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Abstract
Deep brain stimulation (DBS) is a common method of combating pathological conditions associated with Parkinson’s
disease, Tourette syndrome, essential tremor, and other disorders, but whose mechanisms are not fully understood.
One hypothesis, supported experimentally, is that some symptoms of these disorders are associated with pathological
synchronization of neurons in the basal ganglia and thalamus. For this reason, there has been interest in recent years in
finding efficient ways to desynchronize neurons that are both fast-acting and low-power. Recent results on coordinated
reset and periodically forced oscillators suggest that forming distinct clusters of neurons may prove to be more effective
than achieving complete desynchronization, in particular by promoting plasticity effects that might persist after stimulation
is turned off. Current proposed methods for achieving clustering frequently require either multiple input sources or
precomputing the control signal. We propose here a control strategy for clustering, based on an analysis of the reduced phase
model for a set of identical neurons, that allows for real-time, single-input control of a population of neurons with low-
amplitude, low total energy signals. After demonstrating its effectiveness on phase models, we apply it to full state models
to demonstrate its validity. We also discuss the effects of coupling on the efficacy of the strategy proposed and demonstrate
that the clustering can still be accomplished in the presence of weak to moderate electrotonic coupling.

Keywords Coupling · Neural oscillators · Parkinson’s · Clustering · Phase models

1 Introduction

Oscillators are an important component of numerous
biological processes, including circadian rhythms, cardiac
pacemaker cells, and motor control. Developing effective
methods of controlling these oscillators is an important goal.
This is especially true in neuroscience, where pathological
activity may be linked to improper functioning of neural
oscillators (Rosenblum and Pikovsky 2004). For example,
evidence of the role of desynchronization of oscillators at
the population level in the efficacy of deep brain stimulation
(DBS) provides a compelling reason to investigate ways to
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improve our understanding of effective control strategies for
oscillator populations.

DBS is a proven method for reducing certain symptoms
related to Parkinson’s disease (PD), most notably tremors
and dyskinesia, as well as tics associated with Tourette
syndrome, essential tremor, and a number of other
disorders (Savica et al. 2012; Benabid et al. 2002). In
DBS, an electrode is implanted in either the subthalamic
nucleus (STN) or globus pallidus pars interna (GPi)
(Rodriguez-Oroz et al. 2005; The Deep-Brain Stimulation
for Parkinson’s Disease Study Group 2001) in the case
of Parkinson’s, or the thalamus for Tourette syndrome
(Savica et al. 2012) or essential tremor (Benabid et al.
2002). Despite its proven effectiveness, the mechanisms by
which DBS alleviates the symptoms are poorly understood.
Additionally, there are risks associated with DBS, both
related to the surgical procedure and hardware as well as
to the chronic usage in combating the symptoms of PD
(Rodriguez-Oroz et al. 2005; Beric et al. 2002). For these
reasons, there have been various attempts in recent years
to not only better understand the processes that allow for
the success of DBS, but also to understand ways to reduce
the possible negative side-effects. Many of these attempts
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suggest that DBS may function by modifying the behavior
of oscillators to reduce synchronization.

Recent work (Uhlhaas and Singer 2006; Chen et al. 2007;
Hammond et al. 2007; Levy et al. 2000; Schnitzler and
Gross 2005) suggests that symptoms of Parkinson’s are
associated with elevated synchrony of neurons in the basal
ganglia, and there has been experimental and theoretical
evidence (Tass 2003a; Wilson and Moehlis 2015; Wilson
et al. 2011) that the reduction of this synchrony is correlated
to the alleviation of symptoms. One approach to achieve
partial desynchronization is to split the oscillator neurons
into clusters, in which only a subpopulation of the neurons
are spike-synchronized. In fact, Wilson and Moehlis (2015)
suggests that the standard DBS protocol leads to clusters.

One promising approach to clustering, coordinated reset,
involves using multiple electrode implants delivering a
series of identical impulses separated by a time delay
between implants. This has been studied extensively
(Lücken et al. 2013; Lysyansky et al. 2011, 2013; Tass
2003a) with preliminary clinical success (Adamchic et al.
2014). Modeling and clinical results for coordinated reset
suggest that relatively strongly clustered groups of neurons
do not lead to pathological outcomes in the user and can
be effective in treatment for Parkinson’s Disease. We note
that the beneficial effects of clustering for Parkinson’s
relief can also be inferred from Rubin and Terman (2004).
Coordinated reset, however, relies on a number of electrodes
equal to the number of clusters desired. This may not
always be physically feasible in practice. It also requires
the powering of multiple electrodes simultaneously, which
additionally limits its energy efficiency.

Another approach is to design the control to maximize
the desynchronization of the neurons. In Danzl et al.
(2009), this is done using a high-amplitude input to drive
neurons close to the unstable fixed point (a “phaseless
set”) in the interior of the stable limit cycle. Wilson and
Moehlis (2014) develops an optimal control strategy that is
more energy-efficient than the method proposed in Danzl
et al. (2009) but requires more frequent application of the
control signal. In both cases, the energy cost represents
a substantial improvement over conventional DBS and
requires only a single input; total desynchronization,
however, may not be preferable, as it can return to a
synchronous state more quickly than in clustering (for
comparison, see Wilson and Moehlis (2014) and Lysyansky
et al. (2011); additionally, see Tass (2003b)). Furthermore,
clustering behavior may contribute to longer-term reduction
in pathological synchronization via increased plasticity in
the relevant neural regions, cf. Zhao et al. (2011).

The references Wilson and Moehlis (2014), Zlotnik and
Li (2014), Li et al. (2013), and Zlotnik et al. (2016)
all employ precomputed signals to achieve their control
objectives. Like Wilson and Moehlis (2014), Zlotnik and

Li (2014) and Li et al. (2013) use optimization principles
to derive lowest-energy control strategies for populations of
neurons. In Zlotnik et al. (2016), heterogeneity in the natural
frequencies of the neurons is exploited to entrain clusters
of neurons. The use of precomputed, open-loop control
signals in these methods reduces their flexibility in real-
time application; there is no capacity for adjustment to error
in the model. Additionally, the reliance on heterogeneity
makes the control scheme highly model-specific, requiring
a complete recalculation in the event of alterations to the
model or neuron population.

