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Abstract— The theory of consensus dynamics is widely em-
ployed to study various linear behaviors in networked control
systems. Moreover, nonlinear phenomena have been observed
in animal groups, power networks and in other networked
systems. This inspires the development in this paper of two
novel approaches to define distributed nonlinear dynamical
interactions. The resulting dynamical systems are akin to
higher-order nonlinear consensus systems. Over connected
undirected graphs, the resulting dynamical systems exhibit
various interesting behaviors that we rigorously characterize.

I. INTRODUCTION

Collective behavior in animal groups, such as schools of

fish, flocks of birds, and herds of wildebeests, is a widely

studied phenomenon. It has been proposed that the decision

making in such groups is distributed rather than central: each

individual in such a group decides how to behave based

on local information. In particular, some adjacency-based

averaging models have been proposed to model the observed

behavior in such systems. These adjacency-based averaging

algorithms are called consensus algorithms, and have been

widely studied in various engineering applications.

Of particular interest are recent results in ecology [4]

which show that, for small difference in the preferences

of the individuals, the decision making in animal groups is

well modeled using consensus dynamics, but for significant

differences in the preferences of individuals, the decision

dynamics bifurcate away from consensus. This provides

motivation for coming up with dynamics which mimic such

nonlinear behaviors in engineered multi-agent systems.

Recently, dynamical systems theory has been extensively

applied to networked systems. In particular, the consensus

problem has been studied in various fields, e.g., network

synchronization [15], flocking [18], rendezvous [10], sensor

fusion [16], formation control [5], etc; a detailed description

is presented in [12], [6]. Some nonlinear phenomena have

been studied in certain classes of networks. Certain nonlinear

protocols to achieve consensus have been studied [1]. The

bifurcation problem has been studied in neural networks;

a Hopf-like bifurcation has been observed in a two cell

autonomous system [20], and pitchfork and Hopf bifurca-

tions have been studied in artificial neural networks [14],

[19]. Some static bifurcations have been studied in load flow

dynamics of power networks [9]. A version of bifurcations in

consensus networks has been studied in the opinion dynamics

literature [11]. The models in opinion dynamics problems

can be interpreted as consensus dynamics on a time varying
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graph with no globally reachable node. These models are

complicated, and are difficult to implement on an engineered

multi-agent network.

In this paper, we propose distributed algorithms to achieve

nonlinear behaviors in a networked system. We define two

frameworks, namely, the absolute nonlinear flow, and the

disagreement nonlinear flow to define nonlinear dynamics

on a multi-agent network. We apply these frameworks to

characterize a pitchfork bifurcation in a multi-agent network.

For a graph with a single node, the proposed dynamics

reduce to scalar nonlinear dynamics. In essence, the proposed

dynamics are extensions of the scalar nonlinear dynamics to

engineered multi-agent systems. The major contributions of

our work are:

1) We propose generalized frameworks to describe dis-

tributed nonlinear dynamics in a multi-agent network.

2) For each framework, we generically define the set of

final possible equilibrium configurations.

3) We define the distributed pitchfork bifurcation dynam-

ics for networked systems using these frameworks.

4) We present some general tools to study stability of

these dynamics, and utilize them to study stability of

the pitchfork bifurcation dynamics.

5) We present a comprehensive treatment of these dynam-

ics for lower order networks.

The remainder of the paper is organized as following.

In the Section II, we elucidate some basics of dynamical

systems and graph theory, which is followed by the develop-

ment of frameworks to define nonlinear dynamics on graphs

in Section III. We use these frameworks to study pitchfork

bifurcation dynamics on graphs in Section IV. We further

explain the results through some examples in Section V.

Finally, our conclusions are in Section VI.

II. PRELIMINARIES

A. Pitchfork bifurcation

The equation

ẋ = γx− x3, γ, x ∈ R, (1)

is defined as the normal form for the supercritical pitchfork

bifurcation [17]. The dynamics of (1) are as follows:

1) For γ < 0, there exists a stable equilibrium point at

x = 0, and no other equilibrium point.

2) For γ = 0, there exists a critically stable equilibrium

point at x = 0.

3) For γ > 0, there exist two stable equilibrium points at

x = ±√
γ, and an unstable equilibrium point at x = 0.

