=
(N − pA)!

pB!(N − pA − pB)!

different ways to put the symbol B in pB of the slots. The remaining (N−pA−pB)
slots will have the symbol 0. The product of these is

N !

pA!(N − pA)!
×

(N − pA)!

pB!(N − pA − pB)!
=

N !

pA!pB!p0!
,

as in Eq. (4.3). As an illustration, suppose N = 4, pA = 2, pB = 1, and p0 = 1.
The different possible lists of symbols are

AAB0 AA0B ABA0 A0AB AB0A A0BA

BAA0 0AAB BA0A 0ABA B0AA 0BAA,

giving a total of
4!

2!1!1!
= 12

possibilities. This combinatorial argument readily generalizes to situations in which
more than three states are possible for each oscillator, for example when b = 0.2,
F = 0.5, and ωf = 2.25.

4.3.2 Symmetry considerations

Periodic solution trajectories of an uncoupled N oscillator system are described
by the population labeling variable z, a length-N set of single oscillator solution
labels zi for i = 1, . . . , N . Since the order of the entries is irrelevant for an uncoupled
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Figure 4.4: Stable periodic orbit for b = 0.2, F = 0.5, ωf = 2. This is shifted by one period of the
forcing from the solution shown in Fig. 4.3. We will refer to this as the B solution.

system, we can group any state string into successive substrings of A’s, B’s, and
0’s. For example, a 00A0AB0AB state is equivalent to an AAABB0000 state. In
any state string, there are NA A’s, NB B’s, and N0 0’s, where NA+NB+N0 = N .

It is possible to classify solutions of dynamical systems with symmetry accord-
ing to their isotropy subgroup, which is the subgroup of all symmetry operations
which leave the solution unchanged. It is convenient to order the solution into the
substrings of A’s, B’s, and 0’s as described above. Then, we see that the isotropy
subgroup of the system is

S(NA+NB) × SN0
, (4.4)

where
S(NA+NB) = 〈κ1, κ2〉, SN0

= 〈κ3, κ4〉,

κ1 · (z1, z2, · · · , zNA−1, zNA
,

zNA+1, zNA+2, · · · , zNA+NB−1, zNA+NB
,

zNA+NB+1, zNA+NB+2, · · · , zN−1, zN)

→ (z2, z1, · · · , zNA−1, zNA
,

zNA+1, zNA+2, · · · , zNA+NB−1, zNA+NB
,

zNA+NB+1, zNA+NB+2, · · · , zN−1, zN),

κ2 · (z1, z2, · · · , zNA−1, zNA
,

zNA+1, zNA+2, · · · , zNA+NB−1, zNA+NB
,

zNA+NB+1, zNA+NB+2, · · · , zN−1, zN)

→ (−zNA+NB
, z1, z2, · · · , zNA−1,

−zNA
, zNA+1, zNA+2, · · · , zNA+NB−1,

zNA+NB+1, zNA+NB+2, · · · , zN−1, zN),
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κ3 · (z1, z2, · · · , zNA−1, zNA
,

zNA+1, zNA+2, · · · , zNA+NB−1, zNA+NB
,

zNA+NB+1, zNA+NB+2, · · · , zN−1, zN)

→ (z1, z2, · · · , zNA−1, zNA
,

zNA+1, zNA+2, · · · , zNA+NB−1, zNA+NB
,

zNA+NB+2, zNA+NB+1 · · · , zN−1, zN),

κ4 · (z1, z2, · · · , zNA−1, zNA
,

zNA+1, zNA+2, · · · , zNA+NB−1, zNA+NB
,

zNA+NB+1, zNA+NB+2, · · · , zN−1, zN)

→ (z1, z2, · · · , zNA−1, zNA
,

zNA+1, zNA+2, · · · , zNA+NB−1, zNA+NB
,

zN , zNA+NB+1, zNA+NB+2 · · · , zN−1).

In words, κ1 swaps the first two A solutions, κ2 is a cyclic permutation of the A
and B solutions with minus signs appropriately included, κ3 swaps the first two 0
solutions, and κ4 is a cyclic permutation of the 0 solutions. The intuition behind this
result is that the solution is unchanged by permuting the first NA +NB states (the
A and B states) however one desires, provided the A and B states are transformed
into each other through appropriate multiplications by −1. The N0 remaining 0
solutions can be permuted however desired without changing the solution.

Let us again consider our example system AAABB0000. This solution has
isotropy subgroup S5 × S4, being unchanged by multiplication by any product of
κ1, κ2, κ3, κ4. For example, it is unchanged under

κ3κ
2
2κ1κ2κ1κ

3
2 · (z1, z2, z3, z4, z5, z6, z7, z8, z9)

→ (−z5, z1,−z4,−z2,−z3, z7, z6, z8, z9).

This discussion readily generalizes to conditions where the individual oscillators
have more than three possible states by including additional κ operators to swap
and permute the additional possible states.

4.4 Coupled parametrically forced oscillators

4.4.1 Periodic orbits for weakly coupled oscillators

When c 6= 0 but is small, we expect solutions analogous to those for c = 0 to
exist, as follows. We write our system as

ẋ = f(x, t) + cg(x), (4.5)

where
x = (x1, ẋ1, . . . , xN , ẋN)T , (4.6)
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and f(x, t) captures the terms which are independent of c, and g(x) captures the
coupling terms. Let T = 2π/ωf be the period of the forcing. We define Pc to be
the time-2T map, that is the map which takes an initial condition (the state at
t = 0) to the state obtained by evolving for a time equal to twice the period of the
forcing. Now, let

h(x, c) = Pc(x)− x, (4.7)

and let q0 be a point on one of the periodic solutions of the uncoupled problem,
for example the AA solution in the N = 2 case. We see that

h(q0, 0) = 0. (4.8)

The Implicit Function Theorem (see, e.g. the appendix of [31]) then implies that,
provided the matrix D

x
h(q0, 0) is invertible, there is a unique solution q(c) close

to q0, for any sufficiently small c, such that h(q(c), c) = 0. This implies that

Pc(q(c)) = q(c), (4.9)

that is, q(c) ≈ q0 is a fixed point of the time-2T map, which means that it is a
point on a periodic orbit with period 2T which is close to a periodic orbit of the
uncoupled system. (A related argument is used to prove part (ii) of Theorem 4.1.1
in [46].)

It is instructive to consider an alternative, but equivalent argument. We know
that q0 is a fixed point of P0, that is,

P0(q0) = q0. (4.10)

We will determine, to leading order in c, the condition which must be met for q(c)
to be a fixed point of Pc. Consider the asymptotic expansions

q(c) = q0 + cq1 + · · · (4.11)

Pc(x) = P0(x) + cp1(x) + · · · . (4.12)

Setting Pc(q(c)) = q(c), we obtain

q0 + cq1 + · · · = Pc(q0 + cq1 + · · · )

= P0(q0 + cq1 + · · · ) + p1(q0 + cq1 + · · · )

= P0(q0) + cDP0(q0)q1 + cp1(q0) + · · · .

This is valid at O(c0) from Eq. (4.10). At O(c1), we need

q1 = DP0(q0)q1 + p1(q0). (4.13)

Solving for q1,
q1 = [Id−DP0(q0)]

−1p1(q0), (4.14)

where Id is the identity matrix. In order to solve for q1, it is necessary that
[Id − DP0(q0)] be invertible. This is equivalent to the above condition for the
Implicit Function Theorem to hold that D

x
h(q0, 0) be invertible.
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We now show that this matrix is invertible provided the periodic orbit for the
uncoupled system is hyperbolic. Suppose that v is an eigenvector of DP0(q0) with
eigenvalue λ, so that

[DP0(q0)]v = λv. (4.15)

Then
(Id− [DP0(q0)])v = (1− λ)v. (4.16)

Thus, the matrix (Id − [DP0(q0)]) only has a zero eigenvalues if λ = 1. But the
eigenvalues of DP0(q0) give the stability of the periodic orbit for the uncoupled
problem; in particular, if it is a hyperbolic periodic orbit, none of the eigenvalues
are on the unit circle. The hyperbolicity condition only needs to be checked for a
single uncoupled oscillator, since we are assuming that the oscillators are identical.

Summarizing, provided the periodic orbit for the uncoupled system is hyper-
bolic, there will be a nearby periodic orbit for the system with sufficiently small
coupling.

Furthermore, we expect that since the c → 0 system limits to the c = 0 sys-
tem, the periodic orbit for the weakly coupled system will “inherit” the stability
properties from the periodic orbit for the uncoupled system. This follows from the
continuity of the Poincaré map with respect to c, giving

lim
c→0

DPc(q(c)) = DP0(q0). (4.17)

This implies that the eigenvalues corresponding to the stability of the q(c) periodic
orbit for the coupled system tend toward the eigenvalues corresponding to the
stability of the q0 periodic orbit for the uncoupled system.

4.4.2 N = 2 coupled oscillators

Now consider N = 2 parametrically forced oscillators which are coupled linearly:

ẍ1 + bẋ1 + x1 + x3
1 = x1F cos(ωf t) + c(x2 − x1), (4.18)

ẍ2 + bẋ2 + x2 + x3
2 = x2F cos(ωf t) + c(x1 − x2), (4.19)

where xi is the position of the ith oscillator, i = 1, 2.
If c = 0, these are independent parametrically forced oscillators. Thus, for

b = 0.2, F = 0.5, and ωf = 2, each oscillator could be in a stable periodic state
given by the A or B solutions; each oscillator also has an unstable 0 solution. The
periodic solutions for the uncoupled two oscillator system are given in Table 4.1.

Here the first symbol characterizes the state of the first oscillator, and the sec-
ond symbol characterizes the state of the second oscillator. In phase solutions have
both oscillators responding identically to the forcing, while out of phase solutions
correspond to each oscillator undergoing an oscillation which is shifted by one pe-
riod of the forcing relative to the other. Large-small solutions have one oscillator
undergoing oscillations locked to the forcing while the other oscillator is stationary.
The name comes from the result that when weak coupling is introduced, the former
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Table 4.1: Periodic solutions for uncoupled two oscillator system

Type Equivalent States

In-phase AA, BB
Out-of-phase AB, BA
Large-small A0, B0, 0A, 0B
00 solution 00

oscillator will undergo relatively large oscillations, while the latter will undergo rel-
atively small oscillations. For the 00 solution, both oscillators are stationary. The
distinct solutions within a given class (in phase, out of phase, or large-small) are
related by symmetry.

Results for c 6= 0 are illustrated for Eqs. (4.18,4.19) for b = 0.2, F = 0.5, ωf = 2
in Fig. 4.5, which show that for small c > 0, periodic orbits of the expected stability
type exist and are close to the periodic orbits for the uncoupled system. Indeed,
for the uncoupled system the A and B solutions are stable and the 0 solution is
unstable (see Fig. 4.1); thus, the AA and AB solutions (and their symmetry-related
counterparts BB and BA, respectively) are expected to be stable for small |c|, while
the others are expected to be unstable. Figure 4.5 shows that as c increases, the
out of phase AB solution loses stability. This illustrates that our arguments above
are only valid for small |c|. We note that, in this figure, the fact that the branches
come together at c = 0 is an artifact of the projection. The solutions are actually
separated in phase space: even though they share the same value for max(|x1|), the
second oscillator has different behavior. Therefore, the uniqueness property from
the Implicit Function Theorem argument is not violated.

For b = 0.2, F = 0.5, ωf = 2.25, Fig. 4.1 shows that the 0 solution is stable, and
that there are stable periodic orbits (which are analogs of the A and B solutions
discussed above) and unstable periodic orbits. Figure 4.6 shows that for small
c > 0, periodic orbits of the expected stability type exist and are close to the
periodic orbits for the uncoupled system. (To aid in interpreting this plot, we
note that the maximum x values for the stable and unstable periodic orbits are
approximately 0.72 and 0.45, respectively.) Indeed, for the uncoupled system the
A, B, and 0 solutions are stable; thus, the in-phase AA solutions, out-of-phase
AB solutions, large-small solutions (which in the limit c → 0 approach the A0
solutions), and 00 solution are all stable for small |c|. All solutions which involve
an unstable periodic orbit for the uncoupled system as c→ 0 are unstable.

We now fix the coupling strength as c = 0.03 and take b = 0.2, F = 0.5, and
treat ωf as a bifurcation parameter. Figure 4.7 shows the corresponding bifurcation
diagram for the in-phase, out-of-phase, and 00 solutions. We see that the in-phase
and out-of-phase solutions bifurcate from the 00 solution at different values of
ωf . As expected from the discussion above, for ωf = 2 both the in-phase and
out-of-phase solutions are stable, while for ωf = 2.25 the in-phase, out-of-phase,
and 00 solutions are all stable. We expect at ωf = 2.25 there will be large-small
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Figure 4.5: Bifurcation diagram for fixed b = 0.2, F = 0.5, ωf = 2 with the coupling strength c
treated as a bifurcation parameter. Solid (resp., dashed) lines indicate stable (resp., unstable)
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AA, A0, AB, 0A, and 00 as c → 0. Note, for example, that the AA and BB solutions have the
same max(x1) value, and thus appear to be on the same branch in this projection. A similar
coincidence between symmetry-related solutions occurs for all other branches.

solutions; this is verified in Fig. 4.8 which identifies them as being on a branch
which bifurcates from the out-of-phase solution branch. The large-small solution
at ωf = 2.25 is shown in Fig. 4.9.

Although our analytical results only apply in the weak coupling limit, we note
that interesting dynamics occur for larger |c|, such as anti-synchronized chaotic
behavior for b = 0.2, F = 0.5, ωf = 2, and c = −0.9 shown in Figs. 4.10 and 4.11.

4.4.3 N = 3 coupled oscillators

For the identical bidirectional coupling considered in this chapter, the N = 3
case is the smallest network wherein network topology plays a significant role. We
consider

ẍ1 + bẋ1 + x1 + x3
1 = x1F cos(ωf t) + c(x2 − x1) + c̃(x3 − x1), (4.20)

ẍ2 + bẋ2 + x2 + x3
2 = x2F cos(ωf t) + c(x1 − x2) + c(x3 − x2), (4.21)

ẍ3 + bẋ3 + x3 + x3
3 = x3F cos(ωf t) + c̃(x1 − x3) + c(x2 − x3). (4.22)

The cases c̃ = c and c̃ = 0 are referred to ring and line coupling topologies,
respectively, and are shown in Figure 4.12. We will consider the limit of weak
coupling and |c̃| ≪ 1, and we will show how the network topology will partition the
set of all possible solutions into sets of symmetry-related solutions. We note that,
due to the form of coupling, there will always exist a zero solution 000 with stability
inherited from the uncoupled case, and a class of stable synchronous solutions
{AAA,BBB}, regardless of network topology. In the following analysis, we will be
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Figure 4.6: Bifurcation diagram for fixed b = 0.2, F = 0.5, ωf = 2.25 with the coupling strength
c treated as a bifurcation parameter. Solid (resp., dashed) lines indicate stable (resp., unstable)
solutions.

specifically considering the case where b = 0.2, ωf = 2, F = 0.5, which corresponds
to the region in bifurcation space where, for a single oscillator, only the 0 solution
and the large periodic orbit exist. The numerics were done using AUTO [33], which
enables the analysis of stable and unstable orbits. We note that the representative
solutions we consider are particular to the system described by Equations (4.20)-
(4.22).

Notation

For convenience, we will introduce additional notation to describe the solution
types and indicate solution symmetries. The z ∈ {A,B, 0} solution label may now
be indexed by subscripts, i.e. zXY . The X subscript variable indicates two different
qualifications of the solution, depending on the z solution type. If the solution is
near or identically zero, i.e. z = 0, the subscript X ∈ {A,B, 0} indicates if the
solution is identically zero (X = 0) or if it is a small (near zero) periodic orbit
with phase the same as either the A or B large periodic orbits (X = A or X = B,
respectively). For solutions near or identically zero, the Y superscript on the X
subscript is not used.