In this paper we develop a control strategy for oscillators
that provides a low-energy, single-input solution with
minimal requirement for precomputed information. This
strategy can be easily applied to any oscillatory neuron
model to drive the population to a K-cluster state, where
K is an arbitrary positive integer as desired for the control
objective. The control strategy is designed based on a
population of identical neurons subject to a single input;
we note that while some of the underlying theory does
not strictly hold for heterogeneous systems, modifications
can be made to the strategy to accommodate small
heterogeneities as well. Additionally, the control strategy is
constructed to be sufficiently general as to be applicable
to any oscillator with stable limit-cycle dynamics. We will
begin in Section 2 by demonstrating that, provided certain
assumptions are made about the oscillator population, the
population may always be stabilized to a desired control
state. With this established, we develop the control strategy
in Section 3; the strategy is then applied to two different
neuron populations subject to various conditions in the
remainder of the paper.

As in some of the previously cited papers, we will make
use of the phase model reduction for the dynamical system
in designing our control strategy. The firing neuron has a
fixed, stable limit cycle; following the work in Kuramoto
(1984), Brown et al. (2004), and Sacrė and Sepulchre (2014)
we can therefore reduce the dynamics when the neuron’s
state is near the limit cycle to the representation:

θ̇j = ω + Z
(
θj

)
u (t) , (1)

where θ̇j describes the evolution of the j th neuron and the
control input, u (t), is proportional to the applied current I

and is common to all neurons. Z (θ) is known as the phase
response curve, and describes the sensitivity of the phase
to a stimulus. The two models in this paper are examples
of Type I and Type II neurons (Ermentrout and Terman
2010), respectively. For both models, the phase response
curve was calculated by solving the appropriate adjoint
equation using the dynamical modeling program XPPAUT
(Ermentrout 2002). A preliminary version of these results
has been published in Matchen and Moehlis (2017).
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2 General stabilizability of N identical
neurons

Before describing the specific control design we will
employ, we start by showing that it is in general feasible
to achieve a clustered state with a population of identical
neurons. In particular, we demonstrate that any order-
preserving clustering scheme for uncoupled, identical
neurons is asymptotically stabilizable with an appropriate
control input provided minor restrictions are placed on the
phase response curve. Here we understand asymptotically
stabilizable to mean that, for an appropriate choice of
input u, the system of neurons approaches our desired
state as t → ∞. To do this, it must be shown that the
control system is passive with a radially unbounded positive
definite storage function and zero-state observable (Khalil
2015). These requirements are summarized as follows:

Radially Unbounded Positive Definite Storage Function
A storage function V is any function which converts the
state of the system into a scalar measure of the “energy”
stored in the system; a simple physical example might
be a function converting the position and velocity of
an object into a total energy consisting of potential and
kinetic energy components. In this case, we desire the
storage function to equal 0 at exactly one point: our
target state. The requirement that the function is positive
definite means that everywhere else in the state space,
the storage function’s value is greater than 0. Because the
function is radially unbounded, we further require that
as we move farther from this state, the value continually
increases.

Passive A system is passive (Khalil 2015) if, for a given
observable vector y and storage function V and any
choice of u:

uT y ≥ V̇, (2)

where V̇ denotes the first time derivative of V . This
requires, for example, that if uT = �0, V̇ ≤ 0. Physically,
this corresponds to the system not producing energy and
instead being energy neutral or an energy consumer.

Zero-State Observable For a vector observable y to be
zero-state observable, the target state must be the only
point in state-space where y = �0 and remains zero for all
future times. Although y may equal zero at other points
in state-space, it must become nonzero in finite time.
For example, if we used height as our observable for
a bouncing ball, we would say the system is zero-state
observable because, unless the velocity of the ball stays
at zero (i.e., the ball has stopped bouncing), the height
will not remain zero (the ball will bounce back up).

A system that meets these three criteria can be shown to
be stabilizable with an appropriate choice of input (Khalil

2015). We demonstrate these requirements all generally
hold for the case of N identical, uncoupled neurons in the
reduced phase model formulation. We label the neurons
such that, at time t = 0, the neuron phases are ordered as
θ1 < θ2 < θ3 < ... < θN . Note that if the phases of
two neurons are exactly the same, because the neurons are
identical and receive identical inputs they are impossible to
separate; therefore, we exclude the possibility of two phases
being equal by assumption. Furthermore, since the neurons
are identical, the response of a neuron is bounded by the
neurons of phase initially less than the neuron and those
greater than the neuron, so for t > 0, it follows from these
assumptions that θ1 (t) < θ2 (t) < ... < θN (t) (here we do
not use the modulo 2π value for θj , so θj is allowed to be
greater than 2π ) (Li et al. 2013).

Typically when discussing stabilizability, the target state
would be a specific coordinate in state-space, such as the
origin. Here, however, we do not want the neurons to
stop oscillating, so we do not wish to drive the system to
specific values of θ . Instead, we wish to instead reach a
target state describing the relations between their phases
as they continue to oscillate. It is therefore natural to
define our storage function in terms of the differences
between the phases of neurons rather than the individual
phases (which are constantly evolving). More precisely, we
construct our storage function as the linear combination of
positive semidefinite functions, each prescribing the target
separation for the phases of two neurons:

vi = vi

(
θj − θk

)
, V (θ1, ..., θN) =

l∑

i=1

βivi, (3)

with βi > 0 and where θj and θk are the phases of any two
neurons whose separation is to be prescribed by the function
vi . The value of l is arbitrary in this context; in Section 3,
for the specific problem of clustering l = K . The individual
storage function candidates have three properties:

1. At the target separation θj − θk = Δθ∗, vi (Δθ∗) = 0;
2. For θj − θk �= Δθ∗, vi

(
θj − θk

)
> 0 and grows

unbounded away from Δθ∗ within the interval θj −θk ∈
(0, 2π);

3. ∂vi

∂Δθ
|Δθ∗ = 0, ∂vi

∂Δθ
|Δθ �=Δθ∗ �= 0.