The point γ = 0 is called the bifurcation point.
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B. Laplacian Matrix of a graph

Given a digraph G = (V, E), where V = {v1, . . . , vn} is

the set of nodes and E is the set of edges, the Laplacian

matrix L(G) ∈ R
n×n has entries:

li,j =











−1, if (i, j) ∈ E ,
di, if i = j,

0, otherwise,

where di is the out-degree of node i, i.e., number of edges

emanating from node i [3]. The set of nodes j ∈ V , such

that (i, j) ∈ E , is referred to as the adjacency of the node i,
and is denoted adj(i).

Properties of Laplacian Matrix:

1) The Laplacian matrix is symmetric if and only if G is

undirected.

2) A symmetric Laplacian matrix is positive semidefinite.

3) For a graph G with n nodes and at least one globally

reachable node, the rank of the Laplacian matrix is

n− 1.

4) The kernel of the Laplacian matrix for a graph G of

order n with at least one globally reachable node is

diag(Rn), i.e. {(x1, . . . , xn) ∈ R
n | x1 = · · · = xn}.

C. Center manifold theorem

For (z1, z2) ∈ R
n1 × R

n2 , consider the following system

ż1 = A1z1 + g1(z1, z2),

ż2 = A2z2 + g2(z1, z2),
(2)

where all eigenvalues of A1 ∈ R
n1×n1 , and A2 ∈ R

n2×n2

have zero and negative real parts, respectively. The functions

g1 : Rn1 × R
n2 → R

n1 , and g2 : Rn1 × R
n2 → R

n2 satisfy

the conditions

gi(0, 0) = 0,
∂gi
∂z

(0, 0) = 0, ∀i ∈ {1, 2}. (3)

For the system in equation (2), for small z1, there exists [7]

an invariant center manifold h : Rn1 → R
n2 satisfying the

conditions

h(0) = 0,
∂h

∂z1
(0) = 0, and

A2h(z1)+g2(z1, h(z1)) =
∂h

∂z1
(z1)[A1z1 + g1(z1, h(z1))].

The center manifold theorem [7] states that the dynamics

on the center manifold determine the overall asymptotic

dynamics of (2) near (z1, z2) = (0, 0), i.e., the overall

dynamics are determined by

ż1 = A1z1 + g1(z1, h(z1)). (4)

D. Laplacian flow

Let G be a undirected connected graph of order n. The

Laplacian flow on R
n is defined by

ẋ = −L(G)x.
In components, the Laplacian flow is given by

ẋi =
∑

j∈adj(i)

(xj − xi), i ∈ {1, . . . , n}.

The vector L(G)x is called the disagreement vector. It has

been shown in [13] that the solutions to the Laplacian

flow converge to diag(Rn) for fixed as well as switching

topologies.

III. DISTRIBUTED NONLINEAR DYNAMICS IN NETWORKS

Before we define distributed nonlinear dynamics in net-

works, we introduce the following notation. We denote the

set of connected undirected graphs with n nodes by

Γn = {G | L(G) = L(G)T , and rank(L(G)) = n− 1}.
A. Absolute nonlinear flow

We call a flow absolute nonlinear flow if each node

transmits a value which is a function of only its own label.

For a G ∈ Γn, on R
n, such a flow is given by

ẋ = L(G)f(x),
where f : Rn → R

n is a smooth function. In components,

the absolute nonlinear flow is given by

ẋi =
∑

j∈adj(i)

(fi(xi)− fj(xj)), ∀i ∈ {1, . . . , n}.

The set of equilibrium points of the absolute nonlinear flow

is

{x∗ | f(x∗) ∈ diag(Rn)}.
The salient feature of the absolute nonlinear flow formulation

is that the set of equilibrium points is an invariant over the

set Γn. Moreover, the sum of the states is an invariant over

any trajectory of the system, which follows from the fact that
∑n

i=1 ẋi = 0.

B. Disagreement nonlinear flow

We call a flow disagreement nonlinear flow if each node

transmits a value which is determined only by corresponding

entry in the disagreement vector. For a G ∈ Γn, on R
n, such

a flow is given by

ẋ = f(L(G)x),
where f : Rn → R

n is some smooth function. In compo-

nents, the disagreement nonlinear flow is given by

ẋi = fi

(

∑

j∈adj(i)

(xi − xj)

)

, ∀i ∈ {1, . . . , n}.