For the large periodic orbit states z ∈ {A,B}, the subscript X ∈ {L, S, 0}
denotes the relative size of the solution and is intended to provide a qualification
of the symmetry when coupling is included. If the solution is identical to the
uncoupled stable periodic orbit, we will denote this by X = 0. If, on the other
hand, the solution’s magnitude (i.e. maxt∈(0,T ](x(t))) is larger (resp., smaller) than
the uncoupled stable periodic orbit, we denote this by X = L (resp., X = S).
When two or more oscillators both exhibit a large periodic orbit close in magnitude
to the uncoupled solution, we will use our notation to indicate symmetry. For
example, if there are two identical A solutions that are larger than the uncoupled
orbit, we will indicate this by ALAL. If there are two A solutions that are larger
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Figure 4.7: Partial bifurcation diagram for Eqs. (4.18)-(4.19) for fixed b = 0.2, F = 0.5, c = 0.03
with ωf treated as a bifurcation parameter. Solid (resp., dashed) lines indicate stable (resp.,
unstable) solutions.

than the uncoupled solution, but not equal to each other, we will indicate this
using the Y superscript as AL+AL− . The Y ∈ {−,+} superscript will be used with
the 0X labels as well, also to indicate non-identical orbits. The ‘+’ solution is so
marked because it has a larger magnitude than the ‘-’ solution (again, quantifying
magnitude by maxt∈(0,T ](x(t))). It is worthwhile to note here that these orbits and
their magnitudes are all well-defined in the limit of small |c|.

For the rest of our discussion in this chapter, when we refer to oscillators being
synchronized, we mean phase-synchrony, which does not imply any relationship
between amplitudes. When amplitudes are equal, we will use the terms identical if
they are indistinguishable, or anti-synchronized if they are in anti-phase.

Ring topology

For the N = 3 case, the ring topology is the same as the all-to-all topology.
Each oscillator is coupled identically to the others. Even in such a simple network
as shown below, the dynamics are rich, both for small coupling and as the coupling
strength becomes largely negative.

The ring topology gives six symmetry classes, which are summarized in Ta-
ble 4.2, including the zero (R1) and synchronous (R2) solutions.

The R3 class is the set of all solutions that have two oscillators with synchronous
large periodic orbits and one with a small near-zero magnitude orbit. For c . 0,
the large periodic orbits are slightly larger in magnitude than the uncoupled orbit
and the near-zero orbit is in-phase. For 0 . c, the two synchronous large periodic
orbits are slightly smaller than the uncoupled orbit, and the near-zero orbit is out-
of-phase. This solution is depicted in Figure 4.13. All solutions in the R3 class are
unstable for small |c|.

The R4 class consists of all solutions wherein two oscillators have synchronized
large periodic orbits and the other oscillator has a similar large periodic orbit, but
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shifted in time by one forcing frequency. With non-zero coupling, the S3 symmetry
of the AAB solution is broken. For c . 0, the two synchronous periodic orbits are
smaller in magnitude than the anti-synchronous orbit, resulting in an S2 symmetry.
The relative magnitudes of the periodic orbits switch for the positive small coupling
case, 0 . c, shown in Figure 4.14. The R4 solutions are all stable for small |c|.

The R5 class is the set of all solutions that have a single oscillator with a large
periodic orbit and two oscillators with near-zero orbits. For c . 0, the large periodic
orbit is larger than the uncoupled orbit and the two near-zero solutions are identical
(retaining an analog of the symmetry of the uncoupled solution) and in-phase with
the other oscillator. As c is increased through zero, the magnitude of the A solution
becomes smaller than the uncoupled orbit, and the two near-zero solutions switch
to become out-of-phase with the A solution (but still synchronous and identical to
each other). All solutions in the R5 class are unstable for small |c|.

TheR6 class contains all solutions that have two oscillators with anti-synchronized
large periodic orbits while the third oscillator has a near-zero orbit. For c . 0, the
two large periodic orbits have identical magnitudes and are slightly larger than the
uncoupled solution. For 0 . c, the two large periodic orbits are have identical mag-
nitudes and are slightly smaller than the uncoupled solution. In all the cases, the
near-zero solution is, in fact, identically zero. Thus, the symmetry present in the
uncoupled solution is preserved for sets of solutions in the R6 class. All solutions
in the R6 class are unstable for small |c|.

The properties of the ring topology solutions for c = 0 and |c| ≈ 0 are summa-
rized in Tables 4.2 and 4.3.

53



0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

F cos(ωft)

t

t

x

Figure 4.9: Example large-small periodic orbit for N = 2, b = 0.2, F = 0.5, ωf = 2.25, c = 0.03.
In the lower panel, the dark line and light line correspond to the two different oscillators.

Table 4.2: N = 3 ring symmetry classes

Label Symmetry-related States Stability

R1 000 Unstable
R2 AAA,BBB Stable
R3 AA0, A0A, 0AA,BB0, B0B, 0BB Unstable
R4 AAB,ABA,BAA,BBA,BAB,ABB Stable
R5 A00, 0A0, 00A,B00, 0B0, 00B Unstable
R6 AB0, A0B,B0A, 0BA, 0AB,BA0 Unstable
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Figure 4.10: Time series for anti-synchronized chaos for N = 2, b = 0.2, F = 0.5, ωf = 2, and
c = −0.9, where the dark line and light line correspond to the two different oscillators.
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Figure 4.12: N = 3 oscillator networks. Ring [c̃ = c] (a), morph [0 < c̃ < c](b), and line [c̃ = 0]
(c).

Table 4.3: Solution representatives for |c| ≈ 0 for each symmetry class for ring topology

Symmetry Class c . 0 c = 0 0 . c

R1 000000 000000 000000

R2 A0A0A0 A0A0A0 A0A0A0

R3 ALAL0A A0A000 ASAS0B
R4 ASASBL A0A0B0 ALALBS

R5 AL0A0A A00000 AS0B0B
R6 ALBL00 A0B000 ASBS00
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Forcing-frequency bifurcation diagram: ring topology

We again fix the coupling strength as c = 0.03 and take b = 0.2, F = 0.5, and
treat ωf as a bifurcation parameter. Figure 4.15 shows the max(|x1|)-projection of
the corresponding bifurcation diagram. This projection is identical in appearance
to the max(|x2|) and max(|x3|) bifurcation diagrams due to the label permutation
symmetry of the ring topology. The in phase AAA solution and the A0B solution
bifurcate from the 000 solution at different values of ωf . This bifurcation diagram
is similar to the N = 2 case shown in Figures 4.7 and 4.8. The main features
are preserved, such as the large-small solution, which is now a large-small-small
solution (or in our new notation 0A0AB).

Chaotic dynamics

Similar to the N = 2 case, interesting dynamics also emerge as |c| is increased.
Figure 4.16 shows unsynchronized chaotic behavior for b = 0.2, F = 0.5, ωf = 2,
and c = −0.9. The phase portrait of the N = 3 chaotic system shown in Figure 4.17
displays a double-well potential structure similar to that of the N = 2 case shown
previously in Figure 4.11, although the trajectories of the three oscillators are not
synchronized.

Line topology

The line topology breaks the symmetry of the ring and introduces new symmetry
classes, which are summarized in Table 4.4. There still exists an unstable zero
solution (L1) and a stable synchronous solution (L2). However, the line topology
means that the “center” oscillator gets input from both of the two “end” oscillators,
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while the end oscillators only receive input from center oscillator. This has dramatic
effect on the symmetry class partitions.

The L3 class represents solutions where the center oscillator is synchronized in
a large periodic orbit with one of the end oscillators. The other end oscillator is
near-zero. Solutions in this class exhibit interesting bifurcation behavior. One of
the end oscillators retains the uncoupled orbit amplitude for all sufficiently small
c, regardless of sign. This can be interpreted as a region of the amplitude versus
coupling strength curve where the slope is zero. For c . 0, the center oscillator has
a periodic orbit that is slightly larger in amplitude than the uncoupled orbit and
the other end oscillator has an in-phase near-zero orbit. For small positive coupling,
the center oscillator has a slightly smaller magnitude orbit, and the near-zero orbit
of the other end oscillator is out-of-phase. This is an example of broken symmetry
due to coupling, since for small non-zero c, the permutation symmetry of the AA
pair is destroyed - the changing amplitude of the center oscillator prevents the SNA

permutation operators from mapping the solutions identically back to themselves.
This class of solutions is unstable for small |c|.

The L4 class is the set of solutions where the center oscillator is synchronized
in a large periodic orbit with one of the end oscillators and the other oscillator has
an anti-synchronized large periodic orbit. Similar to the L3 solutions, this class
also has a bifurcation pattern that leaves one of the end oscillators unchanged in a
larger periodic orbit. The center oscillator and the other end oscillator are identical
but out-of phase, and have larger magnitudes than the uncoupled case for negative
coupling, and smaller magnitudes for positive coupling. Although the permutation
symmetry between the A solutions is broken by non-zero c, the symmetry between
the center A solution and the end B solution remains for small c. The L4 solutions
are all stable for small |c|.

The L5 class is the set of solutions where the center and one of the end oscillators
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are near zero and the other end oscillator has a large periodic orbit. Symmetries
in this class are completely broken for non-zero coupling. For c . 0, the large
periodic orbit has larger magnitude than in the uncoupled system, and the two zero
solutions become distinct near-zero periodic orbits in phase with the A solution.
A surprising behavior found numerically is that for small positive coupling, the
zero solution of the center oscillator switches to be out-of-phase with respect to the
other two oscillators, even though this phase relationship is not a mirror image of
the negative coupling case. For both coupling cases, the amplitude of the center
oscillator’s near-zero orbit is slightly larger than that of the end oscillator’s near-
zero orbit. We show this solution in Figure 4.18. These solutions are unstable for
small |c|.

The L6 class consists of the solutions where the center oscillator is the 0 solution
and the two end oscillators have large periodic orbits that are in anti-synchrony.
The symmetry of the uncoupled case is preserved for small coupling for solutions
in this class. When the coupling is negative, the oscillatory solutions are larger
than the uncoupled case, and for positive coupling the reverse is true, as shown
in Table 4.5. Interestingly, the center oscillator’s zero solution remains identically
zero. The L6 solutions are unstable for small |c|.

The L7 class is the set of solutions where the center oscillator is near zero and
the two end oscillators are synchronized with large periodic orbits. Solutions in this
class also retain their symmetry for small non-zero coupling. For c . 0, the two
end oscillators follow orbits that are slightly larger than the uncoupled A solution,
and the zero solution becomes a near-zero solution in-phase with the other two
oscillators. For 0 . c, the magnitude of the end oscillators’ larger periodic orbit
becomes slightly smaller than the uncoupled case, and the near-zero solution is
out-of-phase. These solutions are also unstable for small |c|.

The L8 class is the set of solutions where the two end oscillators have large syn-
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chronous periodic orbits in anti-synchrony with the center oscillator’s large periodic
orbit. Symmetries of solution trajectories in this class are modified by coupling in
an interesting way. The two end oscillators retain their permutation symmetry, but
the symmetries with the center oscillator are lost, because the amplitudes no longer
match. When the small coupling is negative, the center oscillator has a larger orbit
than the two end oscillators which themselves have a slightly larger orbit than the
uncoupled case. The situation is reversed for the case of small positive coupling, as
shown in Table 4.5. These two solutions are stable for small |c|.

The L9 class is composed of the solutions for which the center oscillator has
a large periodic orbit in anti-synchrony with one of the end oscillators, and the
other end oscillator has a near zero orbit. The solution symmetries for this class
are broken by coupling. For c . 0, the two non-zero solutions become larger than
the uncoupled periodic orbit, but are not identical, and the zero solution becomes
a near-zero solution in-phase with the center oscillator. Small positive coupling
yields a similar situation, with the two periodic solutions becoming slightly smaller
than the uncoupled orbit, and non-identical, while the near-zero solution is in-phase
with the other end oscillator. This solution is shown in Figure 4.19. The L9 class
of solutions are all unstable for small |c|.

The L10 class is the set of solutions where the two end oscillators have near-zero
orbits and the center oscillator has a large periodic orbit. This class of solutions
retains a version of its uncoupled symmetry. For small negative coupling, the center
oscillator has a slightly larger orbit than the uncoupled trajectory, and the two end
oscillators follow identical synchronous near-zero orbits. The opposite is true for
small positive coupling. This class of solutions is unstable for small |c|.

The properties for the solutions for |c| ≈ 0 are summarized for reference in
Table 4.5.

Table 4.4: N = 3 line symmetry classes

Label Symmetry-related States Stability

L1 000 Unstable
L2 AAA,BBB Stable
L3 AA0, 0AA,BB0, 0BB Unstable
L4 AAB,BAA,BBA,ABB Stable
L5 A00, 00A,B00, 00B Unstable
L6 A0B,B0A Unstable
L7 A0A,B0B Unstable
L8 ABA,BAB Stable
L9 AB0, BA0, 0BA, 0AB Unstable
L10 0A0, 0B0 Unstable
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Table 4.5: Solutions representatives for |c| ≈ 0 for each symmetry class for line topology

Symmetry Class c . 0 c = 0 0 . c

L1 000000 000000 000000

L2 A0A0A0 A0A0A0 A0A0A0

L3 A0AL0A A0A000 A0AS0B
L4 A0ALBL A0A0B0 A0ASBS

L5 AL0A+0A− A00000 AS0B+0A−

L6 AL00BL A000B0 AS00BS

L7 AL0AAL A000A0 AS0BAS
L8 AL−BL+AL− A0B0A0 AS+BS−AS+

L9 AL−BL+0B A0B000 AS+BS−0A
L10 0AAL0A 00A000 0BAS0B

Forcing-frequency bifurcation diagram: Line topology

We again fix the coupling strength as c = 0.03 and take b = 0.2, F = 0.5, and
treat ωf as a bifurcation parameter. Figure 4.20 shows the max(|x1|)-projection
of the corresponding bifurcation diagram and Figure 4.21 shows the max(|x2|)-
projection. We note that the max(|x1|)-projection is visually identical to the
max(|x3|)-projection, as the two end oscillators (numbers 1 and 3) differ only by
a label permutation. As in the previous bifurcation diagrams, the in-phase AAA
solution and the A0B solution bifurcate from the 000 solution at different values of
ωf . The structure of these bifurcation diagrams is similar to the N = 2 case shown
in Figures 4.7 and 4.8. We see the large-small solution branches are substantially
different in magnitude for the center (number 2) oscillator versus the end oscillators
(numbers 1 and 3).

Non-uniform coupling: morphing from a line to a ring

By starting with the ring topology, holding two of the coupling links fixed, and
varying the third (c̃ in Eqs. (4.20)-(4.22)), we can continuously morph the network
from the ring topology to the line topology. In so doing, we can see how the
symmetry classes change due to the topology.

The R3 class splits into two classes, L3 and L7, the R4 class splits into the L4

and L8 classes, the R5 class splits into the L5 and L10 classes, and the R6 class splits
into the L6 and L9 classes. It is interesting to note that the stability properties of
the split L classes are inherited from the parent R classes.

4.4.4 N coupled oscillators

These results generalize to N coupled parametrically forced oscillators. Specif-
ically, provided the periodic orbits for the individual oscillators for the uncoupled
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Figure 4.18: Example of L5 periodic orbit for b = 0.2, F = 0.5, ωf = 2.25, c = 0.03 with line
topology. In the lower panel, the dark line, the light line, and the dashed line correspond to the
three different oscillators.

system are hyperbolic, for every periodic solution which exists for the uncoupled
system there will be a nearby periodic orbit for the system with sufficiently small
coupling. Furthermore, the periodic orbit will inherit the stability properties from
the periodic orbit for the uncoupled system.

Notably, the Implicit Function Theorem argument presented above does not
depend on the coupling topology of the system, or any special properties about the
coupling strength (for example, all the strengths being equal). That is, regardless
of how the oscillators are coupled together, for sufficiently small coupling strengths
there will be analogs of the periodic solutions which exist for the uncoupled system.
For example, instead of the oscillators having all-to-all coupling, similar results hold
for oscillators coupled only to their neighbors. Of course, as the coupling strengths
increase away from zero, so that the above arguments no longer hold, the coupling
topology will affect the types of states that exist and are stable.

