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Transient growth for streak-streamwise vortex interactions
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Abstract

We analyze transient growth due to the linear interaction between streaks and streamwise vortices. We obtain initial perturbations which give
optimal initial and total energy growth, characterize the dependence of the dynamics on the initial distribution of perturbation energy, and compare
with results from pseudospectra analysis.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Shear flows are fluid flows which are non-homogeneous with
a mean shear. Turbulent shear flows are of great fundamental
physical and mathematical interest because [3]: (i) Turbulence
is found both experimentally and in numerical simulations for
values of the Reynolds number well below the value at which
the laminar state loses stability [1], and (ii) the governing partial
differential equations possess numerous branches of (unstable)
steady or traveling states consisting of wavy streamwise vor-
tices and streaks that arise in saddle-node bifurcations [4–7].
Such solutions have recently been detected experimentally [3,
8], but their relevance to turbulence remains unclear.

It has been suggested that transient energy growth provides
a good basis for understanding property (i) (e.g. [2,23]). Such
transient growth can significantly amplify small perturbations
to the laminar state which can trigger non-linear effects that
lead to sustained turbulence via the self-sustaining process
identified in [12,13]. In this Letter, we analyze transient growth
due to the linear interaction of the streak and streamwise vortex
modes from the nine-mode model from [10,14]. This is a model
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for sinusoidal shear flow, which obeys the non-dimensional
equations

∂u
∂t

= −(u · ∇)u − ∇p + 1

Re
∇2u + F(y),

(1)∇ · u = 0,

where the Reynolds number and body force are defined as

(2)Re = U0d

2ν
, F(y) =

√
2π2

4Re
sin(πy/2)êx,

U0 is the characteristic velocity and ν is the kinematic viscosity.
The free-slip boundary conditions

(3)uy = 0,
∂ux

∂y
= ∂uz

∂y
= 0

are imposed at y = ±1, and the flow is assumed periodic in the
streamwise (x) and spanwise (z) directions, with lengths Lx and
Lz, respectively. The laminar profile for sinusoidal shear flow,

(4)U(y) = √
2 sin(πy/2)êx

is linearly stable for all Re [1]. In the following, we let α =
2π/Lx , β = π/2, and γ = 2π/Lz. Although difficult to obtain
experimentally, sinusoidal shear flow represents a non-trivial
shear flow which is amenable to analytical treatment; it is hoped
that the knowledge gained from the present analysis will be
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helpful for characterizing other shear flows such as plane Cou-
ette flow, boundary layer flow, Poiseuille flow, and pipe flow.

In Section 2, a geometric interpretation of transient growth
due to the interaction between streaks and streamwise vortices
is given. Then, the details of how such transient growth depends
on initial conditions, Re, and aspect ratio are derived. Further-
more, the neutral transient growth curve, below which no initial
condition gives transient energy growth, is found and discussed.
In Section 3, the transient energy growth is interpreted using
pseudospectra analysis, where a lower bound for the maximum
attainable energy is obtained using Kreiss’ theorem. We will see
that the analysis in Section 2 gives a sharper characterization of
the transient growth than that in Section 3. Our conclusions are
given in Section 4.

2. Transient growth for the streak-streamwise vortex
interaction

The matrix M arising from the linearization of the nine-
mode model from [10] about the laminar state is non-normal,
i.e., MMT �= MT M . This suggests that even though its eigen-
values are all strictly negative for all Re, corresponding to linear
stability of the laminar state, it might be possible to have tran-
sient growth of energy which could trigger non-linear effects
that sustain turbulence [2,25]. In this section, a detailed analy-
sis is conducted for the transient growth which occurs for the
2 × 2 block of M that corresponds to the linear evolution of the
amplitudes a2 and a3, which give the amplitudes of the stream-
wise invariant streak and streamwise vortex modes

u2 =
⎛
⎝ 4√

3
cos2(πy/2) cos(γ z)

0
0

⎞
⎠ ,

(5)u3 = 2√
4γ 2 + π2

( 0
2γ cos(πy/2) cos(γ z)

π sin(πy/2) sin(γ z)

)
,

respectively. We focus on this interaction because it gives the
strongest transient energy growth compared to the other inter-
actions of the linearized nine-dimensional model. Furthermore,
streaks and streamwise vortices are dominant structures in nu-
merical simulations and are related to unstable steady solutions
of the Navier–Stokes equations [4–6,9]. Finally, they are related
to optimal perturbations [17] and are the most energetically ex-
cited structures of the linearized Navier–Stokes equations with
forced input and can be explained as input–output resonances
of frequency responses [19].