A particular case of the disagreement nonlinear flow is

when each fi is a polynomial. In this scenario, the disagree-

ment nonlinear flow is given by

ẋ =
(

a0 + a1D(x) + . . .+ am(D(x))m
)

1n,

where D(x) = diag (L(G)x). In components, this becomes

ẋi = a0 + a1I(xi) + . . .+ am(I(xi))
m, ∀i ∈ {1, . . . , n},

where I(xi) =
∑

j∈adj(i)(xi −xj). Let the r ≤ m real roots

of the equation

a0 + a1z + . . .+ amzm = 0

be zi, i ∈ {1, . . . , r}. The set of equilibrium points of the

disagreement nonlinear flow with polynomial nonlinearity is

{x∗ ∈ R
n | L(G)x∗ ∈ {z1, . . . , zr}n}.

Here, the equilibrium points depend on the graph topology.
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IV. DISTRIBUTED BIFURCATIONS IN NETWORKS

We study a particular class of distributed nonlinear dy-

namics where fi : R → R, for each i ∈ {1, . . . , n}, is

fi(x) = γx − x3, where γ ∈ R is some constant. We refer

to such nonlinearity as a pitchfork nonlinearity.

A. Absolute nonlinear flow with pitchfork nonlinearity

Given a connected undirected graph G ∈ Γn, and γ ∈ R,

the absolute nonlinear flow with pitchfork nonlinearity is

ẋ = γL(G)x− L(G)diag(x)31n. (5)

In components, this becomes

ẋi = γ
∑

j∈adj(i)

(xi − xj)−
∑

j∈adj(i)

(x3
i − x3

j ), (6)

for all i ∈ {1, . . . , n}.

For a given graph G ∈ Γn, and a full rank diagonal matrix

Υ ∈ R
n×n, let us define the generalized Laplacian flow by

ẋ = −L(G)Υx. (7)

Lemma 1 (Generalized Laplacian Flow): For the gener-

alized Laplacian flow, the following statements hold:

1) The equilibrium points are given by

E = {αΥ−1
1n | α ∈ R}.

2) The solutions converge to the set E if and only if Υ >
0.

Proof: The proof is similar to Exercise 1.25 in [3], with

a Lyapunov function V (x) = xTΥL(G)Υx. For the brevity,

we omit the details.

Before we analyze the absolute nonlinear flow with pitch-

fork nonlinearity, we introduce some useful notation. Given

γ ∈ R>0, define f0, f± :
[

−
√

4γ/3,
√

4γ/3
]

→ R by

f0(β) = β, and f±(β) = −β

2
±
√

γ − 3

4
β2.

Theorem 1 (Abs. nonlin. flow with pitchfork nonlinearity):

For the absolute nonlinear flow with pitchfork nonlinearity,

the following statements hold:

1) Equilibrium points:

For γ ≤ 0, the set of equilibrium points is

Ec = diag(Rn). (8)

For γ > 0, the set of equilibrium points is

Eb = {{f−(β), f0(β), f+(β)}n|
β ∈ [−

√

4γ/3,
√

4γ/3]},
where {f−(β), f0(β), f+(β)}n is the set of

n-tuples which have each entry in the set

{f−(β), f0(β), f+(β)}.

2) Consensus:

For γ ≤ 0, each trajectory converges to some point in

the set Ec.

3) Bifurcation:

For γ > 0, each equilibrium point x∗ ∈ Eb is locally

stable if and only if 3x∗
i
2 > γ for each i ∈ {1, . . . , n}.

Proof: We start by determining the equilibrium points

for equation (5), which are given by

γx− diag(x)31n ∈ ker(L(G)),
=⇒ γxi − x3

i = α, ∀i ∈ {1, . . . , n}, and α ∈ R. (9)

We observe that equation (9) is a cubic equation and hence,

has at least one real root β (say). The other roots of the

equation (9) can be determined in terms of β, and are given

by

xi = −β

2
±
√

γ − 3

4
β2, ∀i ∈ {1, . . . , n}. (10)

We observe that the roots given in equation (10) are complex

if γ ≤ 0. Hence, for γ ≤ 0, the equilibrium points are given

by the set Ec. It follows from equation (10) that for γ > 0,

Eb is the set of equilibrium points.

To establish the second statement, we consider a Lyapunov

function V (x) = xTL(G)x. We observe that, for γ ≤ 0, the

Lie derivative of this Lyapunov function along the absolute

nonlinear flow with pitchfork nonlinearity is given by

V̇ (x) = 2γxTL(G)x− 2xTL(G)diag(x)31n ≤ 0,

which establishes the stability of each point in the set Ec.

The proof of convergence is similar to Exercise 1.25 in [3].