4.5 Discussion

We have discussed periodic solutions which occur for parametrically forced oscil-
lators that are weakly coupled together. A combinatorial approach was presented to
enumerate all possible solutions for the uncoupled case. The existence and stability
of periodic orbits for the coupled system can be determined by the existence and
stability of the individual parametrically forced oscillators when they are uncou-
pled. Our results follow from an application of the Implicit Function Theorem to an
appropriate Poincaré map. The results were confirmed using numerical bifurcation
analysis for several simple networks of oscillators with 2:1 excitation resonance. An
explicit expression was given for the isotropy subgroup of symmetric solutions, and
the generators of those subgroups were identified. We classified the behavior of the
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Figure 4.19: Example of L9 periodic orbit for b = 0.2, F = 0.5, ωf = 2.25, c = 0.03 with line
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three different oscillators.

solutions as a function of coupling strength, and classified the symmetry-breaking
that occurs for non-zero coupling, which depends on network topology. We also
explored the solution bifurcation structure as a function of forcing frequency for
our example networks, which could be useful for experimental purposes, for ex-
ample in MEMS research [104, 20, 60, 82, 111]. These results may be viewed as
an analog of general results on the existence of phase-locked solutions for weakly
coupled autonomous oscillators, as in [1, 17].
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Chapter 5

Reference-tracking Spike Timing

Control

This chapter proposes several event-based feedback schemes for controlling spike
timing in phase models of neurons. The control schemes presented in this chapter,
and also in Chapter 6, are variable shape open-loop waveforms triggered by the
detection of a voltage spike. In this chapter, we focus on the objective of driving
a neuron to spike in phase with a reference oscillator with the same natural fre-
quency. We propose a biologically-inspired impulsive control system that mimics
the signaling behavior of real neurons. We also develop a quasi-impulsive extension
that is suitable for experimental implementation. Applied to a pacemaker-driven
ensemble, this control scheme can achieve desynchronization using a set of charge-
balanced stimuli.

The organization of the chapter is as follows. Introductory material is presented
in Section 5.1. In Section 5.2, we discuss the core concept of event-based control,
define phase error, and precisely quantify the reference tracking objective. Sections
5.2.3 and 5.2.4 present control strategies based on impulsive and quasi-impulsive in-
puts, respectively. In Section 5.3, we describe how these methods might be extended
to control an ensemble of neurons, including a population driven by a pacemaker.
We give concluding remarks in Section 5.4.

5.1 Introduction and background

Much of the motivation for controlling neurons comes from the desire to treat
Parkinson’s disease, which causes involuntary tremors around 3-6 Hz that typically
affect the distal portion of the upper limbs. These tremors have been associated
with the synchronization of a cluster of neurons in the thalamus and basal gan-
glia [77]. For patients with advanced Parkinson’s disease who do not respond to
drug therapy, electrical deep brain stimulation (EDBS), an FDA-approved ther-
apeutic procedure, may offer relief. In this procedure, a neurosurgeon guides a
small electrode into the motor-control region of the brain, and then connects the
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electrode to a pacemaker-like device implanted in the chest. As presently imple-
mented, the device sends high-frequency (∼ 100 Hz) electrical current stimulation
pulses directly into the brain tissue, which has been found to alleviate tremors for
some patients [10].

There is much interest in designing electrical DBS control systems that use ad-
ditional electrodes for feedback, thereby making the stimulus “demand-controlled”
[98, 99]. A feedback-based approach is attractive from a clinical perspective in that
the biological tissue is only stimulated when necessary, thereby reducing the overall
accumulation of negative side effects of electrical stimulation, and also the amount
of power required from the implanted battery.

There are, however, challenges to implementing feedback control for neurons.
First, the conductance-based Hodgkin-Huxley formalism discussed in Chapter 2
yields systems of continuous-time ordinary differential equations that tend to be
highly nonlinear. Many traditional feedback control system designs require the
controlled system to be either linear or only weakly nonlinear. A second challenge
is that a control scheme cannot stimulate biological tissue with arbitrarily large
signals. The magnitude of the electrical stimulus must be constrained to accept-
able ranges for hardware implementation and biological tissue tolerance. A third
challenge is the fact that the only state that is directly observable is the neuron’s
membrane voltage. A control system cannot measure the dynamic states of the
many ion channels that play a critical role in the oscillatory behavior of neural
spiking. This poses particular problems for implementing traditional nonlinear
feedback control systems, which depend on continuous measurements of state [55].
The control algorithms in this chapter and the next are intended to at least partially
overcome these challenges.

We will focus on feedback control of neurons modeled by the Hodgkin-Huxley
equations, which display many of the dynamical characteristics of real oscillatory
neurons, and constitute the most widely studied model in mathematical neuro-
science. The Hodgkin-Huxley model possesses regimes in which the oscillatory
spiking can be either advanced or retarded by unipolar stimulation pulses, depend-
ing on the time of injection. Also, the Hodgkin-Huxley model exhibits Class 2 neural
excitability, which means that there is a bistable bifurcation structure featuring a
subcritical Hopf bifurcation that leads to a discontinuous relationship between in-
jected baseline current and firing frequency [53]. This model, while not representing
human brain neurons, is the prototypical model for neuronal membrane dynamics,
and exhibits oscillatory behavior similar to human motor control neurons in the
thalamus and basal ganglia regions of the brain. Due to this qualitative similarity,
and the fact that the Hodgkin-Huxley model is perhaps the most widely studied and
familiar conductance-based neuron model, we choose to consider it as our neuron
model in this chapter. Such conductance-based models are amenable to generating
control schemes that are experimentally realizable in vitro, as shown in recent work
[94].

The control algorithms presented in this chapter are designed to achieve charge
balance, i.e. the net electrical charge injected into a neuron over one control cycle

66



is equal to zero. This is important because accumulation of charge leads to irre-
versible Faradiac reaction products that cause neural tissue damage [64]. There is a
trade-off, however. Charge-balanced stimulation has been shown to cause less tissue
damage [61, 62], but increases the likelihood of corrosion damage of the stimulating
electrode, an issue currently being addressed by materials science and microelec-
tronics research [64]. We focus on charge-balance in the hope that developments in
electrode design technology will mitigate the corrosion problem.

As mentioned above, the only observable state is the neuron’s membrane voltage.
In practice, background noise often affects the voltage measurement to the extent
that the only reliable observation is the detection of voltage spikes, rather than
the instantaneous value of the voltage itself. This situation leads us to employ
a control methodology known as event-based control. The concept of event-based
control, sometimes known as Lebesgue sampling, was developed as an improvement
to fixed sample-rate feedback control for digital systems [2]. As shown in previous
work [29, 30], this methodology finds natural utility in systems involving spiking
neurons. In particular, rather than developing a control law based on continuous
voltage feedback, we will focus on observing the voltage spikes as events. This event-
based framework is convenient because we can consider the spike timing objective as
an event-timing objective. Much work on event-based control of nonlinear systems
has been done, especially with respect to stochastic processes [3]. While we do not
consider stochasticity here, the event-based framework is well-suited to overcoming
the observability and nonlinearity challenges inherent in spike timing control of
oscillatory neurons.

5.2 Control of individual neurons

5.2.1 Event-based control

Measurement of membrane voltage tends to be quite noisy in experiments, mak-
ing it quite difficult to employ traditional nonlinear feedback control based on con-
tinuous measurements of state, e.g. [55]. Neural voltage spikes are, however, reli-
ably detectable. We will use the detection of voltage spikes to enable the controller
to know that the neuron has just passed through its zero phase point. The controller
has no memory beyond the last spiking event. Based on the time of the detected
voltage spike, the controller will stimulate the neuron with an open-loop waveform
in order to achieve some control objective. In this chapter, the control objective
will be to spike in phase with a reference oscillator. We will develop control schemes
that, iteration after iteration, produce the desired dynamical behavior.

5.2.2 Reference-phase tracking

Consider the objective of controlling a neuron to spike (asymptotically) in phase
with a reference oscillator with the same natural period as the neuron. The reference
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oscillator evolves according to the simple equation

θ̇r = ωr , θr(0) = θr0 , (5.1)

where ωr = ω is the natural frequency of the reference oscillator, and θr0 is its initial
phase. We will see later in Sections 5.3.1 and 5.3.2 that such a control objective
can be useful for controlling an ensemble of synchronized phase neurons to desyn-
chronize by driving each neuron to follow a staggered reference phase trajectory.

The times at which the phase of the reference oscillator crosses zero are the times
we want the controlled phase neuron to spike. To achieve this, we must develop a
control scheme that, after every event-based open-loop stimulus application, drives
the controlled neuron to spike closer (in time) to the zero crossing of the reference
oscillator. One can think of the difference in the time at which the controlled neuron
spikes to the time that the reference oscillator crosses zero as a time error. From
a control-theoretic perspective, this is equivalent to the phase error at the time of
the controlled neuron’s spike. When the controlled neuron spikes, we compare its
phase to that of its reference oscillator, and construct an open-loop waveform that
will actuate the neuron with the goal of correcting all, or a portion of, its phase
error by the time the neuron spikes again.

Generally, one would define the phase error as

∆θ = θ − θr.

In the scenario presented in this chapter, the phase error is sampled only when
the controlled neuron spikes, i.e. θ = 0, so effectively ∆θ = −θr. However, the
phase error, as defined this way, exists on (−2π, 0]. The topology of the unit phase
circle allows us to wrap the phase error to the interval (−π, π] using the following
algorithm (shown here in general form):

∆θ =

{

θ − θr , for |θ − θr| ≤ π
θ − θr − sgn(θ − θr)2π , for |θ − θr| > π

(5.2)

so that the phase error is the shortest distance around the unit phase circle.
When ∆θ < 0, the controller should speed up the neuron, and when ∆θ >

0 it should slow down the neuron. This definition of phase error is useful from
the perspective of controlling oscillatory neurons. Figure 5.1 illustrates why this
definition of phase error is appropriate. The reference oscillator trajectories are
shown in dashed lines. The time at which the controlled neuron spikes and triggers
the event-based controller is labeled t0. The left panel shows a scenario wherein
∆θ < 0. With this definition of phase error, the controller should seek to drive the
controlled neuron to spike at the time labeled tr, thus speeding it up. The right
panel shows a scenario where ∆θ is small and slightly positive. If the phase error
was not wrapped, for an arbitrarily small error, the controller would try to make
the neuron spike almost immediately, which would require a very strong stimulus.
Instead, with the phase error wrapping algorithm, the controller’s objective is to
slow down the neuron using a small stimulus so that the controlled neuron spikes
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Figure 5.1: Phase error sign convention examples. Reference trajectories are shown as dashed
lines. The controlled neuron’s phase is shown as a solid line. When the controlled neuron’s phase
reaches 2π = 0 (mod 2π), it spikes and triggers assessment of phase error relative to the reference
oscillator.

in phase with the reference neuron one period later, as shown by the marker at tr
on the right panel of Figure 5.1.

In this event-based framework, we are interested in how the phase error ∆θ
changes after a period of control actuation, so we will define ∆θ+ to be the phase
error at the time of the next spiking event. Thus, we seek a control law that
decreases the phase error over one period, i.e. ,

∣

∣

∣

∣

∆θ+

∆θ

∣

∣

∣

∣

< 1 ∀ ∆θ ∈ (−π, π], (5.3)

excluding ∆θ = 0 (where ∆θ+ should also equal 0).

5.2.3 Impulsive control

In nature, neurons communicate by voltage spikes that are large in magnitude
but very short in duration, which naturally limits the production of irreversible
Faradaic reaction products that can lead to tissue damage [64]. Signals of this
kind are a biological analog of impulses. In fact, dynamical systems researchers
in mathematical neuroscience have long used the concept of impulsive coupling to
model networks of neurons, see e.g. [14]. Impulsive coupling has been shown to
closely correspond to many types of oscillatory biological networks in nature [66,
110]. This has inspired the idea of using impulsive signals (Dirac delta functions) for
spike timing control. Impulses are analytically desirable inputs from the perspective
of the phase-reduced model, since delta functions turn the calculus into simple
algebra. For example, consider the dynamics of generic phase-reduced model over
the time interval [tI , tII ] subject to an impulsive input at time t̂

θ̇ = ω + Z(θ)ũδ(t− t̂), (5.4)
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where tI ≤ t̂ < tII , and ũ is the strength of the impulsive stimulus. The solution is
simply

θ(tII) = θ(tI) + ω(tII − tI) + Z(θ(tI) + ω(t̂− tI))ũ mod 2π. (5.5)

Following [30], we will proceed by using (5.5) as the basic building block of our
control scheme. Intuitively, we want to drive the oscillator with impulses timed to
occur when its phase corresponds to that of the extremal values of its PRC. For
example, if the control objective is to speed up the neuron, the optimal strategy is
to stimulate the neuron with a negative impulse, timed to occur when θ = α (recall
Z(α) = Zmin < 0), followed by a positive impulse, timed to occur when θ = β
(recall Z(β) = Zmax > 0).

Since we are not considering noise, we can use (5.5) to predict the phase of
the actuated oscillator using simple algebra. The charge-balance constraint is im-
plemented by constraining the control to be in the form of two timed impulses of
equal magnitude but opposite sign. Recall that the control objective is to reduce
the phase error after each period of actuation, i.e. |∆θ+| < |∆θ|. The following
control algorithm, derived using (5.5), gives |∆θ+| = K|∆θ|, where we choose the
desired phase error correction factor K ∈ [0, 1):

u(t) = ũ(δ(t− tα)− δ(t− tβ)), (5.6)

where

ũ =
(1−K)∆θ

Zmax − Zmin
, tα =

α

ω
, tβ =

1

ω
(β − Zminũ). (5.7)

We note here that tα and tβ are the times at which the neuron’s phase will equal
α and β, respectively (see Figure 2.4). As in the previous sections, t represents
the time since the last spiking event t∗ and is reset to zero whenever θ crosses the
θ = 2π (mod 2π) spike threshold.

This control scheme is, by construction, charge balanced (“bi-phasic charge-
balanced with delay” in the terminology of [64]). It corrects the error exactly
as we intend over one control period, and any other control waveform would be
using energy at a “weaker” region of the PRC, or would violate the charge-balance
constraint.

We must remember, however, that the phase-reduced model is a simplified rep-
resentation of a higher-dimensional conductance-based model, and thus has a short-
coming that must be addressed. The behavior of the phase-reduced model is not
necessarily representative of the conductance-based model when the impulses are
large enough to drive the oscillator to a phase where the sign of the PRC is different
from what it was prior to the impulse. Also, if the oscillator is driven beyond the
θ = 2π = 0 (mod 2π) spike threshold, in either direction, the phase-reduced model
loses relation to the conductance-based model, since a phase of zero implies a firing
and an essential “reset” of the oscillator.

Since we are concerned with asymptotic convergence to a fixed frequency refer-
ence trajectory, we can easily avoid these issues by using fractional error correction

70



Corner Condition Minimum admissible correction factor Kmin

0 < θ(t+α ) < γ 1 + α(Zmax−Zmin)
πZmin

θ(t+α ) < γ 1 + (γ−α)(Zmax−Zmin)
πZmin

γ < θ(t+β ) 1− (β−γ)(Zmax−Zmin)
πZmax

γ < θ(t+β ) < 2π 1− (2π−β)(Zmax−Zmin)
πZmax

Table 5.1: Constraints on the tunable desired contraction factor K. If K is chosen to be greater
than the value of the right column, the corner condition in the left column is satisfied.

with
0 ≤ Kmin ≤ K < 1, (5.8)

where Kmin is constrained by functions of the PRC Z(θ). Table 5.1 lists the corner
conditions for Kmin. In the table, θ(t+α ) refers to the phase of the oscillator imme-
diately after the impulse at t = tα. Likewise θ(t+β ) refers to the phase immediately
after the impulse at t = tβ.

By using fractional error correction and phase wrapping in our phase error def-
inition, we provide the impulsive event-based control scheme with a way to reduce
the total charge delivered over each actuation period while still retaining asymp-
totic convergence to the specified reference trajectory. We will now extend this
concept to a more experimentally relevant context by approximating the impulses
by finite magnitude pulses of non-zero duration.

5.2.4 Quasi-impulsive control

Using finite (small) magnitude control pulses is important in the context of
stimulating real neurons, since the biological tissue exposed to the electrical stimu-
lus can be damaged by large electrical currents. Also, the phase reduction method
that generates the phase models we use makes the assumption that the input acts
as a small perturbation. A digital approximation of a Dirac delta function as a
rectangular spike with magnitude ũ/dt, where dt is equal to the sample time, works
well for numerical simulation of the phase-reduced nonlinear oscillator model, but
is inappropriate for use with the full-dimensional conductance-based model. Such a
stimulus can instantaneously jolt the state far off its periodic orbit and yield results
that are not closely approximated by the phase reduced model.

To address these issues, we develop a quasi-impulsive control that uses the same
control effort as the impulsive control, but extends the duration and confines the
magnitude of the impulse to be equal to a threshold C, which is chosen to be greater
than or equal to a certain minimum value Cmin which depends on the PRC, the
phase error correction factorK, and the natural frequency of the phase neuron. The
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finite duration pulses will be stimulating the neuron at sub-extremal regions of the
PRC, so the error correction of this protocol is not exact as in the impulsive case.
We will show, however, that when implemented on the full-dimensional Hodgkin-
Huxley neuron model, the resulting fractional error correction performance is quite
close to the prescribed fractional error correction factor K from the phase-based
quasi-impulsive control method.