A Galerkin projection onto these modes gives the linear sys-
tem

(6)

(
ȧ2
ȧ3

)
=

(
b c

0 d

)
︸ ︷︷ ︸

M23

(
a2
a3

)
,

b = −
4β2

3 + γ 2

Re
=O

(
Re−1), c = −

√
3/2βγ√
β2 + γ 2

=O
(
Re0),

(7)d = −β2 + γ 2

Re
=O

(
Re−1).
Here and elsewhere we give the scaling behavior for large Re.
The laminar state corresponds to a2 = a3 = 0; the stability of
the laminar state with respect to streak and streamwise vortex
perturbations follows from the fact that the eigenvalues b and d

of M23 are negative. The exact solution to (6) is readily shown
to be

(8)a2(t) = a20e
bt + c

d − b
a30

(
edt − ebt

)
, a3(t) = a30e

dt .

For this system, the energy is defined to be E(t) = (a2(t))
2 +

(a3(t))
2. We note that (6) also arises in the linearization of the

eight-mode model from [13] and the uncoupled-mode model
from [15] about the laminar state, with the same Re dependence
of b, c, d but with different values.

2.1. Geometric interpretation of transient energy growth

The solution (8) can be rewritten in a form which allows an
instructive geometric interpretation of transient energy growth,
namely

(9)a(t) = (
a2(t), a3(t)

) = v1b10e
bt︸ ︷︷ ︸

s1(t)

+v2b20e
dt︸ ︷︷ ︸

s2(t)

,

where formulas for b10 and b20 in terms of a20 and a30 are read-
ily obtained, and v1 and v2 are the normalized eigenvectors for
M23. Since M23 is non-normal, v1 and v2 are non-orthogonal;
for example, for the values Lz = 1.2π and Re = 400 studied
below, they are almost anti-parallel. For the related system of
plane Couette flow, these parameters correspond to the mini-
mal flow unit, the smallest domain which is found numerically
to sustain turbulence [16]. A small-amplitude initial condition
is thus the superposition of two very large-amplitude compo-
nents; i.e., |s1(0)| and |s2(0)| are large, as sketched in the left
panels of Fig. 1. For the linear system, b < d < 0, so the length
of s1(t) decays more quickly than the length of s2(t). This
leads to an a(t) with larger length (and hence larger energy)
than a(0), as sketched in the right panel of Fig. 1(a); thus, tran-
sient growth has occurred. For longer times, the length of s2(t)

also decreases substantially, and the system asymptotically ap-
proaches the laminar state with a2 = a3 = 0.

For other initial conditions, transient energy growth might
not occur: see Fig. 1(b). Clearly, the energy initially decreases
with time. Depending on the rate of decay of the length of s2(t),
the energy might always remain below its initial value, or might
eventually grow above its initial value. Such considerations mo-
tivate the following exploration of how transient energy growth
depends on initial conditions.

2.2. Application to the streak-streamwise vortex interaction

A general linear equation ȧ = Aa has the exact solution
a(t) = etAa0, where a0 = a(0). The energy of a solution is
defined as E(t) = |a(t)|2 = ∑

a2
i , where the sum is over the

components of a. It is found that E′(0) = 2a0 · Aa0 ≡ f (a0).
To find the (normalized) initial condition which gives the max-
imum initial energy growth, f (a0) is maximized subject to the
constraint g(a0) ≡ |a0|2 = 1. Using a Lagrange multiplier λ to
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Fig. 1. Geometric interpretation of transient growth. The circles represent constant energy equal to the initial energy. Because v1 and v2 are nearly anti-parallel, the
initial condition is a0 = s1(0) + s2(0) with large |s1(0)| and |s2(0)|, as shown in the left panels of (a) and (b). Because of different decay rates, in the right panels
|s1(t)| < |s2(t)| ≈ |s2(0)|. In (a), |a(t)| > |a0| for short times, so that transient growth occurs. In (b), |a(t)| < |a0|, so that transient growth does not occur, at least
for short times. For clarity, the difference in decay rates is assumed to be large for this figure.
impose this constraint, we obtain (A + AT )a0 = λa0. Thus the
eigenvalues and eigenvectors of A + AT need to be found. It is
also readily shown that a0 · Aa0 = a0 · AT a0, which gives

(10)E′(0) = a0 · (A + AT
)
a0 = λ|a0|2.