To establish the third statement, we linearize the absolute

nonlinear flow with pitchfork nonlinearity about an equilib-

rium point x∗ to get

ẋ = L(G)(γI − 3diag(x∗)2)x =: L(G)Υx,

where Υ is a diagonal matrix. From Lemma 1, it follows

that each equilibrium point x∗ ∈ Eb is locally stable if and

only if Υ is negative definite, which concludes the proof.

Remark 1: Let Ξ be the set of n-dimensional vectors with

entries in {−, 0,+}, whose cardinality is 3n. Therefore, ξ ∈
Ξ is an n-dimensional multi-index with indices in alphabet

{−, 0,+}. For any ξ ∈ Ξ, define fξ : [−
√

4γ/3,
√

4γ/3] →
R

n by

fξ(β) =
(

fξ1(β), . . . , fξn(β)
)

∈ R
n.

The set Eb can be interpreted as the union of three curves in

the following way

Eb = ∪ξ∈Ξ fξ([−
√

4γ/3,
√

4γ/3]).

(Here we let g(A) denote the image of a function g : A →
R.) ¤

Remark 2: The results in Theorem 1 hold for any directed

graph with at least one globally reachable node. ¤

Conjecture 1 (Completeness): Given a γ ∈ R, the union

of the basin of attractions of all the stable equilibrium points

of the absolute nonlinear flow with pitchfork nonlinearity is

R
n \ Z , where Z is a measure zero set. ¤

Conjecture 2 (Switching topology): The results in Theo-

rem 1 hold for a network with switching topology Gk ∈
Γn, k ∈ N. ¤
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B. Disagreement nonlinear flow with pitchfork nonlinearity

Given a connected undirected graph G ∈ Γn, and γ ∈ R,

the disagreement nonlinear flow with pitchfork nonlinearity

is

ẋ = γL(G)x− (diag(L(G)x))31n. (11)

In components, the above dynamics, ∀i ∈ {1, . . . , n}, are

given by

ẋi = γ
∑

j∈adj(i)

(xi − xj)−





∑

j∈adj(i)

(xi − xj)





3

. (12)

Before we analyze the disagreement nonlinear flow with

pitchfork nonlinearity, we introduce the following notation.

We partition the Laplacian matrix in the following way:

L(G) =
[

Ln−1 L∗,n

Ln,∗ Ln,n

]

, (13)

where Ln−1 ∈ R
(n−1)×(n−1).

We also construct a transformation matrix P ∈ R
n×n in

the following way:

P =

[

Ln−1 L∗,n

1
T
n−1 1

]

. (14)

The last row of the transformation matrix P is chosen to

be the basis of the kernel of the Laplacian matrix L(G), for

G ∈ Γn. Hence, a coordinate transform through matrix P
separates the center manifold and the stable/unstable man-

ifold. Now, we state some properties of the transformation

matrix P .

Lemma 2 (Properties of the transformation matrix):

Given a graph G ∈ Γn, then for the transformation matrix

P defined in equation (14) the following statements hold:

1) The submatrix Ln−1 is symmetric positive definite.

2) The transformation matrix P is full rank.

3) The inverse of the transformation matrix satisfies the

following:

1
T
nP

−1 = eTn , and P−1en =
1

n
1n,

where en = [0 . . . 0 1]
T

.

Proof: For the brevity, we present only the idea of

the proof. The first statement follows from some algebraic

manipulations on the Laplacian matrix, Theorem 1.37 in [3],

and semi-positive definiteness of the Laplacian matrix. The

second statement follows from the first statement and the

fact that 1n belongs to the kernel of the Laplacian matrix.

To prove the third statement, we note that the inverse of

transformation matrix P is given by

P−1 =

[

(Ln−1 − L∗,n1
T
n−1)

−1 1
n
1n−1

−1
T
n−1(Ln−1 − L∗,n1

T
n−1)

−1 1
n

]

. (15)

It follows immediately from equation (15) that 1T
nP

−1 = en
and P−1en = 1

n
1n. This concludes the proof of the third

and the last statement.

Theorem 2 (Dis. nonlin. flow with pitchfork nonlinearity):

For the disagreement nonlinear flow with pitchfork

nonlinearity, the following statements hold:

Equilibrium points:

1) For γ ≤ 0, the set of equilibrium points is

Fc = diag(Rn).

2) For γ > 0, the set of equilibrium points is

Fb =
{

P−1y | y ∈ {0,−√
γ,

√
γ}n−1 × R,

and

n−1
∑

i=1

yi ∈ {0,−√
γ,

√
γ}

}

.