Figure 1 illustrates the case of l = 2, Δθ∗ = π to
demonstrate how these control objectives translate into a
stabilized clustered configuration.

We now calculate the value of V̇ . As each individual
storage function is dependent on only one phase difference,
we write V̇ as:

V̇ =
l∑

i=1

βi

∂vi

∂Δθi

Δ̇θi =
l∑

i=1

βi

∂vi

∂Δθi

(
θ̇j − θ̇k

)
. (4)
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Fig. 1 Visualization of the control objective design. Each circle
represents a neuron, and they oscillate around the unit circle. Here,
l = 2, so two target separations are specified: the separation between
the yellow and green neurons and the separation between the blue and
red neurons. V = 0 if and only if both of these separations are π (as
is nearly the case in the circle to the right). Because the neurons are
identical, the positions of the black neurons are bounded by the non-
black neurons, and so they are guaranteed to be present in this clustered
arrangement

Substituting in from Eq. (1), V̇ can be rewritten as:

V̇ = u∗
l∑

i=1

βi

∂vi

∂Δθi

(
Z

(
θj

) − Z (θk)
)
, (5)

where u∗ is the common input received by every neuron. To
satisfy passivity, we choose our observable to be a vector
y = [y1, y2, · · · , yl]T such that:

yi = βi

∂vi

∂Δθi

(
Z

(
θj

) − Z (θk)
)

. (6)

Recognizing identical inputs as a special case of uT =
[u1, u2, · · · , ul] where ui = u∗∀i, it follows that uT y =
V̇ everywhere in the state-space. Therefore, the system
as constructed is not only passive but also lossless.
Additionally, y is zero-state observable: at the target state,
∂vi

∂Δθi
= 0; y = 0 otherwise only if Z

(
θj

) − Z (θk) = 0,
but no such pair of neurons can stay indefinitely in the set
y = 0. We can see this by considering:

d

dt

(
Z

(
θj

) − Z (θk)
) = ∂Z

∂θ
|θj

θ̇j − ∂Z

∂θ
|θk

θ̇k . (7)

Since Z
(
θj

) = Z (θk), it follows from Eq. (1) that θ̇j = θ̇k

instantaneously, so the right side of Eq. (7) equalling 0
would require ∂Z

∂θ
|θj

= ∂Z
∂θ

|θk
. For y to equal 0 at all future

times, this would further imply that this equality must hold
over the entire period, i.e. ∃δx ∈ (0, 2π) such that ∂Z

∂θ
|x =

∂Z
∂θ

|x+δx∀x. Graphically, this would mean that horizontally
shifting the phase response curve reproduces the original
curve. Since ∂Z

∂θ
|0 = ∂Z

∂θ
|2π and Z (0) = Z (2π), this

is true if and only if Z (θ) is constant or has periodicity
greater than 2π , which is physically not realized. Therefore,
as the system is both passive with an unbounded storage
function and zero-state observable, we can conclude that the
system can be stabilized by the choice of u = −φ (y) where
φ (y) is locally Lipschitz and yφ (y) > 0 (Khalil 2015).
We note that this does not strictly hold for the case of an

identical input; while uT = [u, u, · · · , u] does allow for
locally Lipschitz solutions, there is a measure-0 set in which
yφ (y) = 0. In practice, however, we find this only forms
an invariant set when the phase response curve is in some
way degenerate or not physically realizable (such as having
a higher than 2π periodicity) or the control objectives are
poorly defined (such as when reaching the control state
would require neurons to cross each other). Other instances
of yφ (y) = 0 are solely instantaneous and did not affect the
computational outcome.

3 Control strategy for K clusters of neurons

Having shown that clustered states for identical neurons can
be stabilized, we will now outline our design strategy for
doing so. Our goals in developing a control strategy for
clustering are threefold:

1. Create a flexible method such that the strategy functions
in a way that is agnostic both to the specific neuron
model used and the desired number of clusters K;

2. Require as little precomputing as possible so the
method is robust to inaccuracies in modeling; and

3. Allow for the control to be easily tuned for parameters
of interest, such as maximum input amplitude and speed
with which clustering is achieved.

These three conditions can be seen as measures of
robustness for the method. A control scheme that meets
these three criteria can be altered on the fly by changing
only a small number of target parameters, allowing the
input to rapidly be tuned to the performance specifications
desired. Additionally, deviations from expected results can
be compensated for if the input is not constrained to
precomputed values, as would be the case with optimal
control strategies derived from, for example, variational
principles.

The approach proposed here consists of considering what
we propose to call the input of maximal instantaneous
efficiency (IMIE) rather than precomputed data. Although
not necessarily as efficient as true optimization strategies,
IMIE requires only knowledge of the phase response curve
of the neurons and the current state of the system.

The rest of this section will be structured as follows: first,
we will define the two necessary functions for IMIE: a state
function and a cost function. Next, we will lay out the details
of the control strategy. Lastly, we will see how the reduction
of the model for special cases returns results that agree with
intuition and past results.

State Function The state function r , to be defined below,
is functionally equivalent to a specific storage function
which we will use to generate our control. Control of a
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system of N neurons into K clusters requires the direct
control of 2K neurons, split into pairs of 2, with each
pair of neurons adjacent to each other in phase order. The
control is generated in such a way that each pair is driven
apart to a target separation of 2π

K
radians. In this way,

K clusters are formed by exploiting the boundedness of
response described in Section 2 and illustrated in Fig. 1.
For example, if we wished to subdivide a population of
16 identical neurons into 4 clusters and the neurons were
ordered by initial phase (θ1 < θ2 < ... < θ16), the K

control pairs would be {2, 3}, {6, 7}, {10, 11}, and {14,
15}, and the final clusters would be {15, 16, 1, 2}, {3,
4, 5, 6}, {7, 8, 9, 10}, and {11, 12, 13, 14}. We define a
positive semidefinite function ri,j for each control pair;
this function is dependent only on the phase difference
Δθi,j = θj − θi and is identically zero at Δθi,j = 2π

K
.