Analogous to a time-delayed bang-bang control scheme, this method stimulates
at magnitudes equal to the threshold constraint C ≥ Cmin, using rectangular pulses
of opposite sign centered at tα and tβ with durations such that the integral of each
pulse is equal to ũ. Using a value of fractional error correction K ≥ Kmin satisfying
the conditions listed in Table 5.1, we propose the following control scheme:

u(t) =























0 , for 0 ≤ t < tA
sgn(∆θ)C , for tA ≤ t < tB
0 , for tB ≤ t < tC
−sgn(∆θ)C , for tC ≤ t < tD
0 , for tD ≤ t

(5.9)

where
tA = tα −

|ũ|
2C

, tB = tα + |ũ|
2C

tC = tβ −
|ũ|
2C

, tD = tβ + |ũ|
2C

(5.10)

and ũ is as defined previously in (5.7). The corner conditions that determine the
minimum admissible threshold constraint Cmin are listed on Table 5.2. Together,
these constraints ensure that the control signal always stimulates in the right di-
rection and will yield a charge-balanced waveform. In the limit of C → ∞, this
scheme recovers the timing and performance of the purely impulsive control law
(5.6).

Theorem For the phase-reduced neural oscillator model θ̇ = ω+Z(θ)u(t) where
u(t) is as defined in (5.9), Z(θ) satisfies the conditions from (2.13), K satisfies the
conditions in Table 5.1, and C satisfies the conditions in Table 5.2, the phase error
ratio over one period of actuation will be a strict contraction (|∆θ

+

∆θ
| < 1), imply-

ing global monotonic convergence of the oscillator phase θ(t) to the reference phase
θr(t).

Proof. First, a word on notation. When developing bounds to prove error conver-
gence, underbars x and overbars x̄ will denote the greatest lower and least upper
bounds on the variable x, respectively. The objective of the proof is to show that the
error gain, |∆θ

+

∆θ
|, is strictly less than one for all values of initial error ∆θ ∈ (−π, π].

This implies that the phase error is reduced after each event-driven actuation pe-
riod. And since the oscillator in absence of input rotates around S

1 with natural
frequency ω, spiking events are persistent in time, which make it impossible for a
steady state error to exist.
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Condition Minimum admissible control magnitude Cmin

0 < tA
ωπ(1−K)

2α(Zmax−Zmin)

tB < tC max
∆θ∈(−π,π]

(

ω∆θ(1−K)
(β−α)(Zmax−Zmin)−Zmin(1−K)∆θ

)

θ(tB) < γ max
∆θ∈(−π,π]

(

−ω(1−K)∆θ
2[(γ−α)(Zmax−Zmin)−Zmin(1−K)∆θ]

)

θ(tC) > γ ωπ(1−K)
2(β−γ)(Zmax−Zmin)

θ(tD) < 2π max
∆θ∈(−π,π]

(

−ω(1−K)∆θ
2[(2π−β)(Zmax−Zmin)+Zmax(1−K)∆θ]

)

Table 5.2: Constraints on the minimum admissible stimulus constraint C = Cmin. If C is chosen
to be greater than the value of the right column, the condition in the left column is satisfied.

If the extension of the impulsive control to the quasi-impulsive case were perfect,
we would expect |∆θ

+

∆θ
| = K. This, however, is the greatest lower bound, since a

pulse with nonzero duration implies that the control will be stimulating the neuron
at phases where the PRC will be sub-extremal. We will proceed with the proof by
developing bounds on the time at which the oscillator will spike (cross the θ = 2π
threshold), which we will denote as t+, and which will be compared with the time
at which the constant frequency reference oscillator spikes to determine the phase
error after one period of actuation, ∆θ+.

For simplicity, we will develop bounds on t+ by separately considering the cases
∆θ > 0 and ∆θ < 0. When ∆θ = 0, no control action is taken so that ∆θ+ = 0.

Case I: ∆θ > 0
Intuitively, the control should slow the neuron down when ∆θ > 0. A control mag-
nitude C ≥ Cmin satisfying the conditions in Table 5.2 guarantees that throughout
the duration of the first pulse, the oscillator will have a phase between 0 and γ,
the region where Z(θ) is negative semidefinite. For a positive ∆θ, the pulse will be
positive, so the stimulus can only decrease the velocity of the oscillator below ω.
Likewise, admissibility of the control magnitude further guarantees that the oscilla-
tor’s phase will be between γ and 2π (the region where Z(θ) is positive semidefinite)
during the second pulse which is negative, since ∆θ > 0. Again this means that the
control signal can only decrease the oscillator’s velocity below its natural frequency
ω.

If there was no control, the neuron would spike again at t+ = 2π/ω, which
would result in ∆θ+ = ∆θ. In view of the argument above, this is, in fact, the
lower bound t+.

Now we step through the dynamics to develop an upper bound for t+. We begin
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at θ(0) = 0. Then, advancing with zero input until tA,

θ(tA) = ωtA = α−
ω(1−K)∆θ

2C(Zmax − Zmin)
. (5.11)

Now we calculate a lower bound on θ(tB). We do this by using Zmin as a lower
bound on the PRC. Between tA and tB, our input is equal to C. We obtain

θ(tB) = θ(tA) + (ω + ZminC)(tB − tA)

= α+
(ω + 2CZmin)(1−K)∆θ

2C(Zmax − Zmin)
.

We then evolve with zero input until tC :

θ(tC) = θ(tB) + ω(tC − tB) = β −
ω(1−K)∆θ

2C(Zmax − Zmin)
. (5.12)

The input is then applied again, this time in the negative direction, since we wish
to slow the neuron down, and Zmax > 0. We obtain

θ(tD) = θ(tC) + (w − ZmaxC)(tD − tC)

= β +
(ω − 2CZmax)(1−K)∆θ

2C(Zmax − Zmin)
.

We now solve for the upper bound t+ using the relation

θ(t+) = 2π = θ(tD) + ω(t+ − tD), (5.13)

giving

t+ = tD +
2π − θ(tD)

ω
=

2π + (1−K)∆θ

ω
(5.14)

So for ∆θ > 0,
2π

ω
< t+ ≤

2π + (1−K)∆θ

ω
. (5.15)

In terms of phase, these bounds on t+ imply K ≤ ∆θ+

∆θ
< 1, as desired.

Case II: ∆θ < 0
When ∆θ < 0, the control method seeks to speed up the oscillator. Following
the C ≥ Cmin admissibility argument from Case I, but with the signs flipped, we
conclude that the control signal cannot slow the oscillator down. Thus we have a
simple upper bound: t+ = 2π/ω. We can now step through the dynamics in the
same manner as Case I, but with ∆θ < 0, to yield the inequality

2π + (1−K)∆θ

ω
≤ t+ <

2π

ω
. (5.16)
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Therefore, K ≤ ∆θ+

∆θ
< 1, as claimed.

Thus, for all nonzero values of ∆θ ∈ (−π, π], the control provides error contrac-
tion over one period of actuation, and if ∆θ = 0, the control takes no action.

The solid lines in the plots in Figure 5.2 illustrate the performance of this
control algorithm for the phase-reduced model derived from the Hodgkin-Huxley
system with the PRC shown previously in Figure 2.4. For this PRC, the minimum
admissible values Kmin and Cmin are 0.63 and 1.65, respectively. The results shown

are for K = 0.7 and C = 1.7. We see that the gain
∣

∣

∣

∆θ+

∆θ

∣

∣

∣
is between 0.7 and 0.8 over

the entire interval, quite close to our prescribed K value of 0.7 derived from the
optimal impulsive control method (5.6). As discussed in [29], the global stability
of the origin of M : ∆θ 7→ ∆θ+ determines the global asymptotic stability of the
phase error. Here, M is well-behaved, smooth, and is confined to the first and third
quadrants (as expected with global monotonic convergence), which results in global
asymptotic stability of the phase error.

We now implement the quasi-impulsive control method (5.9) on the full-dimensional
neuron model (2.3) using parameters listed in Section 2.2. Our objective is to show

that the phase error gain
∣

∣

∣

∆θ+

∆θ

∣

∣

∣
is less than one for all initial values of ∆θ. We will

also compare the results to those achieved with the phase-reduced model.
Before outlining our results, we will briefly explain how we implement the con-

trol, which was developed for the phase-reduced model, on the full-dimensional
model. For a single simulation, we choose an initial error ∆θ. We initialize the
state of the model with phase θ(0) = 0 (the state vector representation of that
point on the periodic orbit, x(0), is known based on information derived during the
phase reduction). We then integrate the ODE system (in x coordinate space) using
the electrical stimulus signal I(t) = cu(t), where we recall that c is the constant
membrane capacitance (which for the standard Hodgkin-Huxley system is equal to
1.0µF/cm2). The simulation proceeds until a spike is detected (the details of spike
detection and phase sampling can be found in [27]). The timing of this spike is
compared to the timing of the reference oscillator spike (initialized based on the
choice of ∆θ) to obtain the value of ∆θ+.

The results of fifty individual simulations with initial conditions ranging over
∆θ ∈ (−π, π] are shown as a black line with white circle markers on Figure 5.2. We
see that the implementation of the control law based on the phase-reduced model
yields very similar results for the full-dimensional system. These results represent
a significant improvement over previous work [29]. Here we have monotonic error
convergence, whereas previous methods yielded asymptotic error convergence of
|∆θ

+

∆θ
|, a somewhat weaker control objective.
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Figure 5.2: Quasi-impulsive control algorithm performance. The left plot shows the phase error
gain. The right plot shows the ∆θ 7→ ∆θ+ map. Solid lines are results from the phase-reduced
model to be compared with the white circle markers, which are results from the full-dimensional
Hodgkin-Huxley system.

5.3 Control of an Ensemble of Neurons

In this section, we describe how the methods for controlling individual neurons
described in the previous section might be extended to control an ensemble of
neurons, including an ensemble driven by a pacemaker.

5.3.1 Desynchronizing an ensemble

Consider an ensemble of N identical uncoupled neurons firing in pathological
synchrony. One can desynchronize the spike times of the ensemble usingN instances
of the control methods presented earlier for individual neurons.

Fully desynchronized spike times imply the population’s interspike interval is
constant and equal to T/N . We will show how the reference-tracking methods
from Sections 5.2.3 and 5.2.4 can accomplish this goal using staggered reference
phase trajectories.

Reference-phase tracking desynchronization

In a similar spirit, the reference-tracking control scheme from Sections 5.2.3
and 5.2.4 can be extended to the ensemble case by using a set of staggered refer-
ence phase trajectories by setting the initial condition of each of the i = 1, . . . , N
reference oscillators (5.1) to be θri(0) = 2πi

N
. The ith event-based controller then

asymptotically drives its neuron toward the reference trajectory θri(t), resulting in
asymptotic convergence to the desired desynchronized phase trajectories.
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5.3.2 Desynchronizing a pacemaker-driven ensemble

In this section, we show how the reference-phase tracking methods presented in
Sections 5.2.3 and 5.2.4 can be further extended to address an ensemble of neurons
that are being driven towards synchrony by a periodic impulsive stimulus called a
pacemaker.

Pacemaker-driven ensemble model

We consider a pacemaker-driven ensemble of N identical phase neurons depicted
in Figure 5.3. Such a model is not directly representative of any particular biological
network, but is a simple example of pathologically-driven synchronization that can
be mitigated with an extension of the control methods proposed in Sections 5.2.3
and 5.2.4.

In the pacemaker-driven ensemble model, each neuron is unidirectionally cou-
pled to a central pacemaker, and has its own event-based controller. We assume
each neuron’s event-based controller can both observe spikes and stimulate the neu-
ron it controls. The pacemaker fires periodically and is not affected by either the
driven neurons or any control stimuli, but its spiking can be measured and known
by each controller. We also assume the pacemaker communicates with the neurons
by impulsive signals.

Since the neurons do not communicate with each other, we can analyze the
dynamics of this system by considering the behavior of a single pacemaker-neuron-
controller system. If a controller can drive the pacemaker-driven neuron asymptot-
ically toward a reference phase trajectory with any initial condition θri(0) ∈ [0, 2π),
then a set of such controllers can accomplish the goal of driving each neuron toward
a staggered reference phase trajectory for the ensemble.

Neuron

NeuronNeuron

Neuron

Pacemaker

V1 VN

uN

VP

u1

V2

uN−1

VN−1

u2

Figure 5.3: Pacemaker network. Each of the N neurons is driven by control signals ui and the
pacemaker voltage VP . The controller observes spiking behavior of the individual neuron voltages
Vi and the pacemaker voltage VP .
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We define the pacemaker as a simple oscillator

θ̇P = ωP , θP (0) = θP0
(5.17)

that periodically emits an impulsive signal of fixed (and known) strength KP when
its phase θP crosses 0, that is

VP (t) = KP δ(θP (t)). (5.18)

We will take the natural frequency of the pacemaker to equal that of the phase
neurons ωP = ω. The pacemaker pulse strength KP is taken to be positive and of
order 1. Since, in this simple model, the dynamics of the pacemaker are fixed and
deterministic, we can construct a simple observer that will provide the controller
with an (exact) estimate of the phase of the pacemaker. The controller observes
the times of two consecutive pacemaker spikes, TP1 and TP2. Then it is possible to
construct the (exact) estimated pacemaker phase trajectory:

θP (t) =
2π

TP2 − TP1

(t− TP2) mod 2π (5.19)

for future times t ≥ TP2.
We model neurons as nonlinear phase oscillators that emit a detectable impulsive

signal when their phase θi crosses 0 according to the following equation

θ̇i = ω + Z(θi(t))[VP (t) + ui(t)], θi mod 2π, (5.20)

where ui is the control signal applied to neuron i. For each controller, we define its
event to be the zero crossing of the phase of its controlled neuron.

Uncontrolled dynamics

For small positive pacemaker strength KP , the spike times of the uncontrolled
system synchronize with the pacemaker. This can be explained as follows. Set
t = 0, and the first pacemaker spike occurs at time t = TP1. Just before the spike
happens, neuron i has phase θi(T

−
P1). Immediately after the spike, the phase has

shifted to θi(T
+
P1) = θi(T

−
P1) +KPZ(θi(T

−
P1)) mod 2π. Now, the pacemaker will fire

next at time TP2 = TP1 + 2π
ω

. The neuron’s phase right before the next pacemaker
spike at t = TP2 is calculated to be

θi(T
−
P2) = θi(T

+
P1) + ω

2π

ω
mod 2π = θi(T

+
P1). (5.21)

In general
θi(T

−
Pj) = θi(T

+
P (j−1)) (5.22)

and
θi(T

+
Pj) = θi(T

−
Pj) +KPZ(θi(T

−
Pj)) (5.23)
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which, by fixing the coupling strength KP , can be interpreted as a one-dimensional
map M : θi(T

−
Pj) 7→ θi(T

+
Pj) where

M(θ) = θ +KPZ(θ). (5.24)

Phase entrainment is equivalent to attraction to the fixed point at the origin of the
map M over the full measure of θ− state space. In Figure 5.4, we have shown the
map MHH for the Hodgkin-Huxley phase oscillator with a rather large pacemaker
strength, KP = 2, for easy visualization. The origin of this map is readily verified
to be asymptotically attractive on the full measure of its domain, by cobwebbing
[97], for example. We note the presence of an unstable fixed point at θ− = γ, which
is expected since Z(γ) = 0.

0 π/2 π 3π/2 2π
0

π/2

π

3π/2

2π

θ−

θ+

Figure 5.4: The map MHH for KP = 2.

Impulsive desynchronization

In the same spirit as Section 5.2.3, we propose a reference phase tracking control
scheme based on impulsive inputs. When each neuron spikes, it resets its controller’s
own local clock t̃i, and the control algorithm calculates an open loop waveform with
the objective of reducing the neurons’ phase error relative to a reference trajectory,
evaluated when the neuron next spikes. This algorithm, however, is constructed
based on the concept of using three impulses instead of two, as in Section 5.2.3.
The additional impulse is timed to negate the effect of the pacemaker. The other
two impulses are used to accomplish the reference phase tracking while fulfilling
the charge balance requirement. In the forthcoming presentation, all times will be
relative to t̃i, the time since the neuron i last spiked. t̃+P is the (relative) time when
the pacemaker will spike again.