Consensus:

For γ ≤ 0, each trajectory converges to some point in

the set Fc.

Bifurcation:

1) For γ > 0, and n even, the set of locally stable

equilibrium points is

F̄b =
{

P−1y | y ∈ {−√
γ,

√
γ}n−1 × R,

and

n−1
∑

i=1

yi ∈ {−√
γ,

√
γ}

}

.

Moreover, each equilibrium point x∗ ∈ Fb\F̄b is

unstable.

2) For γ > 0, and odd n > 1, each equilibrium point

x∗ ∈ Fb is unstable.

Proof: We transform the coordinates to y = Px,

and observe that in the new coordinates the equation (11)

transforms to

P−1ẏ = γ











y1 − y31
...

yn−1 − y3n−1

−∑n−1
i=1 yi + (

∑n−1
i=1 yi)

3











. (16)

With some algebraic manipulations, one may see that the

system in equation (16) is equivalent to







ẏ1
...

ẏn−1






= γ(Ln−1 − L∗,n1

T
n−1)







y1 − y31
...

yn−1 − y3n−1







+ L∗,nẏn, (17)

and ẏn =−
n−1
∑

i=1

y3i +

(

n−1
∑

i=1

yi

)3

. (18)

To establish the first statement, we note that the equi-

librium point of the system in equation (17), for each i ∈
{1, . . . , n− 1}, are given by

y∗i ∈
{

{0}, if γ ≤ 0,

{0,±√
γ} if γ > 0.

The equilibrium points, thus obtained, should be consistent

with the equilibrium condition of equation (18). Substitution

of these equilibrium points into the equation (18) yields
∑n−1

i=1 yi ∈ {0,±√
γ}. The equilibrium value of yn is a free
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parameter, and can take any value β ∈ R. This concludes

the proof of the first statement.

The proof of the second statement is similar to the

Lyapunov function based proof in Theorem 1.

To prove the local stability of each equilibrium point x∗ ∈
F̄b, for n even, we shift the origin of (17) and (18), defining

new coordinates as

(ζ1, ζ2)
T = (ζ11, . . . , ζ1n−1, ζ2)

T = y − y∗,

where P−1y∗ ∈ F̄b. In these new coordinates, (17) and (18)

become

[

ζ̇1
ζ̇2

]

=

[

−2γLn−1(I + 1n−11
T
n−1) 0

0 0

]

×
[

ζ1
ζ2

]

+

[

ḡ1(ζ1)
ḡ2(ζ2)

]

, (19)

where ḡ1 : R
n−1 → R

n−1 and ḡ2 : R
n−1 → R satisfy

equation (3).

The dynamics of (19) are similar to the dynamics of (2),

and ζ1 = h(ζ2) = 0 is the center manifold. The ζ2 dynamics

on this manifold are neutrally stable. Hence, each equilibrium

point x∗ ∈ F̄b is locally stable.

Similarly, for n odd, expressing (17) and (18) in the new

coordinates gives

[

ζ̇1
ζ̇2

]

=

[

γLn−1(−2I + 1n−11
T
n−1) 0

−3γ1T
n−1 0

]

×
[

ζ1
ζ2

]

+

[

g1(ζ1)
g2(ζ2)

]

, (20)

where, g1 : Rn−1 → R
n−1, and g2 : Rn−1 → R satisfy

the conditions in equation (3). Since, the matrix −2I +
1n−11

T
n−1 has an eigenvalue at n − 3, the equilibria are

unstable for n ≥ 3.

The instability of the set Fb\F̄b follows similarly.