To allow for consistency in the definition of ri,j across
choices of K , the value of Δθi,j is mapped by the function

g
(
Δθi,j

)
so that g

(
2π
K

)
= π . This is done using the

piecewise definition:

g
(
Δθi,j

) =
{

K
2 Δθi,j 0 ≤ Δθi,j ≤ 2π

K

K
(Δθ−2π/K)
(2(K−1))

+ π 2π
K

< Δθi,j ≤ 2π
. (8)

With this mapping, we define the positive-definite function
for each pair as follows:

ri,j =
{ 1

g(Δθi,j )
p − 1

πp 0 < Δθi,j ≤ 2π
K

1
(2π−g(Δθi,j ))

p − 1
πp

2π
K

< Δθi,j < 2π
, (9)

which is continuous and differentiable everywhere on the
domain (0, 2π) except at Δθi,j = 2π

K
. The value of the

parameter p can be adjusted to meet control objectives; in
the simulations in Section 4, p = 0.7. The function ri,j
can be made first-order differentiable by the replacement of
the constant 1

πp with a term that is linear in g, though in
practice this is not necessary. This replacement generates a
function that does, however, serve as a valid storage function
candidate in Eq. (3), while maintaining derivatives with the
same sign as in Eq. (9). Clearly, Eq. (9) is greater than zero
for all choices of p with Δθi,j �= 2π

K
and grows unbounded

as Δθi,j → 0 or 2π .
From here we can define a state function of the system as:

r = 1

K

K∑

l=1

r2l−1,2l . (10)

Note that here we have omitted the neurons that are
not being directly controlled, and as such our control
pairs are relabelled as {1,2}, {3,4},...,{2K − 1, 2K}. Since
each component of the summation is greater than zero
everywhere except at the desired target state, the combined
function is also positive-definite and only equal to zero
when all pairs of neurons achieve the target separation.

Cost Function With the state function defined, we turn
our attention to the cost function. The purpose of the cost
function is to prescribe the important characteristics of
the control by penalizing undesired behavior. While any
cost function can be used, we select one that penalizes
energy usage and the time required to reach the target
state. This can be accomplished by defining the cost
function:

C (t) =
∫ t

0

[
u (τ)2 + αr (τ)

]
dτ . (11)

The first term introduces a quadratic cost to increased
input amplitude; this is inspired by the general fact that
the square of the input amplitude is proportional to power.
The second term penalizes the value of r being large. The
value of α can be adjusted to increase or decrease the
relative importance of this penalty; the higher the value
of α, the greater emphasis the control places on reducing
the value of the state function quickly. The instantaneous
cost associated with the state and input at a given time t

can be given by taking the derivative and evaluating:

dC

dt
= u (t)2 + αr (t) . (12)

With the state and cost functions defined, the input
of maximal instantaneous efficiency can be generated as
follows. An optimal path is one that minimizes C (t) as t →
∞. While to truly optimize, the time-dependent input would
need to be computed in advance, IMIE aims to produce a
near-optimal input by minimizing the cost incurred at each
time step instead. We rewrite C (t) in terms of the value of r ,
which in the uncoupled case monotonically decreases at all
times with the appropriate choice of u. Then the total cost
as t → ∞ is equal to:

lim
t→∞ C (t) =

∫ 0

r(0)

dC

dr
dr; (13)

by exploiting the chain rule, we equate dC
dr

to:

dC

dr
= dC/dt

dr/dt
. (14)

In this formulation, the input we choose is designed so
that, at all times, the instantaneous magnitude of dC

dr
is

minimized. This can be interpreted as the input that is most
efficient in terms of cost relative to change in r . The value
of dC

dt
is given by Eq. (12). Differentiating r with respect to

time yields:

dr

dt
=

2K∑

l=1

∂r

∂θl

dθl

dt
. (15)

As in Eq. (5), we can reorganize this and exploit the fact
that in each neuron phase control pair θ2k, θ2k+1 the partial
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derivatives with respect to phase satisfy ∂r
∂θ2k

= − ∂r
∂θ2k+1

and

express dr
dt

as:

dr

dt
= u

K∑

l=1

∂r

∂θ2l

(Z (θ2l) − Z (θ2l−1)) , (16)

which has the characteristic form −a (θ1, ..., θ2K) u (t).
Therefore, dC

dr
is equal to:

dC

dr
= −u2 + αr

au
, (17)

where the dependence of a and r on the state [θ1, ..., θ2K ] is
omitted from the equation for simplicity.

From this, the extrema can be found by differentiating
with respect to u; the input used is then set equal to this
calculated minimum. Differentiating and rearranging yields:

u (t) =
√

a2αr (t)

a
= sign(a)

√
αr (t). (18)

Note here the positive root is taken because dC
dr

is negative
(since dC

dt
is always positive and dr

dt
is negative by

construction), and therefore the quantity au must be positive
for the entire expression to be negative.

Recalling the definition of r (t), u evolves as a function
of the average separation Δθ of the control pairs as

approximately Δθ
−p/2√

α. From this it can be seen that,
holding p constant, increasing α corresponds to a

√
α

increase of the maximum amplitude of the input signal. This
in turn decreases the response time of the system at the cost,
generally, of increasing total power usage and maximum
input amplitude. In contrast, increasing the value of p

while holding maximum amplitude constant (by adjusting
α accordingly) will cause a sharper decline in the input
signal, reducing power usage but increasing response time.
As such, the system can be tuned to meet the desired control
specifications– power usage, maximum amplitude, response
time– simply by varying α and p accordingly, regardless of
the neuronal model being used.