The control signal is composed of three impulses of strength ūi,α, KP , and ūi,β.
These values will be defined shortly; they must satisfy

ūi,α −KP + ūi,β = 0, (5.25)
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in order to ensure charge-balance over the course of one stimulation interval.
Similar to the reference phase tracking algorithm presented in Section 5.2.3, this

algorithm stimulates the phase neuron at the points of the PRC where the Z(θ)
is minimal and maximal, i.e. θi = α and θi = β. The third impulse is timed to
occur at exactly the same time as the pacemaker spike. Under these conditions, we
calculate the (relative) time when the phase will be equal to α

t̃i,α =
α

ω
. (5.26)

At t̃i = t̃i,α, the controller applies an impulse with strength

ūi,α =
KPZmax + (1−K)∆θi

Zmax − Zmin
. (5.27)

The controller then waits until the time when the controlled neuron’s phase will be
at the PRC’s maximal point θi = β, which can be computed to be

ti,β =
β

ω
−
Zmin(KPZmax + (1−K)∆θi)

ω(Zmax − Zmin)
. (5.28)

At this time, the controller delivers an impulse with strength

ūi,β =
−((1−K)∆θi +KPZmin)

Zmax − Zmin
. (5.29)

The event-triggered open-loop control waveform can now be expressed as

ui(t̃i) = ūi,1δ(t̃i − ti,α)−KP δ(t̃i − t̃
+
P ) + ūi,2δ(t̃i − ti,β). (5.30)

This charge-balanced impulsive control scheme exactly nullifies the effect of the
pacemaker and achieves the reference phase tracking with correction factor K in
the same manner as the algorithm of Section 5.2.3.

Quasi-impulsive desynchronization

Similar to the single neuron case examined in Section 5.2.4, we seek to make
this control method practical for application to a biological system, using finite
magnitude control signals rather than impulses. In the pacemaker system, however,
there are three impulses to approximate – the two phase-correcting impulses and
the pacemaker-nulling impulse.

Figure 5.5(a) shows simulation results of this control scheme applied to a pace-
maker network containing ten phase-reduced Hodgkin-Huxley neurons initialized in
a completely synchronized spiking state. Figure 5.5(b) shows results from the same
system initialized in the desynchronized state. The phase-entraining effect of the
pacemaker makes the system tend toward synchronization in absence of the con-
troller. In these simulations, the pacemaker spike intensity was taken to be KP = 2,
the charge magnitude constraint on the control signal was C = 3 and the desired
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Figure 5.5: (a) Quasi-impulsive anti-pacemaker control scheme applied to a pacemaker-driven
ensemble of N = 10 phase neurons. The spike timing of the ensemble, as well as the phase
distribution, are desynchronized by the action of the controller. (b) When the controller is turned
off, the pacemaker drives the ensemble back into spiking synchrony. The top panels show the time
evolution of each neuron’s phase. The middle panel tracks the most recent value of the ensemble’s
interspike interval (ISI). The bottom panels show the magnitude of the order parameter |r1|.
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fractional error correction was K = 0.5. In these plots, synchrony is illustrated in
two ways. The middle panels show a measure of spiking synchrony which is the time
interval between the last two spikes in the ensemble. Desynchronization of spike
times implies that this number is always equal to the natural period of the neuron
divided by the number of neurons in the ensemble. In this case, T/N = 1.46 msec
and is shown by the dashed red line. The other important measure of synchrony
is Kuramoto’s order parameter [59], as was discussed in Chapter 3, the magnitude
of which is a measure of phase synchrony. Recall, phase synchronization implies
|r1| → 1, while phase desynchronization implies |r1| → 0.

5.4 Discussion

We have presented several event-based charge-balanced feedback control algo-
rithms which can be applied to phase models of spiking neurons. This included
controlling an individual neuron by using impulsive and quasi-impulsive inputs to
make a neuron fire asymptotically in-phase with a reference oscillator. We also
described how these methods, particularly the reference-phase tracking methods,
might be extended to control a ensemble of neurons, including an ensemble driven
by a pacemaker.

We note that the results presented in this chapter on controlling ensembles of
neurons require the ability to provide different inputs to each neuron, which would
be very difficult to realize experimentally. The challenge remains to develop a
feedback control algorithm which desynchronizes a population of coupled neurons
through a single, common input to the whole population, although there are some
promising results along these lines [99, 28], as will be discussed in Chapter 6. Such
an algorithm might truly deliver on the promise of demand-controlled deep brain
stimulation for the treatment of Parkinson’s disease.
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Chapter 6

Phase-randomizing Control

In this chapter, we present an event-based feedback control method for random-
izing the asymptotic phase of oscillatory neurons. Phase randomization is achieved
by driving the neuron’s state to its phaseless set, where its phase is undefined and
is extremely sensitive to background noise. We consider the biologically relevant
case of a fixed magnitude constraint on the stimulus signal, and show how the
control objective can be accomplished in minimum time. The control synthesis
problem is addressed using the minimum-time-optimal Hamilton-Jacobi-Bellman
framework, which is quite general and can be applied to any spiking neuron model
in the conductance-based Hodgkin-Huxley formalism. We also use this methodol-
ogy to compute a feedback control protocol for optimal spike rate increase. This
framework provides a straightforward means of visualizing isochrons, without ac-
tually calculating them in the traditional way. Finally, we present an extension of
the phase randomizing control scheme that is applied at the population level, to
a network of globally coupled neurons that are firing in synchrony. The applied
control signal desynchronizes the population in a demand-controlled way.

This chapter is organized as follows. Section 6.1 provides some background
and introductory material. Section 6.2 shows how we normalize the ODE models
presented in Chapter 2 for use with the forthcoming control methodology. We
outline the control objective, namely driving the neuron to a phase-randomizing
target set in minimum time, in Section 6.3. Section 6.4 provides the theoretical
basis for the optimal control design and Section 6.5 details the numerical methods
used to perform the computations. Results are presented in Section 6.6 including
single neuron phase randomization, ensemble phase randomization, and optimal
spike rate increase. We also draw a connection to isochron visualization in this
section, as well as provide additional results for the FitzHugh-Nagumo model. In
Section 6.7, we show how the phase randomizing controller performs on a population
of globally coupled neurons. We give concluding remarks in Section 6.8.
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6.1 Introduction and background

In this chapter, we explore Winfree’s idea of using phaseless sets to randomize
the phase of each neuron in a population, thereby desynchronizing their pathological
firing behavior. The central concept is that the phase of an oscillatory dynamical
system can be effectively reset by using an impulsive stimulus to drive the state
of the system to a point where the phase is undefined [109]. In the context of
the neuron models considered here, this phaseless set is a single point in state
space, which is an unstable equilibrium point “inside” the periodic orbit. For more
general cases, the phaseless set(s) could also be an unstable periodic orbit (for
a planar system), or the stable manifold of an unstable periodic orbit (in higher
dimensions). These objects typically form the boundary of the basin of attraction
of the stable periodic orbit.

There are three primary challenges to the use of electrical stimulus to drive a
neuron’s state to its phaseless set, which also posed challenges to reference-tracking
in Chapter 5. First, the Hodgkin-Huxley conductance-based formalism [50], a
general modelling methodology in neuroscience, yields systems of continuous-time
ODEs that tend to be highly nonlinear. Many traditional control designs require
the controlled system to be either linear or only weakly nonlinear. A second chal-
lenge is that a control scheme cannot stimulate biological tissue with arbitrarily
large signals. The magnitude of the electrical stimulus must be constrained, inval-
idating the concept of purely impulsive inputs for biological implementation. The
third challenge is the fact that the only state that is directly observable is the mem-
brane voltage. A control system cannot measure the dynamic state of the many ion
channels that play a critical role in the oscillatory behavior of neural spiking. This
poses particular problems for implementing traditional nonlinear feedback control
systems, which depend on continuous measurements of state.

The proposed event-based feedback control scheme presented here addresses
each of these challenges, and accomplishes the objective of driving a neuron to
its phaseless set using a magnitude-constrained stimulus signal in the minimum
possible time. Our method combines techniques from modern control engineering,
namely Lebesgue sampling (i.e. event-based control) [2], nonlinear optimal control
theory (e.g. [4]), and a recent computational toolbox for solving the resulting
Hamilton-Jacobi-Bellman equations [67]. The method is quite general and can be
applied to any conductance-based neuron model that possesses a stable limit cycle.

We develop the event-based minimum-time optimal control algorithm for the
case of a single deterministic neuron. We show that when background noise is added
to the controlled neuron, the asymptotic phase of the neuron is indeed randomized.
The utility of this control protocol is extended by considering a population-level
event-based framework. In the case of a globally coupled network with pathological
synchronous spiking, we show that this control scheme desynchronizes the network,
and the control is active only when synchrony is detected.

The control design method developed here has several other interesting applica-
tions. By a changing a simple parameter in the design calculations, we can create

84



a control signal that will optimally increase the spike rate of the neuron. Also, we
can visualize the isochrons of the particular neuron model by plotting level sets of
an intermediate value function calculated in the course of the stimulus design.

6.2 Normalized model

We now introduce a simple affine coordinate transformation to simplify the pre-
sentation, and to put our dynamical system into a form necessary for the proposed
stimulus design method. A critical step in our method uses the Level Set Methods
Toolbox (ToolboxLS), a MATLAB-based partial differential equation (PDE) solver
[68]. This PDE solver has the requirement that each component should be of the
same order of magnitude [67] and the new state-space coordinates must be centered
at the target point, T . The coordinate transformation is written as:

x1 = V−VT
Ks

x2 = n− nT .
(6.1)

Since the gating variable n lies in the interval [0, 1], we choose the voltage scaling
factor, Ks, such that the scaled voltage coordinate x1 = O(1). For the reduced
Hodgkin-Huxley model, we use Ks = 80.

Under this transformation, the dynamics become

ẋ1 = 1
Ks

fV (Ksx1 + VT , x2 + nT ) + 1
Ks

u

ẋ2 = fn(Ksx1 + VT , x2 + nT )
(6.2)

To simplify notation further, we introduce the vector notation x = [x1 x2]
T with

dynamics

ẋ = F (x) +

[

1
Ks

0

]

u =

[

F1(x)
F2(x)

]

+

[

1
Ks

0

]

u (6.3)

where

F1(x) =
1

Ks

fV (Ksx1 + VT , x2 + nT ) (6.4)

and
F2(x) = fn(Ksx1 + VT , x2 + nT ). (6.5)

We note that this change of coordinates will only be used to simplifiy the math-
ematical presentation of the optimal stimulus design method. When results are
presented in Section 6.6, we will revert back to the original variables V and n, and
will report stimulus signals as electrical currents, I(t).

In the present work, we design a controller that waits for a voltage spike (which
we define to be the event) then stimulates the neuron with a pre-computed wave-
form designed to drive the neuron’s state close to the unstable fixed point “inside”
the periodic orbit, a point which is surrounded with closely packed isochrons. We
will also show that other target sets can be used, which allows the controller to
achieve other objectives, like maximally increasing the spike rate.
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6.3 Control objectives

From a theoretical standpoint, the objective of our control system is to drive the
system’s state to a pre-defined target location T . By setting T to be the unstable
equilibrium point, the controller will cause asymptotic phase randomization. On
the other hand, if we set T to be the spiking point, the controller will cause the
neuron’s spike rate to increase as much as possible. To keep our control stimulus
design methodology general, we will not specify T . In fact, any point in state space
can be chosen as a target set, although it is not clear what the utility of using
points besides the unstable equilibrium and the spike point might be. Recall that
Equation (6.1) translates the system by T so that the coordinates are centered on
the target set. Regardless of what is chosen for T , in the transformed coordinate
system the target is always the origin.

As mentioned in the preceding section, a challenge inherent in controlling any
biological system is that the magnitude of the control signal is constrained. Math-
ematically, we formalize this constraint as

|u(t)| ≤ µ (6.6)

where µ > 0 is given, and is determined by the limitations imposed by the biology
or by the available hardware for the experimental implementation. To make the
forthcoming analytical optimizations simple, we scale the input by the value of the
constraint by introducing

ũ =
u

µ
. (6.7)

Equation (6.3) then becomes
ẋ = F (x) + bũ (6.8)

where

b =

[

µ

Ks

0

]

. (6.9)

By defining an interval Ũ = [−1, 1], we can restate our objective – find the
control signal ũ(t) ∈ Ũ × [0,∞) that drives the system from its initial state x0 to
the target set T (which is the origin x = 0 in our translated coordinate frame-
work) in minimum time. In the optimal control literature, this objective is often
termed minimum-time-to-reach. It should be noted that such a control signal is not
guaranteed to exist. As the magnitude constraint, µ, approaches zero it becomes
impossible to reach any point except for those on the periodic orbit.

6.4 Optimal stimulus design

The optimal stimulus design method we present follows an approach similar to
that outlined in [67] as applied to the classical double integrator example of [4].
The optimal control signal is found by first computing an approximation of the
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minimum-time-to-reach value function, which is a viscosity solution of a Hamilton-
Jacobi-Bellman (HJB) PDE. The numerical approximation of the value function is
then used to generate the optimal state trajectory and the optimal control signal
by forward simulation. We now elaborate on the theoretical details of this method.

We begin by defining the terminal time, tend ∈ [0,∞], which is the minimum
time at which the state reaches the target set when starting from x(0) = x under
the control signal ũ(t). This is written precisely as

tend(x, ũ(t)) = min{t : x(t) ∈ T |x(0) = x}. (6.10)

The terminal time can be infinite when the trajectory x(t) never reaches the target
set. This can occur if the constraint in (6.6) is so small that the controller does
not have enough control authority to over-ride the system’s natural autonomous
dynamics. The terminal time is not known at the outset, and is only found through
calculating the optimal stimulus and optimal state trajectories.

We now define the cost functional, J , of an (x(t), ũ(t)) trajectory starting at
x(0) = x (over the time interval t ∈ [0, tend]) as

J(x, ũ(t)) =

∫ tend

0

g(x(t), ũ(t))dt+ q(x(tend)). (6.11)

Here, g(x(t), ũ(t)) ≥ 0 is the time-additive component of the cost function, and
q(x(tend)) is the terminal component. We present Equation (6.11) in full generality
to be consistent with the classical way of presenting this theoretical background.
However for our control objective, which corresponds to minimizing the time to
reach the target point, these functions take very simple forms:

g(x, ũ) = 1 (6.12)

and
q(x(tend)) = 0. (6.13)

Substituting these functions, Equation (6.11) simplifies to

J(x, ũ(t)) = tend(x, ũ(t)) (6.14)

which is precisely equivalent to our objective of reaching the target set in minimum
time. Other functions could be used for g(x(t), ũ(t)) and q(x(tend)) and would imply
different control objectives. Consider, for instance, g(x, ũ) = 1 + ũ2. The control
objective would now be a combination of minimizing tend and minimizing power of
the control signal.

We compute the minimum-time-to-reach value function, V(x), from state x at
time t = 0 to the target set as

V(x) = inf
ũ(t)∈Ũ

J(x, ũ) = inf
ũ(t)∈Ũ

tend(x, ũ(t)). (6.15)
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The value function can take infinite value at points in state space from which the
controller cannot drive the state to the target set.

A fact from classical optimal control theory is that, in the minimum-time-to-
reach framework, the value function V(x) is a viscosity solution of the following
Hamilton-Jacobi-Bellman equation:

0 = min
ũ∈Ũ
{1 +∇V(x) · (F (x) + bũ)} (6.16)

with the boundary condition

V(x) = 0 ∀x ∈ T . (6.17)

This equation represents a critical step in the theoretical foundation of our
optimal control design process. We refer the reader to [5] for a detailed derivations
and proofs of Equation (6.16), and an introduction to viscosity solutions of PDEs.
If we can find a function V(x) that satisfies Equation (6.16) in the viscosity sense,
the rest of the control design is quite straightforward. Unfortunately, equations of
this form can be quite difficult to solve, and no general methods exist.

We can, however, analytically simplify Equation (6.16) by realizing that the
only the last term, ∇V(x) · bũ , is involved in the minimization. The value of ũ
that minimizes Equation (6.16) is typically called the “H-minimal” control, or ũH
[4]. The vector b has only a single nonzero entry, so we can easily perform the
minimization to find

ũH = −sgn (∇V(x) · b) = −sgn

(

∂V

∂x1

)

, (6.18)

since µ and Ks are strictly positive. We see from Equation (6.18) that ũH ∈
{−1,+1} which means the optimal control magnitude will always be equal to its
maximum value. In fact, the solutions to all minimum-time optimal control prob-
lems are of this “bang-bang” type, as follows from Pontryagin’s Minimum Principle
[80].