Remark 3: The absolute and disagreement nonlinear flows

can be studied with other normal forms for the bifurcations in

scalar systems. For example, one may consider the transcrit-

ical nonlinearity fi : R → R defined by fi(x) = γx − x2,

for all i ∈ {1, . . . , n}, and some γ ∈ R. It can be shown

that, for γ > 0, the absolute nonlinear flow with transcritical

nonlinearity converges to consensus under very restrictive

conditions, otherwise each equilibrium point is unstable. The

disagreement nonlinear flow with transcritical nonlinearity

has each equilibrium point unstable for γ > 0. ¤

V. NUMERICAL RESULTS

We determined the equilibrium points of the absolute

nonlinear flow with pitchfork nonlinearity and established

their stability in Theorem 1. Now we study this system on

some lower order graphs to better understand the underlying

dynamics. We start with a graph with two nodes. For γ ≤ 0,

the set of equilibrium points of this system is the consensus

set, diag(R2), which are all stable, while for γ > 0, the set

of equilibrium points is shown in Figure 1(a). The subset of

the consensus set C2 belonging to the convex hull of the set

E2 is unstable. As γ is decreased, the ellipse of equilibrium

points shrinks in size, disappearing at γ = 0. Observe that

x1+x2 is an invariant along any trajectory of the system, and

it can be utilized to reduce the dimension of the system. For

the reduced system x1 + x2 ≡ c is a parameter, and it turns

out that a pitchfork bifurcation is observed at c =
√

4γ/3.

The corresponding bifurcation diagram for γ = 1 is shown in

Figure 1(b). For c ≥
√

4γ/3, the only equilibrium point of

the system is at x = c/2. For c <
√

4γ/3, this equilibrium

point loses its stability and two new stable equilibrium points

appear in the system. This is a pitchfork bifurcation.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

(a) Equilibrium points

0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

x
1
+x
2

x
1

(b) Bifurcation diagram

Fig. 1. Absolute nonlinear flow with pitchfork nonlinearity on a graph
with two nodes and γ = 1. (a) The unstable equilibrium points are shown
with magenta color while the stable ones are shown in blue color. (b) The
bifurcation diagram for the reduced system. Notice the pitchfork bifurcation

at x1 + x2 = 2/
√
3.

We now consider a line graph with three nodes. For γ ≤ 0,

the set of equilibrium points is the consensus set, diag(R3),
which are all stable. The set of equilibrium points for γ =
1 is shown in Figure 2(a). Similar to the two node case,

x1 + x2 + x3 is an invariant along any trajectory of the

system, and this can be utilized to reduce the dimension of

the system. For the reduced system x1 + x2 + x3 ≡ c is

a parameter, and very interesting behaviors are observed as

this parameter is varied (see Figure 2(b)). We note that the

equilibrium at (c/3, c/3) corresponds to the consensus state.

For c = 0 the set of equilibrium points is the consensus point

and an ellipse. Each point on the ellipse is stable, while the

consensus point is a source. As the value of c is increased

from zero, the reduced system has seven equilibrium points,

three of which are sinks, three are saddle points, and one is a

source. As the value of c is further increased the three saddle

points move towards the source, reaching it at c =
√
3γ at an

S3-symmetric transcritical bifurcation [2], [8]. As the saddle

points cross the source, i.e., for c >
√
3γ, the source becomes

a sink, and the three saddle points move towards the other
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three sinks. At c = 2
√
γ, the three saddles meet the three

sinks and annihilate each other in saddlenode bifurcations.

For c > 2, there is only one equilibrium point in the system,

which is a sink.
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(a) Equilibrium points
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(b) Bifurcation diagram

Fig. 2. Absolute nonlinear flow with pitchfork nonlinearity on a line graph
with three nodes and γ = 1. (a) The equilibrium points are comprised
of three ellipses and a line. (b) The bifurcation diagram for the reduced

system. Notice the S3-symmetric transcritical bifurcation at c =
√
3, and

the saddlenode bifurcations at c = 2.

We now study the disagreement nonlinear flow with

pitchfork nonlinearity on a line graph with two nodes. For

γ ≤ 0, the set of equilibrium points for this system is the

consensus set, diag(R2), and each equilibrium point is stable.

For γ = 1, the set of equilibrium points is shown in Figure 3.

For γ > 0 each point in the consensus set is unstable, while

all other equilibrium points are stable.
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Fig. 3. Phase plot for relative nonlinear flow with pitchfork nonlinearity on
a graph with two nodes and γ = 1. The consensus set (shown in magenta)
is unstable, while two sets (shown in blue) are stable.

VI. CONCLUSIONS

In this paper, we considered three frameworks which de-

fine distributed nonlinear dynamics in multi-agent networks.

We determined the set of equilibria that could be achieved

through these dynamics, and examined their stability. We

also described the bifurcation behavior in multi-agent net-

works using these frameworks, and demonstrated a variety

of interesting behaviors that can be achieved.

A number of extensions to the work presented here are

possible. For example, the networks considered here are

static. There is a high possibility that the described dynamics

persist for networks with switching topology as well. Fur-

thermore, the class of functions which yield stable equilibria

is not well understood yet. It remains an open problem to

characterize this.
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