We now turn our attention to the case where α = 0
and demonstrate that the method returns a result that is
consistent with intuition. In this case, no weight is placed
on fast response time and the cost is entirely connected to
minimizing the energy usage of the system. With α = 0,
the original formulation of dC

dr
can be simplified greatly,

yielding:

dC

dr
= −u

a
. (19)

Unlike the case where α �= 0, this is linear and therefore
has no minimum; since the only constraint is that −u

a

should be positive, a lower-cost control is always achieved
by decreasing the magnitude of u. It can be seen that,
as predicted by this result, using controller of constant
amplitude takes longer (but requires less energy) when a

smaller amplitude is used, thereby agreeing that the optimal
control from an energy perspective is to use as small an input
as possible.

In practice, we do not want the state to be reached
in infinite time. If we abstract away from the physical
representations of the phase model (which breaks down at
high amplitudes of u) and consider only what will allow us
to reach the target state in as little time as possible, we would
expect that the solution would be to allow the input signal
to be as large as possible for all times. We can model this by
removing u2 from the cost function so that C∗ (t) = αr (t).
Now, dC

dr
is given as:

dC

dr
= −αr

au
. (20)

As in the case where α = 0, this has no minimum, and
instead approaches 0 as u → ∞. Therefore, IMIE correctly
predicts that for the fastest possible response, u should be
allowed to be as large as allowed by the constraints on the
system at all times. This trend, as well as the minimal-
energy trend, are demonstrated in simulation and shown as
solid lines in Fig. 5. While we do not propose IMIE as a fully
optimal control strategy, this demonstrates that the method
matches basic sanity checks in its application.

4 Application to uncoupled identical
neurons

We now apply the IMIE approach to two different neural
models: a two-dimensional reduced Hodgkin-Huxley model
(Keener and Sneyd 2009; Hodgkin and Huxley 1952) and
a three-dimensional model for periodically firing thalamic
neurons (Rubin and Terman 2004). Unless otherwise stated,
all simulations we present in this section utilized the
parameters listed in Table 1. The dynamics for both models
were initially represented using the phase model reduction,
with all the neurons treated as identical (possessing the
same natural frequencies and phase response curves). The
dynamics for all neurons were given by:

θ̇ (t) = ω + Z (θ) u (t) , (21)

where the natural frequencies and phase response curves
are appropriate to the models. The phase response curves
for the two models were derived from the adjoint equation
using XPPAUT and can be seen in Fig. 2. In addition to the
distinctions between the initial dimensionality of the two
models, they also differ in that the Hodgkin-Huxley model
is an example of a Type II neuron, whereas the thalamic
model is representative of a Type I neuron (Ermentrout
and Terman 2010). This can be seen by the qualitative
differences in their phase response curves: whereas Type
II neurons have PRCs with positive and negative portions,
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Table 1 Default simulation parameters

N 50

K 4

α 0.1

p 0.7

Type I neurons have PRCs that are typically nonnegative
(Galan et al. 2005).

By using models of two different types of periodically
firing neurons, we aim to show that the qualitative results of
this control scheme are similar across qualitatively different
base models. This agreement can be seen in Fig. 3, which
shows the response of a population of neurons of each type
to the proposed control strategy.

Figure 4 shows in finer detail the control signal
applied to the Hodgkin-Huxley phase model to achieve
clustering. Initially, when the neurons are still in a
one-cluster configuration, the signal varies comparatively
rapidly, both in amplitude and direction. However, as
the system approaches the 4-cluster state, the signal
becomes increasingly regular with a frequency four times
that of the system’s natural frequency and with a signal
that only slowly decreases in amplitude. We view these
“maintenance” signals when the system is near the clustered
state as especially feasible with current hardware. The
results for the thalamic model are qualitatively equivalent to
those presented here.

Furthermore, IMIE improves upon the performance of
strategies that similarly require only instantaneous state
data to calculate a control. Using the same methodology
of selecting whether to apply a positive or negative
input based on the derivative of the state function r , the
Hodgkin-Huxley neuron population was also simulated

Fig. 2 Phase response curves for the reduced Hodgkin-Huxley
equations (top) and the thalamic model (bottom)

Fig. 3 Evolution of reduced Hodgkin-Huxley (top) and thalamic
(bottom) phase models at three times for K = 4. a, b, and c show the
projection of the phases onto the unit circle at times t = 0, t = 125,
and t = 500 ms (0, 187.5, and 750 for thalamus), respectively. d
shows the absolute value of the input over the length of the simulation.
The differently-colored pairs represent neurons that are being actively
controlled

with the application of a constant-amplitude “bang-bang”
control. In “bang-bang” control, the amplitude of the control
signal is fixed while its direction (positive or negative) is
allowed to switch. For a range of amplitudes, the constant-
amplitude control and IMIE were simulated until the values
of their state functions were within a tolerance of a 0
(rtol = 0.01). The “settling” time and value of

∫ T

0 u2dt was
recorded for each trial; these results are shown in Fig. 5. For
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Fig. 4 Control signal over three time intervals, Hodgkin-Huxley
model. The actual values of the signal (in contrast to the absolute
values presented in Fig. 3) are presented over three 50-ms time
intervals. The blue interval begins at t = 0 ms, the red at t = 200
ms, and the yellow at t = 450 ms. We note that the signal becomes
increasingly regular as the system approaches a clustered state

comparison between the two methods, in these simulations
p was held constant and α was varied such that the initial

value of u was equal to the listed max amplitude (α = u2
max

r(0)
).

Without an appreciable sacrifice of response time, IMIE
achieves clustering at a dramatically reduced energy cost
when compared to bang-bang control.