We substitute (6.18) into (6.16), expand into components, and recall that for
a real number y, −y sgn(y) = −|y|. This removes the minimization functional to
yield a slightly simpler expression of the Hamilton-Jacobi-Bellman equation:

0 = 1 +∇V(x) · F (x)− |∇V(x) · b| . (6.19)

The solution V(x) of Equation (6.19), in the viscosity sense, enables the compu-
tation of the optimal state-feedback (and ultimately event-based open-loop) policies
ũ∗ and the corresponding state trajectories x∗ for any given starting state x. Given
V(x), the state-feedback form of the optimal control policy ũ∗(x) is simply equal
to the H-minimal control evaluated at x.

ũ∗(x) = arg min{1 +∇V(x) · (F (x) + bũ)}

= ũH(x) = −sgn
(

∂V
∂x1

∣

∣

x

)

.
(6.20)
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The optimal state trajectories satisfy the system dynamics driven by the optimal
state-feedback control law:

ẋ∗(t) = F (x∗(t)) + bũ∗(x∗(t))

= F (x∗(t))− b sgn
(

∂V
∂x1

∣

∣

x∗(t)

)

.
(6.21)

We can then compute the open-loop optimal control signal ũ∗(x0, t) for all t ∈
[0, tend(x0)] by simulating Equation (6.21) starting from initial position x(0) = x0

until x reaches the target set T at time t = tend(x0) = V(x0). The simulation
provides the optimal x trajectory, which we use to calculate the optimum control
through Equation (6.20). Thus, given any initial condition x0 we have all the
necessary tools to calculate a variable-time-length open-loop control signal ũ∗(x0, t).

In our event-based framework, only the spiking state, shown as a blue square in
Figure 2.2, is observable and its detection triggers the execution of the precomputed
open-loop optimal control signal ũ∗(xspike, t)

The crucial component of this machinery is an accurate solution or approxima-
tion of the cost function V(x) over the entire domain of x. Nonlinear Hamilton-
Jacobi-Bellman PDEs are notoriously difficult to solve, especially in stationary form
as Equation (6.19).

6.5 Numerical methods

Our goal is to solve Equation (6.19), with boundary conditions in (6.17), to
obtain an approximation to the minimum-time-to-reach value function V(x). This
PDE is both stationary and discontinuous, which renders its solution non-trivial.
Computational tools exist for solving time-dependent PDEs, in particular [68] pro-
vides a package that uses level set methods to solve HJB equations of the following
form (among others):

0 =
∂φ

∂t
(x, t) +H(x, t, φ,∇φ). (6.22)

Following [67, 76], we seek an auxilliary form of our original HJB Equation (6.19)
and (6.17) that converts them into a quasi-time-dependent form.

We define a function

G(x,∇V(x)) = 1 +∇V(x) · F (x)− |∇V(x) · b| (6.23)

which allows us to write our HJB equation (6.19) as

G(x,∇V(x)) = 0 on D\∂T
V(x) = 0 on ∂T ,

(6.24)

where ∂T is the boundary of our target set T , and D is the spatial domain.
We introduce a time-like variable s ∈ R≥0, an auxilliary function φ(x, s), and

perform the following coordinate transformation:

V(x) ← s

∇V(x) ← ∇φ(x,s)
∂φ
∂s

(x,s)

(6.25)
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which is valid as long as the following technical condition is satisfied [76]:

d
∑

i=1

pi
∂G(x, p)

∂pi
6= 0 on ∂T . (6.26)

This condition essentially states that the boundary conditions must be non-characteristic.
This allows us to cast the Hamilton-Jacobi-Bellman Equation (6.24) into the

form of Equation (6.22) which is compatible with ToolboxLS [67]. The resulting
auxilliary PDE is

0 =
∂φ

∂s
(x, s) + (∇φ(x, s) · F (x)− |∇φ(x, s) · b|) , (6.27)

with boundary conditions

φ(x, 0) = 0 for x ∈ ∂T
φ(x, 0) < 0 for x ∈ T \∂T
φ(x, 0) > 0 for x ∈ D\T .

(6.28)

Our new objective is to solve (6.27) for φ(x, s). Then we can extract the cost
function

V(x) = {s | φ(x, s) = 0}. (6.29)

Solving HJB PDEs of this type using ToolboxLS requires a target set of non-zero
area, and our target is always the origin, so we approximate the target by a small
ε-ball (disk) around the origin.

An approximation of φ(x, s) is solved by creating a uniform grid over a rect-
angular region of state space enclosing the periodic orbit. ToolboxLS solves (6.27)
using a Lax-Friedrichs scheme for the spatial dimension and a Runge-Kutta time
stepping scheme. The value function V(x) is extracted, using Equation (6.29), by
interpolation in the quasi-time variable s.

6.6 Results

Numerical computations were implemented in the scaled and translated x-
coordinate system using ToolboxLS. However, for clarity of presentation, all fol-
lowing results will be presented in the original coordinates, and control signals will
be plotted as un-scaled control currents in mA (recall I(t) = u(t)/C = µũ(t)/C).

6.6.1 Phase randomization: single neuron results

We seek a phase-randomizing control scheme, so we choose the target set to be
the unstable equilibrium point inside the periodic orbit, shown as the black X in
Figure 2.2. A particular challenge of the reduced Hodgkin-Huxley model is that this
unstable fixed point is near the periodic orbit. This situation requires the radius of
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the target set approximating circle ε to be quite small, which in turn drives the need
for a fine grid on which to compute the solution of the Hamilton-Jacobi-Bellman
PDE. The following set of calculations uses ε = 0.005 and µ = 10 mA on a 151×151
grid, uniformly-spaced in the scaled x-coordinates.

Figure 6.1 shows uniformly-spaced level sets of the resulting approximation of
the value function surface over the domain of interest. Recall that the value of this
surface V(x) at a point x is the minimum time it will take the system to reach
the target set under optimal control. At the spike point, the value is 6.88 which
indicates that when the event-based controller is activated, it will drive the neuron
to the target set in approximately 6.88 msec.

Figure 6.1: Level sets of the numerical approximation of the value function V with the periodic
orbit (red line) and the target set (purple circle). The value of V represents the minimum time
to reach the phaseless set, starting at a point (V, n) using a control signal bounded by µ = 10.

The plot of the state-feedback form of the optimal control law is shown in
Figure 6.2(a). As mentioned in Section 6.4, the optimal control law takes only two
values, {−µ,+µ}, with the sign determined by simply checking the sign of the value
function’s x1-directional derivative, per (6.18). The optimal trajectory, shown as
a blue dashed line in Figure 6.2(a), was computed by simulating the dynamical
system beginning at the spike point shown as the blue square. At each time step,
the optimal control signal (which depends only on the current location in state-
space) is applied to the system. Under influence of the optimal control signal, the
system initially follows the upper lobe of its periodic orbit, then begins to deviate
to the left as it approaches the lower left knee of the orbit, at which point it cuts
across the orbit to reach the target set in approximately 6.88 msec.

Figure 6.2(b) shows the time profile of the optimal trajectory, as well as the
optimal control signal, which was simply recorded point-by-point during the simu-
lation. This optimal control signal will be the open loop waveform that is used by
the event-based controller to randomize the phase of the neuron.
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(a)

(b)

Figure 6.2: (a) State-feedback optimal control law (grayscale background) with the periodic orbit
(red line), optimal state trajectory (blue dashed line) and the target set (purple circle). Gray
regions signify maximum control in the negative direction (I = −10 mA), and white regions
signify maximum control in the positive direction (I = +10 mA). (b) Optimal voltage (black
line) and gating variable (green line) trajectories (top) and the optimal control signal (bottom)
for reaching the target set, an ε-ball centered at the unstable fixed point, starting from the spike
point, in minimal time (tend ≈ 6.88msec).
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Figure 6.3: Ensemble asymptotic phase results for 105 uncoupled neurons, each starting from the
spiking point. In (a), neurons are exposed only to unit-magnitude noise. In (b), the neurons are
also exposed to the phase randomizing control signal.
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6.6.2 Phase randomization: ensemble results

In the previous section, we showed that the optimal control signal does, in fact,
drive the system to the target set. We now examine the effectiveness of this control
scheme as a phase randomizer. Consider an ensemble of 105 identical uncoupled
neurons, now each under the influence of independent identically distributed noise
Dη(t), where we set D = 1 mA. Each neuron is simulated, starting at the spiking
state, and the time of the next spike is recorded as tnext. This spike time is converted
to phase by the following equation:

θ =
2π(tnextmodT )

T
, (6.30)

where the mod operator handles the case where the neuron is driven so close to the
unstable equilibrium point that is slowly spins around and away from it for longer
than the natural period before returning to the stable periodic orbit.

Figure 6.3(a) shows a histogram representing the distribution of phases caused
by the noise process Dη(t) without any control input. Note the tight unimodal
shape of this distribution is to be expected given the attractive strength of the
periodic orbit and that D is small.

The simulations are repeated, but now we add the optimal control signal as input
to each neuron, in addition to the background noise. The resulting phase histogram
is shown in Figure 6.3(b). The control scheme greatly widens the phase distribution
of the ensemble after a single application. If the phase randomization was perfect,
we would expect a uniform distribution, but in Figure 6.3(b) we see a non-uniform
bimodal distribution. This arises from the fact that we have approximated the
phaseless set, which is a single point, by a small ε-ball. Due to the geometry of the
ODE’s vector field around the target set, optimal trajectories tend to approach this
ε-ball non-uniformly, which for this particular case results in a bimodal distribution.
The precise shape of the distribution is governed by the underlying ODE, the value
of ε, the magnitude of the noise D, and the magnitude constraint µ.

Complete phase randomization after a single application of the optimal control
signal is not necessary. As long as the phase distribution is significantly spread out,
we can simply apply the control signal multiple times. We will illustrate this in the
context of a globally-coupled network in Section 6.7.

6.6.3 Spike rate control

By applying the optimal minimum-time control design method using the spike
point as a target, the firing rate of the neuron can be increased. Targeting the
spike point is equivalent to asking how to make the neuron spike again as soon as
possible given the constraint on the control magnitude. Here, we use µ = 10 and
ε = 0.01.

Figure 6.4 shows the level sets of the value function for this example. The state
feedback control law and optimal state trajectories are shown in Figures 6.5(a) and
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6.5(b). The optimal control signal, shown in Figure 6.5(b), is interesting in that
it is not simply using the maximum magnitude control in a single direction, which
would be equivalent to increasing the baseline current. To optimally increase the
firing rate of this neuron, the controller switches between +µ and −µ. We see
that the optimal state trajectory, the blue dashed line on Figure 6.5(a), stays quite
close to the unperturbed periodic orbit, so the control is not radically altering the
dynamics, just speeding up the spiking from its uncontrolled natural period of 11.84
msec to 7.74 msec.

Figure 6.4: Level sets of the numerical approximation of the value function V for optimal spike-
rate-increasing control. Superimposed are the periodic orbit (red line) and the target set (purple
ellipse). Again, we consider µ = 10.

6.6.4 Connection to isochrons

The same numerical techniques used to calculate the optimal spike rate in-
creasing control stimulus can be used to visualize an approximation of the model’s
isochrons in a straightforward manner. If we were to set the stimulus magnitude
constraint µ = 0 and repeat the optimal spike rate increase stimulus design proce-
dure discussed in the previous section, we would be exactly calculating isochrons.
To understand why this is the case, consider the meaning of the value function. For
the control objective of driving the system to the spiking point, the value function
is the time it takes, under optimal stimulus, for the system to be driven from po-
sition x to the spiking point. Now, if the control magnitude bounds are zero, we
have eliminated the controller’s ability to affect the dynamics of the system. So the
value function in the case of µ = 0 can be interpreted as the time it takes, under
no stimulus, for the system to be driven from position x to the spiking point. Level
sets of this value function are, therefore, curves connecting points in phase space
that will reach the spiking point at the same time, in the absence of stimulus, i.e.
the isochrons.

There are numerical difficulties with setting µ = 0 so we create approximations
to isochrons by calculating level sets of the value function for the case of small µ.
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(a)

(b)

Figure 6.5: (a) State-feedback optimal control law for optimal spike rate increase. Notation in
this figure is the same as Figure 6.2. (b) Optimal voltage and gating variable trajectories (top)
and the optimal control signal (bottom). Here, the objective is to reach an ε-ball centered at the
spike point in minimal time starting from the spike point. This control protocol decreases the
interspike interval neuron from 11.84 msec to 7.74 msec, resulting the fastest spiking rate possible
with a stimulus constrained by 10 mA.
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Figure 6.6 shows the isochron approximation calculated using µ = 1. This compares
well with the isochrons shown on Figure 2.2 that were calculated accurately using
backwards integration techniques as in [22, 58].

Figure 6.6: Level sets approximating isochrons for the reduced Hodgkin-Huxley model generated
using parameters ε = 0.01, µ = 1.

6.6.5 FitzHugh-Nagumo model

The proposed method is not dependent on the details of the particular model,
such as how close the unstable fixed point is to the periodic orbit. To illustrate
the broad applicability of the optimal stimulus design method, we select another
classical neural model, the FitzHugh-Nagumo model [37, 71] in the dimensionless
dimensionless form outlined in Section 2.2.3

We take the time scale separation variable δ = 0.01, and set the parameter
a = 0.6 to position the unstable fixed point near the center of the region enclosed
by the periodic orbit, which is encircled by the purple ε-radius target circle in
Figure 6.8(a). Its worth noting that this neuron model has very different time,
input, and voltage scaling than the Hodgkin-Huxley model. Since the unstable
equilibrium point is far inside the periodic orbit, this model would be particularly
difficult to control by using a timed impulse to instantaneously kick the state from
the limit cycle to unstable equilibrium, as proposed in [109]. By employing the
control synthesis method presented above, we can precisely calculate the optimal
control signal to drive the FitzHugh-Nagumo model from its spiking point to an ε
disk centered at the unstable fixed point. We take this target radius to be ε = 0.01,
compute the value function, and plot its level sets in Figure 6.7. Figures 6.8(a)
and 6.8(b) show the optimal trajectories and the optimal control stimulus when
the control magnitude constraint is µ = 0.2.
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Figure 6.7: Level sets of the numerical approximation of the value function V with the periodic
orbit (red line) and the target set (purple line) for the FitzHugh-Nagumo model. The value of V
represents the minimum time to reach the phaseless set, starting at a point (V,w) using a control
signal bounded by µ = 0.2.

6.7 Extension: globally coupled networks

We now apply our control scheme in a more biologically relevant context. We
consider a network of N neurons with all-to-all electrotonic coupling in a noisy
environment.

By applying the optimal phase randomizing control stimulus, we seek to desyn-
chronize the spike times of the network. Following [54], we write dynamical equa-
tions for a network of reduced Hodgkin-Huxley neurons obeying (2.7) as

ẋi = F (xi) + e1(Dηi + I(t))/C +
k

N
M1

N
∑

j=1

(xj − xi) (6.31)

where xi = [Vi, ni]
T is the state vector of the ith neuron, ηi is uncorrelated white

noise input to the ith neuron, and D is the magnitude of the noise. The vector
e1 = [1, 0]T and the matrix

M1 =

[

1 0
0 0

]

account for the fact that the neurons are stimulated and coupled only through the
voltage component of the state. The variable k is the coupling strength, which
we take to be small. Here, I(t) is the control stimulus which is applied to all
neurons simultaneously. Again we use an event-based feedback framework, but in
the network context we need a population-level event definition. To this end, we
introduce the concept of a network observable - a quantity from which we can infer
the level of synchrony in the network. We use the average voltage as our network
observable, written simply as

V̄ (t) =
1

N

N
∑

i=1

Vi(t). (6.32)
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(a)

(b)

Figure 6.8: (a) State-feedback optimal control law, optimal state trajectory, and the target set for
the FitzHugh-Nagumo model with µ = 0.2. Notation in this figure is the same as in Figure 6.2. (b)
Optimal voltage and gating variable trajectories (top) and the optimal control signal (bottom) for
reaching the target set, an ε-ball centered at the unstable fixed point, in minimal time (tend ≈ 0.5).

99



Were these neurons modeled as phase oscillators, we could simply use Kuramoto’s
order parameter, as in [27]. In this context, however, phase is unknown - only
voltages are measurable.