Therefore, the largest (respectively, smallest) value that E′(0)

can obtain, when E(0) = |a0|2 = 1, is equal to the largest (re-
spectively, smallest) eigenvalue of the matrix A + AT . The
initial condition that maximizes (respectively, minimizes) the
initial energy growth is the corresponding eigenvector of this
matrix (cf. [11]).

For the present problem, we take A = M23. The maximum
value that E′(0) can take is the larger eigenvalue of M23 +MT

23:

(11)
[
E′(0)

]
max = b + d +

√
b2 + c2 − 2bd + d2,

with corresponding (unnormalized) eigenvector

(12)(a20, a30) =
(

d − b − √
b2 + c2 − 2bd + d2

c
,−1

)
.

For large Re, b → 0 and d → 0, so we find that [E′(0)]max ≈
|c| = O(Re0), and the corresponding (normalized) eigenvector
which maximizes E′(0) is (a20, a30) = (1/

√
2,−1/

√
2 ). This

corresponds to the initial energy being equally distributed be-
tween the streaks and the streamwise vortices; as will be shown
below, the phases between these modes are such that the advec-
tion of fluid by the streamwise vortices reinforces the streaks.

The initial rate of energy growth E′(0) clearly depends on
the initial distribution of energy between the streamwise vor-
tices and the streaks. Let E(0) = a2

20 + a2
30 = 1, and θ =

tan−1(a30/a20), where θ = 0 corresponds to the initial energy
being entirely in the streaks. Differentiating E(t) and using (6)
gives

(13)E′(0) = b + d + (b − d) cos 2θ + c sin 2θ.

This is periodic with period π because rotation of θ by π

corresponds to multiplication of a20 and a30 by −1, which
has only a trivial effect for a linear problem. For large Re,
E′(0) ≈ c sin 2θ = O(Re0). E′(0) reaches its maximum value
of |c| for θ ≈ 3π/4 and θ ≈ 7π/4, and its minimum value of
−|c| for θ ≈ π/4 and θ ≈ 5π/4 (recall that c < 0). These re-
sults demonstrate how different initial distributions of energy
affect the transient dynamics of the system.

Progress can also be made in understanding how the maxi-
mum value that E(t) reaches under the linear evolution depends
on the initial distribution of energy between streamwise vortices
and streaks, as captured by θ . In the limit of large Re, from (8)
and using E(0) = a2

20 + a2
30 = 1,

(14)

E(t) = [
a2(t)

]2 + [
a3(t)

]2 ≈
(

c

d − b

)2(
edt − ebt

)2 sin2 θ.

The above also requires that θ is not too close to 0 or π , so that
the first term of a2(t) in (8) has a small magnitude relative to
the second term. By solving E′(t) = 0 for t using (14), E(t)

reaches its maximum at

(15)tmaxE ≈ log(d/b)

b − d
=O(Re),

with

Emax ≈ E(tmaxE)

≈
(

c

d − b

)2

× (
bb/(d−b)db/(b−d) − bd/(d−b)dd(b−d)

)2 sin2 θ

(16)=O
(
Re2).

The absolute maximum energy that can occur for the linear dy-
namics of the modes for streaks and streamwise vortices, for
large fixed Re, thus occurs for θ ≈ π/2 and θ ≈ 3π/2. This cor-
responds to the initial energy being entirely in the streamwise
vortices. Note that the initial conditions which maximize E′(0)

give sin2 θ = 1/2, so that for large Re the absolute maximum
energy is double the maximum energy obtained for the initial
condition which maximizes initial energy growth. Furthermore,
note that when θ is sufficiently close to 0 or π , the approx-
imations (14) and (16) are not valid, and Emax = E(0). For
example, θ = 0 implies that a30 = 0, and that E(t) = a2