0 0.5 1 1.5 2
0

200

400

600

800

1000

1200

0

1000

2000

3000

4000

5000

6000

Fig. 5 Comparison of constant-amplitude control and IMIE. The solid
lines denote the constant-amplitude control. The dashed lines represent
the implementation of IMIE on the population of uncoupled, identical
Hodgkin-Huxley neurons reduced to a phase model for control to the
4-cluster state. Note that the energy cost (in pink) is always lower for
IMIE than the analogous constant-amplitude control, and despite these
massive energy discrepancies the response time (in black) is always
either better or approximately equal to that of constant-amplitude
control, except in the extreme low-amplitude case. This demonstrates
that IMIE represents a performance improvement over bang-bang
control in terms of both energy cost and response time

With the effectiveness of the control established for
phase models, the control was extended and applied to a
full state model for both the Hodgkin-Huxley and thalamic
neurons. The value of the state function r(t) was calculated
based on an estimation of the phase corresponding to a
neuron’s position in state-space. This rough approximation
of the phase was found by identifying the point on the
curve nearest to the neuron’s state’s position in state-space.
Because the variation in V differs far more significantly
than the variation in n or other gating variables, the distance
to the curve was normalized in each dimension by the span
of the limit cycle in that dimension. Example simulations for
these full state-space models can be seen in Fig. 6. Note that
there is a “jitter” in (d) in both plots; this can be attributed to
inaccuracies inherent in estimating the phase of the neurons,
which can result in large movement in the value of r(t)

because of its large derivative at small values of Δθ .
Additionally, adjusting the values of p and α can alter

the response characteristics of the populations of neurons in
a consistent fashion. To illustrate this, a “settling time” and
energy cost was calculated for different pairs of parameter
values. Because p was varied between trials, to maintain
a consistent benchmark of performance the system was
simulated not to a specific value of r but rather to a specific
average deflection from the target state. Δθtol was defined
as:

Δθtol = 9

10
Δθ∗, (22)

which subsequently was used to define a specific value of
rtol dependent on the value of p as:

rtol = 1

g (Δθtol)
p − 1

πp
. (23)

The settling time T was defined as the time to reach rtol ,
and the energy cost was calculated as

∫ T

0 u2 (t) dt .
The effect of variations in p and α on the phase model

results can be seen in Fig. 7. As can be expected, for a
given value of p, increasing α leads to a decreased response
time but increased energy cost. Decreasing p corresponds to
the input decreasing less sharply in time; despite a steeper
rate of decrease, however, between 0 and Δθ∗ the value
of r increases for a given Δθ as p increases. Therefore,
increasing p corresponds to an increase in energy usage as
well as a decrease in response time.

In practice, we may wish to prescribe a maximum
amplitude for the control signal rather than just utilizing a
scaling value of α arbitrarily. In the uncoupled phase model,
we assume that r decreases at all times; from this, it follows
that |u|max = |u(0)|, as a decrease in r corresponds to a
decrease in |u|. If, instead of varying α, |u|max is varied
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Fig. 6 Evolution of reduced
Hodgkin-Huxley (top) and
thalamic (bottom) state-space
models over three time intervals.
a, b, and c show three
25-millisecond voltage traces of
the 50 neurons being simulated
subject to the described control
without coupling. As in the
phase model simulations, the
neurons initially become
desynchronized, spreading out
around the limit cycle before
coalescing into clusters. d shows
the absolute value of the input
over the duration of the
simulation, with general
qualitative agreement to the
plots in Fig. 3

instead, the trend from Fig. 7 reverses. Here, the value of α

is prescribed by its relationship to u and r:

√
αr (0) = |u|max ⇒ α = umax

2

r (0)
, (24)

where r is dependent on the choice of p. For a given
maximum amplitude, an increase in the value of p now
corresponds to a state function whose value drops more
sharply, which in turn means an input whose magnitude

drops more sharply. As such, energy usage decreases with
increased p for a fixed umax and response time increases in
turn. This can be seen in Fig. 8.

5 Application to coupled identical neurons

We now introduce coupling to the phase model reduction
and adapt IMIE to accommodate its effects. We consider
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Fig. 7 Effect of variations in p and α. The effect of varying the two
parameters on settling time (with rtol set by the value of p) is shown
in the left panel, while the integral of u2 is shown to the right. Each

curve represents a constant value of p, with α allowed to vary. These
results maintain the correspondence between increasing energy cost
and decreasing response time illustrated in Fig. 5

all-to-all electrotonic coupling; in the state-space model,
this is introduced into the value of V̇ as (Johnston and Wu
1995):

ΔV̇i = ae

N∑

j=1

(
Vj − Vi

)
. (25)

In the context of the phase model reduction, this can be
rewritten as:

θ̇i = ω + Z (θi) u + ae

N∑

j=1

(
V

(
θj

) − V (θi)
)
Z (θi) . (26)

Here, ae is the strength of the electrotonic coupling. This,
however, is not a particularly convenient notation, as we
would like to omit V from the phase model reduction.
Assuming ae is small (coupling is weak), we can further
simplify this equation by selectively averaging the value

of the coupling over one period (Schmidt et al. 2014),
f̄

(
θj − θi

) = f̄
(
Δθi,j

)
. This can be calculated as:

f̄
(
Δθi,j

) = 1

2π

∫ 2π

0
[(V (θj + �)

−V (θi + �)) Z (θi + �)] d�; (27)

θ̇i can then be rewritten in terms of this averaged function
instead.