We envision a simplified representation of electrical deep brain stimulation with
two electrodes. One electrode is an input that stimulates each neuron with the same
control signal I(t). The other electrode is an output that measures the average
voltage V̄ (t) of the population (a simplification of local field potential where we
neglect spatial weighting). We define an event as the value of the network observable
crossing some threshold, indicating that most of the neurons are spiking at the
same time. This threshold is a tunable parameter, generally greater than zero for
a network of reduced Hodgkin-Huxley neurons.

In the uncontrolled system with uniform initial distribution, the neurons become
synchronized due to coupling, even in the presence of moderate noise. One can
view this as a simple example of pathological neural synchronization, linked to the
symptoms of neural disorders such as Parkinson’s disease [10] and epilepsy [91].

To demonstrate the effectiveness of the proposed control scheme, we simulate
the network represented by Equation (6.31) for N = 100 neurons, each starting
synchronized at the spike point. This corresponds to the pathological spike synchro-
nization described above. The synchronous spiking is detected by a super-threshold
value of V̄ (t), our network observable. Super-threshold average voltage constitutes
an event, which triggers the controller to stimulate all the neurons with the optimal
control waveform calculated in Section 6.6.1. Recall that in the absence of coupling,
this stimulus causes the neurons’ states to approach the phase randomizing unsta-
ble fixed point. If the coupling is relatively weak, the controller is still able to drive
the neurons close enough to the unstable equilibrium for the phase randomization
to be effective. The neurons’ phases are randomized by the stimulus, thus dimin-
ishing the value of the network observable V̄ (t). The controller then shuts off until
the coupling draws the network back toward synchronous spiking (V̄ (t) ≥ Vthresh)
at which point the optimal stimulus is again triggered. We note that if the system
does not develop synchronized spiking again, the controller will continue to remain
off, thus acheiving demand-controlled desynchronization similar to [81].

Figure 6.9(a) shows results for a population of 100 neurons globally coupled with
uniform coupling strength k = 0.01 and each under the influence of independently
drawn white noise with magnitude D = 1.0. We have kept the control magnitude
constraint µ = 10 mA and used the exact optimal stimulus waveform calculated in
Section 6.6.1.

In this simulation, we begin with the controller switched off, to illustrate the
synchronous spiking of the network. We turn the controller on at t = 20 msec,
but recall that this is an event-based controller, so it remains inactive until the
population level observable, the average voltage, crosses the threshold Vthresh. The
first population-level spiking event detected by the controller occurs at t ≈ 23 msec,
at which point the open-loop optimal stimulus waveform is triggered. After a single
application, there is still a significant level of spiking synchrony, closely related to
the bimodal distribution caused by the randomization described in Section 6.6.2.
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The controller is triggered again at t ≈ 37 msec, and again the open-loop stimulus
is activated. This time, the spike times of the population are randomized to a much
greater degree, which can be easily visualized by constructing a raster plot of the
spike times across the population, shown as Figure 6.9(b).

We note that the resulting distribution of spike times is not uniform; there are
loose vertical “bands” of spiking activity in the raster plot after the control is turned
on. This is due to two factors – the coupling, and the approximation of the target
set by a disk rather than a point (which is related to the change in distribution
due to a single application of the controller, as discussed above in Section 6.6.2).
However, the pathology is due primarily to synchronized spiking, shown as the
tightly synchronized vertical stripes in the raster plot before the controller is acti-
vated. The event-based controller destroys this type of synchronization, which may
provide therapeutic utility for pathological conditions, such as Parkinson’s disease,
that involve neuronal synchronization.

6.8 Discussion

In this chapter, we have developed an event-based control system that can drive
a neuron’s state to reach a target set in minimum time under stimulus magnitude
constraints. By choosing the unstable equilibrium as the target set, we have shown
that this control system can effectively randomize the phase of an oscillatory neu-
ron. If computed using the spike point as the target set, this control protocol can
maximally increase the firing rate for a given stimulus magnitude constraint.

We have illustrated this method using two-dimensional neuron models so that
the resulting value function can be easily visualized as level sets in the plane,
but we remark here that the method is not limited to planar systems. While the
computational time for the Hamilton-Jacobi-Bellman PDE grows with dimension,
it is still quite feasible to consider models with higher dimensions, such as the four-
dimensional Hodgkin-Huxley model. Furthermore, by targeting the spiking point
and setting the magnitude constraint to be small (ideally zero), the numerical
viscosity solutions of the Hamilton-Jacobi-Bellmann PDE can be used to visualize
isochrons – a useful tool for characterizing the phase space of spiking neuron ODE
models.

We have also shown that the control system can be extended to a network
of globally coupled neurons. In this extended form, the event-based controller is
triggered by a network observable. In the case of weak coupling, we have shown
that this controller can successfully mitigate pathologically synchronized spiking.

An important concern with this design method is that it depends strongly on
having a good model for the neuron, which in practice, can be challenging. We
hope the model identification procedure outlined in Section 2.6 could be a useful
starting point for the development of an accurate model for the real neurons of
interest.
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Figure 6.9: (a) Network results for N = 100 globally coupled Hodgkin-Huxley neurons, k = 0.01,
D = 1.0, µ = 10. Top panel shows voltage traces for each neuron. Middle panel shows the
control signal applied to the population. Controller is activated at t = 20 msec indicated by the
vertical dashed line. Bottom panel is the population-level observable V̄ (t) with the threshold
Vthresh = 0 shown as a red dashed line. (b) Raster plot of spike times for the network showing
desynchronization.
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Chapter 7

Master-slave Control: Pairwise

Spike Timing

We propose an event-based feedback control scheme to stabilize the spike time
difference between the controlled (slave) neuron and a reference (master) neuron.
The natural frequencies of the two neurons need not be identical, but must satisfy
a given inequality. The methods proposed in this chapter are different from those
in Chapter 5 in that it is not necessary for the controller to know the entire phase
response curve. Instead, the experimentalist chooses a fixed phase, usually the
maximal point, for a single pulse stimulation. The control scheme then determines
what magnitude the pulse should be, based on the last spike times of the master
and slave neurons.

This chapter is organized as follows. Introductory material is presented in Sec-
tion 7.1. Master and slave neuron models are discussed in Section 7.2, along with
the concept of a spike advance curve, which is an alternative to a phase response
curve. Our control objective is specified in Section 7.3. The algorithms developed
to achieve the desired spike timing are presented in Section 7.4. We walk through
a numerical example of the algorithms in Section 7.4.3. Finally, we give concluding
remarks in Section 7.5.

7.1 Introduction and background

During the course of recent experimental collaborations [94], we have been in-
troduced to the problem of pairwise spike timing control. This problem arises from
a natural extension of single neuron spike timing control. The experimental setup
is as follows. There are two periodically spiking neurons, a master which is not
controllable, and a slave which is controllable (but which could have a different
natural frequency).

Our goal is to realize a specified time interval between the spikes of the master
and the slave neuron. A challenge, based on certain experimental considerations,
is that the controller does not know the phase response curve. The experimental
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implementation is only able to measure a spike advance curve that relates the spike
time advance as a function of stimulus magnitude for a given monophasic current
pulse applied at a given phase after spiking. Essentially, the experimentalist chooses
a phase at which maximum spike advance is achieved for a fixed magnitude pulse.
Then, by varying the magnitude of the pulse, the so-called spike advance curve can
be measured for the particular neuron.

Knowing only the natural frequencies of the two neurons and the spike advance
curve for the slave neuron, we propose a nested pair of event-based algorithms that
drive the two neurons to spike with a specified interspike interval drawn from an
prescribed admissible interval.

7.2 Master-slave neuron models

Master neuron

The master neuron is a simple clock oscillator that is deterministic and is not
affected by the slave neuron. Experimentally, we envision the master neuron as a
phase oscillator spiking periodically in an isolated apparatus. The master neuron’s
dynamics satisfy the following equations:

θ̇m = ωm, θm(0) = θm,0. (7.1)

In the framework of this problem, the master neuron’s spikes (θ = 0-crossings) are
detectable by the controller. The natural period of the master neuron is simply

Tm =
2π

ωm
. (7.2)

Slave neuron

The slave neuron is a nonlinear phase oscillator with a input sensitivity function
Z(θs, I) that produces the spike advance function when combined with the stimulus
protocol. The function Z(θs, I) will not be used explicitly, and is only included to
provide a connection to the methods discussed in Chapter 5 that involve phase
response curves. The slave neuron evolves along trajectories satisfying

θ̇s = ωs + Z(θs, I)I/c, θs(0) = 0. (7.3)

In this study, it is assumed that the slave neuron is always on a strongly attracting
periodic orbit, so that the phase model holds exactly. We note here that the master
neuron is not coupled to the slave neuron, and neither neuron affects the other’s
evolution. In the absence of input, the slave’s natural period is

Ts =
2π

ωs
. (7.4)

The slave neuron’s spikes are detectable by the controller, and consititute the
event that activates the event-based control algorithm used to stabilize a given
interspike time interval between the master and the slave neuron.

104



Spike advance curves

The spike advance curve is an experimentally measurable characteristic of the
slave neuron. It is essentially a convolution of the input sensitivity function Z(θs, I)
and the (fixed) shape of the stimulus pulse. The stimulus protocol administers a
monophasic current pulse timed for the optimal phase θc, which is usually at or
near the point at which the neuron’s phase response curve is maximal (meaning
the neuron is most sensitive to input). For example, if the controlled neuron were
a Hodgkin-Huxley neuron with baseline current Ib = 10 mA, then θc = β as shown
in Figure 2.4. Even though the entire phase response curve may not be known, it is
experimentally feasible to assess which phase is most sensitive to stimulation. This
way of representing the system is quite robust, because if the chosen value of θc is
actually not quite the true maximal point, the algorithm will still work, only it will
take slightly more control energy than if the true maximal phase was used.

Figure 7.1: Typical spike advance curve f(I) invertible over (Imin, Imax). This function charac-
terizes the slave neuron’s response to a stimulus of magnitude I applied at the maximal phase
θc.

Figure 7.1 shows a caricature of a typical spike advance function. We will
restrict the domain of our spike advance curve to ensure the resulting function is
invertible. Currently, we are using only a small linear region [94]. The input current
magnitude is denoted by I and the resulting spike (time) advance by ∆s. We will
need to truncate the spike advance curve, since it is only invertible over a limited
(interior) region. With some abuse of notation, we will denote this truncated spike
time advance curve by

f(I) : (Imin, Imax) 7→ (∆smin,∆smax). (7.5)

Here, |∆smin| corresponds to the maximum possible spike delay and ∆smax corre-
sponds to the maximum possible spike advance. These values are critical because
they determine the maximum possible discrepancy between the period of the master
and the slave, which must satisfy

Ts −∆smax ≤ Tm ≤ Ts + |∆smin|. (7.6)
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Our algorithm requires that Tm and Ts satisfy Eq. (7.6). The f(I) function was
truncated to be a one-to-one function, so there exists an inverse function f−1(∆s)
which allows us to calculate which value of input stimulus magnitude in the interval
(Imin, Imax) that will result in a desired spike advance ∆s. This inverse function
will be an important component of the proposed event-based algorithm.

7.3 Control objective

Like the other control strategies presented in this dissertation, the master-slave
algorithm is an event-based control scheme. The controller is triggered on spikes of
the slave neuron, and stimulates using an open-loop pulsatile waveform computed
at the time of the event (slave neuron spike). When the slave neuron spikes, we will
estimate the phase of the master neuron based on its last spike time and known
period. In theory, this estimation is exact because we are not considering noise.
We find the next several master spike times and add the desired interspike interval,
∆tD (in units of time). This forms the set of target spike times we want our slave
neuron to spike at. The challenge here is the fact that we cannot achieve any desired
advance, only advances within the interval (∆smin,∆smax).

Conceptually, we break the control scheme into two stages. The first objective
to drive the slave neuron to spike at the same time as the master, plus the desired
spike time offset. Once this objective is achieved, the second stage of the control
simply applies the neccessary advance or delay each period to effectively adjust
the firing period of the slave to equal the firing period of the master. Unless
the two natural periods are equal, this will require a fixed stimulus to the slave
neuron each period. It is from this second stage of control that the constraints on
the natural periods, depending on the maximum advance and delay, is derived as
in (7.6). We note here that this two-stage framework is only used for conceptual
explanation–the algorithms presented here treat every spiking event identically and
the different conceptual staged are handled implicitly by the internal mathematics
of the algorithms.

7.4 Algorithms

7.4.1 Pre-processing

Before the event-based control is activated, some quantities that will be used
in the online algorithm can be pre-computed. The first is the positive integer i∗m,
which represents the maximum number of slave control iterations necessary to hit
a desired spike time:

i∗m =

⌈

Tm
∆smax + |∆smin|

⌉

(7.7)

where ⌈·⌉ is the round-up operator. The rationale behind this notion is that each
target spike time will be Tm time units away from the next, and each time the
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control is activated (at t = t0, the spike of the slave neuron), the controller can
adjust the timing of the next spike to be anywhere in the time interval (t0 + Ts −
∆smax, t0 +Ts+ |∆smin|). So in n control periods, it can adjust the timing of the nth

slave spike to be anywhere in the interval (t0 +nTs−n∆smax, t0 +nTs +n|∆smin|).
For sufficiently large n ≤ i∗m, the following inequality holds:

n(∆smax + |∆smin|) ≥ Tm. (7.8)

This means that the control “window” is (eventually) larger than the period of the
target spikes - a situation that guarantees success in achieving a single target spike
time within this time interval. As stated before, after a single target spike time
is achieved, we then take the difference of the interspike intervals Ts − Tm as our
desired spike advance.

7.4.2 Event-based algorithm

At each event (slave spike), the controller needs to determine whether to drive
the neuron to achieve the maximum spike time advance, maximum delay, or some
intermediate spike advance. This decision task is accomplished by two nested algo-
rithms: event control, which is the high-level driver; and spike advance, which
is called to calculate the desired spike time advance each control period. We assume
that our implementation-level control system tracks current time in the variable t,
and the most recent spike time of the master neuron in the variable tlast.

Algorithm 1 event control(t, tlast)
1: t0 = t
2: θm(t0) = 2π(t0−tlast)

Tm

3: ∆s = spike advance(t0, θm(t0))
4: I = f−1

s (∆s)
5: apply pulse with amplitude I at time t0 + θc

2π
Ts

Explanation–Algorithm 1: event control

The event-based control system is triggered when the slave neuron spikes. Re-
call that the controller already has pre-computed the variables discussed in Sec-
tion 7.4.1. At the instant the controller detects a spike from the slave neuron, we
sample the current time, t, and the time of the last recorded master neuron spike,
tlast. What follows is a line-by-line explanation of this algorithm.

Line 1: Assign the current value of t to the variable t0. This will serve as a time
offset for future calculations.

Line 2: Estimate the phase of the master neuron based on its last recorded spike
time.

Line 3: Call the spike advance algorithm to determine the optimal slave spike
time advance to command.
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Algorithm 2 spike advance(t0, θm(t0))

1: initialize i = 1, term = 0

2: Tt =

{

tt = t0 + [2π − θm(t0)] Tm/2π + ∆tD + kTm,
k ∈ Z≥0 | t0 < tt < t0 + i∗mTs

}

3: IC = (t0 + Ts −∆smax, t0 + Ts + |∆smin|)
4: if Tt ∩ IC 6= ∅ then

5: ∆s = Ts − (min {Tt ∩ IC} − t0)
6: else

7: i++
8: while term== 0 do

9: IA = (t0 + iTs − i∆smax, t0 + iTs)
10: ID = (t0 + iTs, t0 + iTs + i|∆smin|)
11: if Tt ∩ IA 6= ∅ then

12: ∆s = ∆smax, term= 1
13: else if Tt ∩ ID 6= ∅ then

14: ∆s = ∆smin, term= 1
15: else

16: i++
17: end if

18: end while

19: end if

20: return ∆s
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Line 4: Calculate the current amplitude needed for the stimulus to cause the
desired spike advance.

Line 5: Apply the stimulus pulse when the controller expects the slave neuron’s
phase to be at the optimum stimulus point, θc.

Explanation–Algorithm 2: spike advance

This algorithm is called from the event control algorithm, and is used to
compute the desired spike advance. This function would be trivial if the controller
could command any arbitrary spike advance. Since the choice of spike advance is
restricted to the range (∆smin,∆smax), we must take care in deciding what to do if
we cannot reach the first desired spike time in one iteration of control. The dynamic
information passed to this function includes the current slave spike time offset, t0,
and the estimated phase of the master, θm(t0). We will now describe each line of
this algorithm.