Returning to Eq. (15), the expression for dθl

dt
has changed,

and Eq. (16) must include an additional term; dr
dt

is now
computed as:

dr

dt
=

K∑

l=1

∂r

∂θ2l

{ u (Z (θ2l ) − Z (θ2l−1))

+ae

N∑

m=1

[
f̄ (θm − θ2l) − f̄ (θm − θ2l−1)

]}
, (28)

Fig. 8 Effect of variations in p and |u|max . For a given maximum amplitude, increasing p leads to an increase in settling time (left) but a decrease
in energy usage (right)
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which now has the characteristic form −au + b instead of
simply −au. Rederiving the instantaneously optimal input
yields:

u (t) = b + √
b2 + a2αr

a
. (29)

The problem presented by coupling is that a core assump-
tion of the control design (namely, that dr

dt
monotonically

decreases with the appropriate choice of sign for u) no
longer holds; there is a measure-0 probability that the value
of a is identically 0 at some time. If a approaches 0, the
mandate that dr

dt
monotonically decrease proves excessively

restrictive: the value of u grows unbounded, which both vio-
lates the regime in which the phase model reduction can
be considered valid and runs counter to the goal of a cost-
minimized strategy. To address this, we instead approach the
problem by considering an averaged value of dr

dt
, much as

was done for the coupling function:

dr

dt avg
= 1

2π

∫ 2π

0

K∑

l=1

∂r

∂θ2l

{u (Z (θ2l + �)

−Z (θ2l−1 + �))

+ae

N∑

m=1

[
f̄ (θm� − θ2l − �)

−f̄ (θm + � − θ2l−1 − �)
]}

d�. (30)

Rearranging and recognizing that 1
2π

∫ 2π

0 f̄ (Δθ) d� =
f̄ (Δθ), we simplify as:

dr

dt avg
= −āu + ae

K∑

l=1

∂r

∂θ2l

N∑

m=1

[
f̄ (θm − θ2l)

−f̄ (θm − θ2l−1)
]
, (31)

where:

ā = −1

2π

∫ 2π

0

∣∣∣∣∣

K∑

l=1

∂r

∂θ2l

(Z (θ2l + �)

−Z (θ2l−1 + �)) |d�. (32)

The absolute value is taken to reflect the ability to choose at
each time increment the appropriate sign of u, a feature that
is otherwise not captured by this equation. The sign of u is
still computed from the unaveraged value of a. As such, this
equation still reduces to Eq. (18) in the limit b → 0.

Additionally, we can consider special cases that arise
with the introduction of coupling and ensure that our
intuition hold for these circumstances. We consider three
cases: the limit where α is large compared to a and b, the
limiting behavior as a2αr → 0, and the resulting equation
for α = 0. If α is large, the magnitude of the input will
similarly be large as the control objective will consist of
approaching r (t) = 0 as quickly as possible. In this case,

Fig. 9 Simulation of thalamic
state-space model with weak
(ae = 0.01) coupling for K = 4.
Despite large fluctuations in the
amplitude of the control signal,
clustering proceeds similarly to
in the uncoupled case: first, the
system desynchronizes, and then
strong clustering emerges
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Table 2 Energy cost to reach
K-cluster state K = 2 K = 3 K = 4 K = 5 K = 6

Hodgkin-Huxley 13.8691 14.1803 18.1086 23.2431 29.2406

Hodgkin-Huxley (ae = 0.01) 10.7016 19.1343 27.2689 32.4005 35.6388

Thalamic 29.064 71.7944 70.1354 69.6513 92.1052

Thalamic (ae = 0.01) 24.337 76.6713 82.9656 78.5948 100.763

|u| → ∣∣ b
ā

+ sign (a)
√

αr
∣∣ when r is large. We include the

absolute value on u to acknowledge the influence of a on
the instantaneous sign of u. In this case only a relatively
small correction term is applied to the control for the b = 0
case (amounting to, on average, matching the strength of
the coupling), as the control dynamics are dominated by
α instead of b. As we approach the target state, however,
a2αr → 0 regardless of the choice of α, and the dynamics
become instead dominated by the coupling; in this limit

|u| →
∣∣∣ b+|b|

ā

∣∣∣.
This limiting behavior would be demonstrative of the

response if our response time was irrelevant and energy
was the only consideration, i.e. if α = 0. In that case,

the response at all times would evolve as |u| =
∣∣∣ b+|b|

ā

∣∣∣.
When b < 0, coupling serves to pull the system toward
the target state; in the presence of this favorable coupling,
u = 0 as the most energy-efficient strategy is to input no

additional energy. If b > 0, then |u| =
∣∣∣ 2b

a

∣∣∣. Whereas in the

uncoupled case the optimal control input when α = 0 is to
asymptotically approach a magnitude of 0, the presence of
coupling allows for the presence of a local minimum instead
with a value slightly higher than the averaged offset value
of b

a
.

Simulations with weak coupling (here, ae = 0.01)
were conducted for both the Hodgkin-Huxley and thalamic
models. Results for the coupled state-space model can be
seen in Fig. 9. Note that while the general shape of the input
signal is consistent with the uncoupled case, the presence
of weak coupling in addition to the uncertainty caused by
the phase estimation leads to significant fluctuations in the
amplitude of the control signal. Despite these fluctuations,

the control scheme still is able to successfully cluster the
population of neurons at a relatively low cost, albeit higher
than in the uncoupled case.

As can be seen by comparing Figs. 6 and 9, weak
coupling does not significantly affect the response time of
the system, only the energy cost. To demonstrate this, the
population of neurons was simulated until reaching a value
of rtol = 0.05 for different values of K , with p and α held
constant. The results for the energy cost associated with
these separate trials are shown in Table 2, while the settling
times are shown in Table 3.

As coupling strength moves out of the weak regime
where the above averaging assumptions hold, the cost
associated with achieving clustering increases unboundedly
as the value of ae approaches some asymptotic limit. To
demonstrate this, the system was simulated for different
coupling strengths varying from the weak regime to the
moderate coupling regime. This was done for two different
values of α to demonstrate robustness with respect to the
choice of α. Figure 10 shows the energy cost for the reduced
Hodgkin-Huxley phase model for α = 0.1 and α = 0.01 as
ae is varied. We consider log ae to demonstrate it approaches
an asymptotic limit; by using the log value, we treat the
uncoupled case as the asymptotic behavior as log (ae) →
−∞. The resulting plot is characteristic of a model of the
form 1

(a log(x)+b)c
+ d, suggesting an asymptotic limit in ae

rather than growth governed by an exponential or power
law model. This is consistent with simulations failing to
converge to the target state for ae sufficiently large.

The inability to reach the target value of rtol should
not, however, be seen as a complete failure to achieve
clustering. Rather, as the coupling strength increases, the

Table 3 Settling time (ms) to
reach K-cluster state K = 2 K = 3 K = 4 K = 5 K = 6

Hodgkin-Huxley 191.275 207.2 279.825 386.2 518.426

Hodgkin-Huxley (ae = 0.01) 191.55 200.45 267.825 379.5 518.65

Thalamic 387.25 1074.15 1128.05 1167.45 1634.25

Thalamic (ae = 0.01) 382.775 1073.52 1127.82 1168.07 1644.55
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Fig. 10 Cost to reach rtol for varying coupling strengths at two
different values of α for the Hodgkin-Huxley model (K = 4). As
can be seen, in the weak coupling regime (ae � 0.01) the system
asymptotically approaches the uncoupled dynamics of the system
(denoted by the dashed lines), but as moderate coupling is approached
the required energy grows unbounded. This is consistent with the
underlying assumptions used in the process of averaging, namely that
perturbations are small

system reaches a state wherein the value of r fluctuates
in a complicated manner about some average value. The
stronger coupling is in this regime, the generally larger
the variations between the maximum and minimum of the
cycle; similarly, the range of inputs grows increasingly
large as well. These phenomena are shown in Fig. 11. As
can be seen, beyond a certain value for ae, increasing the
coupling strength actually causes the minima of |u| and r to
decrease; this is likely the result of the neurons reaching a
configuration where the coupling actually aids in clustering
instead of working against it, with the strength being high
enough to reach much closer to the ideal state before
coupling pulls the neurons away from the target state once
more. This is consistent with Golomb and Hansel (2000),
which found that depending on the initial configuration,
coupled neuron networks could end in smeared one-cluster
or multi-cluster states if there was sufficient connectivity
between neurons, depending on the initial conditions.
Here, the application of control effectively allows the
system to transition from the basin of attraction of one of
these configurations (the one-cluster state) to a different
configuration (the multi-cluster state).

Beyond a certain value of ae, IMIE as described cannot
achieve clustering and the neurons instead coalesce. This
is to be expected, as the fundamental assumption of its

Fig. 11 Asymptotic behavior for Hodgkin-Huxley phase model,
varying values of coupling strength. A population of Hodgkin-Huxley
neurons (N = 50, K = 4) evenly spaced in phase space was
simulated for 3000 ms; the final 1000 ms were averaged and analyzed
to determine asymptotic behavior. The variation in the maximum and
minimum magnitude for the input, as well as the average, is shown in
the top panel, whereas the variation in the value of r is shown in the
bottom figure

formulation– namely, that the effects of coupling are weak–
is no longer accurate. As can be seen in Fig. 12, at
higher coupling pronounced peaks and troughs can be
seen in each cycle of the neuron population. The disparity
between the peaks and troughs continues increasing as the
coupling strength is increased. Below a critical value, these
oscillations in r are damped as time progresses, leading to a
relatively steady solution. Above a critical value, however,
the oscillations instead increase, with each peak reaching a
higher value of r than the previous peak, eventually tending
toward ∞ and indicating clustering cannot be achieved with
the averaged technique described.
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Fig. 12 Evolution of Hodgkin-Huxley phase state models for weak
(ae = 0.005) and moderately strong (ae = 0.27) coupling. The first
500 ms of simulation are shown in the top panel; The bottom figure
expands the region of 2500 < t < 3000. When coupling is weak,
the evolution of r is relatively smooth; however, as ae increases the
corresponding evolution of r becomes increasingly jagged, with each
cycle containing peaks and troughs. Eventually, as ae is increased
farther, successive troughs and corresponding peaks increase in value
instead of decreasing, and clustering cannot be achieved. This occurs
in the Hodgkin-Huxley phase models around ae ≈ 0.275

6 Conclusion

We have demonstrated a potentially effective strategy for
designing controls for achieving clustering of populations
of neuronal oscillators. Simulations of both phase models
and full state models have demonstrated a significant
improvement in cost when employing our input of
maximal instantaneous efficiency (IMIE) as compared
to other methods that make use of the same level of
information when generating a closed-loop control strategy.

Additionally, this method works not only for identical
uncoupled neurons, but can be extended to accommodate
weak to moderate coupling as well. Future work will
focus in part on continuing to relax the restrictions on the
heterogeneity of the neuron population. In the context of
the phase model, variations in the natural frequency ω may
be handled a manner similar to the method used in this
paper to address weak coupling, provided these variations
are sufficiently small. Heterogeneity that manifests in the
phase response curve does not require a change in the
overall structure of the control; it does, however, force us to
relax the boundedness of the response. This may be handled
by re-numbering neurons when their ordering changes. An
exploration of the limits of this method is deferred to future
work.

The use of two separate neural models, the Hodgkin-
Huxley and thalamic models, demonstrates the robustness
of the control strategy. While the Hodgkin-Huxley model
is not physically relevant to the specific research areas
of interest, the thalamic model provides a direct link to
problems such as essential tremor. Research such as Hua
et al. (1998) shows the correspondence between the firing
behavior of singular neurons in the thalamus and the tremors
in essential tremor, and Cagnan et al. (2013) indicates that
DBS modifies and entrains the firing of oscillators in the
thalamus. The flexibility of the control strategy we have
presented allows it to achieve the same or similar results as
conventional DBS, potentially at a fraction of the cost.

In the case of PD, the behavior of the basal ganglia
is complex and involves the interplay of neurons in the
STN, GPi, and other portions of the basal ganglia. As
such, developing a control to generate desynchronization of
firing activity is more complicated than in the case of the
two models presented here. Ultimately, however, IMIE is
sufficiently general that the only requirement for generating
a control based on its principles is to extract the relevant
oscillatory dynamics from the model of interest. While a
full application to the clinical problem of PD is beyond the
scope of this paper, there is no inherent limitation in the
strategy described that bars its application to PD or other
complex systems; the challenge lies instead in generating
the appropriate modeling of these systems with which to
employ IMIE.
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