Line 1: Initialize an integer counter, i, and a boolean flag, term.
Line 2: Calculate a set of target spike times, Tt. These are based on when

the master neuron will spike next, and what the desired time interval is between
the master and slave spikes, ∆tD. The set is truncated using our estimate of the
maximum possible control periods, i∗m, necessary to reach any Tm-periodic spike
train, as calculated in Equation (7.7).

Line 3: Calculate the first interval of control, IC . This represents the amount
the controller can change the next slave spike time by applying up to the maximum
advance or delay in this control period.

Line 4: Check to see if a target spike time lies within the first interval of control.
If not, this will return ∅ (the null or empty set).

Line 5: If the intersection of the set of target spike times, Tt, and the first interval
of control, IC , is non-empty, choose the first target spike time in the intersection
set and compute the necessary spike advance to apply this control period. At this
point, the Line 4 if statement is done–proceed to Line 20.

Line 6: If the intersection of Tt and IC is empty, we cannot achieve our control
objective in one control period. We must now enter into an iterative portion of the
algorithm that will decide whether to apply the maximum spike advance ∆smax or
maximum spike delay ∆smin.

Line 7: Increment the counter, i. This counter tracks how many (hypothetical)
control periods must be used to result in enough cumulative spike advance or delay
for a slave spike to coincide with a master spike.

Line 8: This while loop runs until we have found how many periods of successive
maximal advances or delays is necessary to achieve our objective–codified by setting
the terminal flag, term, to 1 (true). This while loop is guaranteed to terminate
within i∗m iterations.

Line 9: Compute the ith advance control time interval. This represents the in-
terval of control that can be achieved in i control periods by applying the maximum
advance, ∆smax, each time.
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Ts = 1 θc = 3π
2

Tm = 1.2 θs(0) = 0−

∆smax = 0.1 θm(0) = 3π
2

∆smin = −0.3 ∆tD = Tm

3
= 0.4

f(x) = x f−1(x) = x

Table 7.1: Values used for the numerical example in Figure 7.2.

Line 10: Compute the ith delay control interval. This represents the interval of
control that can be achieved in i control periods by applying the maximum delay,
∆smin, each time.

Line 11: Check to see if any target spike times lie within this ith interval of
maximally advancing control, IA.

Line 12: If the intersection of the set of target spike times, and the ith interval
of maximally advancing of control is non-empty, this means that by continuing to
apply to maximum spike advance, ∆smax, we can eventually achieve our control
objective. So set ∆s = ∆smax, and switch the boolean termination flag, term, to 1
(this will get us out of the while loop).

Line 13: Check to see if any target spike times lie within this ith interval of
maximally delaying control, ID.

Line 14: If the intersection of the set of target spike times, and the ith interval of
maximally delaying of control is non-empty, this means that by continuing to apply
to maximum spike delay, ∆smin, we can eventually achieve our control objective.
So set ∆s = ∆smin, and switch the boolean termination flag, term, to 1 (this will
get us out of the while loop).

Lines 15-16: If both interval intersection checks return the null set, increment
the counter i by one and return to Line 8.

Line 20: The algorithm will return the desired spike advance ∆s to the event control

algorithm that called it.

7.4.3 Numerical example

We will now present a simple numerical example to illustrate the inner details
of these algorithms. Figure 7.2 is provided to assist in understanding this example.

Setup

The example will use numerical values listed in Table 7.1. First, check the
relationship between the period of the two neurons.

Ts −∆smax ≤ Tm ≤ Tw + |∆smin|
0.9 ≤ 1.2 ≤ 1.3
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Figure 7.2: Example master-slave control scenario. Slave phase, θs, shown as solid blue line with
spike events as blue ‘x’ markers. Master phase, θm, shown as red dashed line with red ‘+’ markers.
Target slave spike times (master spike times offset by ∆tD) shown by green ‘o’ markers. The thin
black dotted line is the optimal control phase, θc = 3π/2, which is where we apply the stimulus
pulse. In this example, the slave spikes converge to the desired phase offset (relative to the master
spikes) after two periods of control. Then the controller simply adjusts the period of the slave
each time to match that of the master.

The inequality is satisfied, so we may proceed. We will now compute i∗m,the max-
imum number of control iterations necessary to achieve the desired spike timing
difference

i∗m =

⌈

1.2

0.1 + 0.3

⌉

= 3.

We have assumed that we start time t exactly when the slave neuron spikes, so
θs(0) = 0−. By 0−, we mean that the neuron’s phase is just crossing zero from the
other side as time begins.

So the first event is triggered immediately. The event control algorithm acti-
vates. The controller samples t and sets t0 = 0, per Line 1.

The phase of the master neuron is known from the initial condition listed in Ta-
ble 7.1 and no time has elapsed, so θm(t0) = θm(0) = 3π/2. Now the event control

algorithm calls the spike advance algorithm with arguments t0 = 0 and θm(0) =
3π/2.

After initializing i = 1 and term = 0, the spike advance algorithm calculates
the set of target spike times for this control period

Tt = {0.7, 1.9} .

The first control interval is calculated in Line 3

IC = (0.9, 1.3).

We find Tt∩IC = ∅ in Line 4, which means the controlelr cannot hit the target spike
time during this period of control. So we proceed to Lines 6 and 7 and increment
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our counter, i = 2. We now enter into the while loop at Line 8. The first task is
to compute the two maximal control intervals:

IA = (1.8, 2)

and
ID = (2, 2.6).

Line 11 checks and finds Tt ∩ IA = 1.9 6= ∅, so we proceed to Line 12, which sets
∆s = ∆smax = 0.1, as well as switching the boolean flag, term= 1, which ends
the while loop. The spike advance algorithm returns ∆s = 0.1 to the main
event control algorithm.

The event control algorithm implements the desired spike advance by applying
a pulse of magnitude I = f−1(∆s) = 0.1 at time t = 0.75. This stimulus will cause
the slave neuron to spike next at t = t0 + Ts + ∆s = 0.9. When the slave neuron
spikes at t = 0.9, event control is activated again. The algorithm samples t and
sets t0 = 0.9. It also reads the last recorded master spike, which happened at
t = 0.3, which is used to calculate θm(t0) = π in Line 2. Again, the algorithm calls
the spike advance algorithm with input data t0 = 0.9 and θm(t0) = π. At Line 2,
the target spike time set is computed

Tt = {1.9, 3.1} .

The first control interval is calculated

IC = (1.8, 2.2).

Now at Line 4, we find that the intersection is non-empty

Tt ∩ IC = 1.9

so we proceed to Line 5 to calculate the exact spike advance needed to hit the target
spike time

∆s = Ts − (min {Tt ∩ IC} − t0) = 1− (1.9− 0.9) = 0.

This means that, since we chose these simple numbers for the example, the slave
neuron’s next spike will coincide exactly with the master neuron if we use no stim-
ulus whatsoever. Had the numbers been slightly different, we could have made a
slight advance or delay here. However, this saves a step, since at the next event, we
will have the slave neuron synchronized to its target trajectory. This is not the end
of the example, though. Because Tm = Ts + 0.2, we need to apply a spike advance
of -0.2 every period to maintain the synchrony to the target spike train. We will
illustrate how the algorithms provide this functionality.

The next slave spike will occur at t = 1.9. The algorithm event control is
triggered, sets t0 = 1.9, and reads tlast = 1.5. Next, we calculate

θm(t0) =
2π

3
.
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The spike event algorithm is called and calculates

Tt = {3.1, 4.3} .

Also,
IC = (2.8, 3.2).

We see that Tt ∩ IC = 3.1 6= ∅, so Line 5 calculates

∆s = 1− (min {3.1} − 1.9) = −0.2

and spike advance returns ∆s = −0.2 as expected. This is the steady state case
and the two neurons will continue firing in this correct pattern, with the controller
commanding a ∆s = −0.2 each time, so that the next spike will occur at t = 3.1,
the preceding spike will occur at t = 4.3, and so on.

7.5 Discussion

The control methodology presented in this chapter is a result of ongoing collabo-
rations with the Netoff laboratory at the University of Minnesota. Many important
aspects of this problem are still not understood. The issue of noise and stochas-
ticity is particularly important in the context of experimental neuroscience. Real
neurons do not follow the simple deterministic dynamics used in the construction
of the algorithms presented here. Initial studies have, however, yielded encouraging
results, some of which were presented in [94]. A full investigation is the subject of
a forthcoming study.

We note here that this framework may be fairly straightforward to extend to
more complicated variants of this problem. Multiple instances of this control system
could be implemented to any number of slave neurons, and by setting each slave i’s
spike time offset ∆tD,i = 0, we can control synchrony in the ensemble, or by setting
∆tD,i = (i − 1)/Tm, we can desynchronize the ensemble. Once the algorithm has
been rigorously tested in the pairwise context, it will be applied to larger ensembles.
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Chapter 8

Conclusion

Oscillatory neurons play important roles in dynamical diseases of the nervous
system, such as Parkinson’s disease. In this dissertation, we have studied the dy-
namical behavior of such neurons, both individually and in ensemble. We considered
conductance-based ODE models, as well as several types of reduced-order models,
such as nonlinear phase oscillator models. Modeling neurons as phase oscillators
allows one to explore the complex behavior arising from the nonlinear response to
stimulus as a function of phase. We presented a set of event-based feedback con-
trol schemes, based on reduced model dynamics, that exploit the nonlinearities to
achieve spike timing control.

In Chapter 2, we considered a variety of issues related to the modeling of os-
cillatory neurons. Beginning with the conductance-based Hodgkin-Huxley formal-
ism, we introduced several reduced models including a planar representation of the
Hodgkin-Huxley model, the closely related FitzHugh-Nagumo model, and single di-
mension phase-reduced models. Also included in this chapter were tools to estimate
model parameters from experimental data.

Chapter 3 presented results from a study of ensemble response to independent
random stimuli consisting of impulses with interspike intervals drawn from a Pois-
son distribution. This model of background noise has been shown to be a reason-
able representation of the actual neural background activity in mammalian biology
[89]. We provided a theoretical framework, based on the Kramers-Moyal expan-
sion, for calculating the population-level partial phase synchronization due to this
background noise. It was shown by simulation that the theoretical predictions are
closely matched by numerical results for both full-dimensional conductance-based
models and phase-reduced models. We developed a phase sampling algorithm to
enable such a comparison. Taking advantage of the computational efficiency of
phase models, we performed a parametric study of partial phase synchronization
of an ensemble of neurons using a large range of mean spike rates and noise mag-
nitudes. The resulting phase distributions were shown to respond quite differently
to input than a uniform distribution. We concluded Chapter 3 with a discussion of
how phase synchrony is related to spiking synchrony, with the important result be-
ing the two concepts are not equivalent. Simple examples were developed wherein
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phase synchrony can be made arbitrarily high, as measured by the magnitude of the
Kuramoto order parameter, but yet the ensemble can have no spike synchronization
whatsoever. We also showed how an ensemble can have complete spike synchro-
nization in the absence of phase synchronization, except at the instantaneous spike
times (a measure zero set in time).

We considered oscillators that are parametrically forced in Chapter 4. In par-
ticular, we studied a nonlinear oscillator model with strong 2:1 resonance. Results
were presented for the single oscillator case, then extended to populations with weak
coupling. The Implicit Function Theorem was used to prove the persistence of so-
lutions from the uncoupled case. We categorized the solutions based on symmetry
considerations and detail bifurcation diagrams that track the size of solutions as a
function of forcing frequency. Chaotic trajectories were seen in the case of strong
negative coupling. The effect of network topography is illustrated by considering a
network of three oscillators that morphs from a line to a ring.

We switched our focus to feedback control starting with Chapter 5, which con-
siders spike timing control in the context of reference phase tracking. Event-based
control algorithms were developed, first for individual neurons. We characterized
stability with respect to a reference-tracking objective and showed how biologically
inspired impulsive control schemes can achieve this objective. Impulses, however,
are not physically realizable, so we proposed a quasi-impulsive algorithm that uses
biphasic pulses of finite magnitude and nonzero duration. Conditions for global
asymptotic stability were presented, and depend on the shape of the neuron’s un-
derlying phase response curve. Extensions of the impulsive and quasi-impulsive
control schemes were presented that are applicable to simple networks, such as an
uncoupled ensemble and a pacemaker-driven ensemble.

Chapter 6 presented an event-based phase-randomizing control scheme based on
the Hamilton-Jacobi-Bellman framework for minimum-time optimal control. The
state space target was chosen based on the Winfree’s idea [109] of driving the os-
cillator to an unstable equilibrium point that is a phaseless set. When the state is
near this point, its asymptotic phase is extremely sensitive to noise. The Hamilton-
Jacobi-Bellman framework enables the design of a controller that drives the neuron
to this target in minimum time using a constrained magnitude stimulus. The re-
sulting control scheme is an experimentally-realizable technique to randomize the
asymptotic phase of an oscillatory neuron under realistic laboratory conditions.
Through the development of the control synthesis procedure, various extensions
were investigated including optimal spike rate increase and an interesting connec-
tion to isochron visualization using intermediate numerical results. A population
level extension of the control scheme was presented that was shown to effectively
randomize the phases of a network of globally coupled neurons initialized in syn-
chrony.

Chapter 7 presents ongoing research on a pairwise spike timing control protocol.
This problem was encountered during the course of experimental collaboration and
has resulted in the development of a nested pair of event-based control algorithms
that enable the stabilization of a desired interspike time interval between an un-
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controlled master neuron and a controlled slave neuron. The algorithms presented
in this chapter are distinct from those presented in Chapter 5 because here the
two neurons do not necessarily have the same natural frequency. If the two neurons
have commensurate frequencies, the master-slave algorithm can drive the interspike
interval between the two neurons to a desired value chosen from an admissible set.

The studies presented in this dissertation are but a subset of the wide breadth of
research opportunities in these areas. Building on the ensemble results of Chapter 3
and the parametric response results of Chapter 4, it would be interesting to consider
the response of a neuronal ensemble to common sinusoidal stimulus. Sinusoids and
similar periodic waveforms are among those employed by tradition EDBS, and have
been studied by many in the mathematical neuroscience community. However, the
phase sampling tools presented in Section 3.4 could provide valuable insight into
how higher dimensional conductance based neurons compare to the phase reduced
populations that are often studied. Also, in this dissertation, we have focused pri-
marily on synchronization from the perspective of its pathological role in dynamical
disease. It has been suggested that spike timing could also play an important role in
cognition and higher brain function [51], and it would be interesting to explore the
possible effects of partial phase synchrony in this context. Coupling and network
heterogeneity are two other compelling issues worth investigating in the context of
neuronal phase distribution and its physiological consequences.

From a controls perspective, there are many important considerations to be
addressed by future research. The effects of stochasticity in terms of process and
measurement noise would be natural extensions worth exploring, in relation to the
feedback control schemes presented in Chapters 5, 6, and 7. Robustness, though
non-trivial to define in the nonlinear context, would be an interesting characteristic
to investigate for these control schemes. The natural variation in model parameters
seems like an ideal place to start along these lines. In terms of experimental appli-
cation to physiological systems, it will be important to develop control schemes that
take network structure and heterogeneity into account. A tractable first step may
be to consider a Hamilton-Jacobi-Bellman style minimum-time control scheme, like
the one presented in Chapter 6, for small numbers of coupled heterogeneous neu-
rons. There are no theoretical barriers, although the complexity of computations
grows exponentially with state dimension. Results for two or three coupled neurons
are certainly within reach, and may provide valuable insight to the related problem
of cardiac arrhythmia.

The algorithms presented in this dissertation rely on precise individual neuron
measurements and the ability to stimulate each neuron independently. In reality,
it may only be possible to measure and stimulate a small fraction of the neurons
involved in a particular pathology. This raises important questions about control-
lability and observability that may be difficult to assess given the nonlinearity of
the underlying neuronal dynamics and the complexity of the network topology.
Indeed, a unified theoretical framework for controlling such complex neuronal sys-
tems is still a largely untouched research objective. Such theoretical developments,
however, are certainly worth pursuing, as they could ultimately lead to a control
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synthesis procedure. Designing optimal feedback controllers for EDBS systems that
use micro-electrode arrays to stimulate and measure many neurons simultaneously
may be an important application for the emerging field of network control engineer-
ing. The motivation for this line of research is the opportunity to make a positive
impact on the health and well-being of the many patients living with dynamical
diseases of the nervous system, including Parkinson’s disease and epilepsy.
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