20e
2bt

is monotonically decreasing.
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Fig. 2. Neutral transient growth curve Re∗(γ ). Above this curve, E′(0) > 0 for some initial distribution of energy as captured by θ . Below this curve, there are no
such θ values. As discussed in the text, above this curve it is also possible to find an initial condition for which E(t) > E(0) for some t > 0, while below this curve
there is no such initial condition.
2.3. Neutral transient growth

As just shown, initial conditions have a dramatic effect on
transient energy growth. A neutral transient growth curve, be-
low which no initial condition gives transient energy growth,
can be found by solving [E′(0)]max for Re from (11). Using
(7), this gives the curve

(17)Re∗(γ ) = 2
√

2(β2 + γ 2)2(4β2 + 3γ 2)

3βγ
,

see Fig. 2. For a given aspect ratio γ , for Re > Re∗(γ ) it is
possible to find an initial condition with initial transient en-
ergy growth, while for Re < Re∗(γ ) there are no such ini-
tial conditions. It is found that Re∗(γ ) reaches a minimum
at γ ∗ = 1.1634 with Re∗(γ ∗) = 7.3573. For Re < Re∗(γ ∗),
there are no possible initial conditions for which E′(0) > 0.
For Re > Re∗(γ ∗), there will be a band of θ values for which
E′(0) > 0. There is a larger band of initial θ values for which
E(t) > E(0) for some t > 0, that is, for which the energy even-
tually exceeds its initial value. As detailed in [22], for a given
γ and Re, the boundary of this band is readily found by numer-
ically finding the roots of an appropriate equation.

Interestingly, the curve for Re∗(γ ) given by (17) coincides
with the curve above which it is possible to find an initial con-
dition for which E(t) > E(0) for some t > 0, and below which
there is no such initial condition. Without loss of generality,
take E(0) = 1. Certainly this new curve cannot lie above the
curve for Re∗(γ ), because E′(0) > 0 for some θ guarantees
that E(t) > E(0) for some t > 0 for that initial condition. In-
stead, suppose that one chooses Re < Re∗(γ ∗), so that for all
θ values E′(0) < 0. If there is a t1 such that E(t1) = E(0) = 1
and E′(t1) > 0, then E(t) > E(0) for some t > t1 > 0. Now, at
time t1 the solution has unit energy, and corresponds to some
value for θ . If the initial θ value was taken to be this, then it
would result in E′(0) > 0. This contradicts the assumption that
E′(0) < 0 for all θ values. Therefore, the new curve cannot lie
below the curve for Re∗(γ ), so they must coincide.

For a very large aspect ratio system, the curve Re∗(γ ) is
defined to be the neutral transient growth curve, much in the
spirit of neutral stability curves for standard hydrodynamic sta-
bility analysis: for fixed aspect ratio, it defines the value of Re
at which transient growth is possible, while for fixed Re it de-
fines the range of wavenumbers γ for which transient growth is
possible.

2.4. Results for Lz = 1.2π

As a representative example, consider the aspect ratio
Lz = 1.2π . For Re = 400, it was found that the unit en-
ergy initial condition (a2(0), a3(0)) = (0.7066,−0.7076) gives
[E′(0)]max = 1.3717; the large Re prediction is 1.4000. This is
the initial condition which gives the maximum initial energy
growth, corresponding to an approximately equal distribution
of initial energy between the streaks and streamwise vortices.
The absolute maximum energy which can be obtained for the
linear dynamics with unit energy initial condition occurs for
(a2(0), a3(0)) ≈ (0,−1). This initial condition corresponds to
the initial energy being entirely in the streamwise vortices and
gives tmaxE = 70.83 and Emax = 1329.03, which agree well
with the predictions from (15) and (16). Figs. 3 and 4 show the
velocity fields and a2(t), a3(t), and E(t) for both initial condi-
tions, respectively. The vortices advect the fluid as to strengthen
the streaks and since the energy in the streamwise vortices
decays monotonically, the bulk of the energy for both pertur-
bations, when it reaches its peak, is in the streaks. Clearly, it is
possible to get substantial transient energy growth for this sys-
tem which might trigger non-linear effects that lead to sustained
turbulence via the self-sustaining process of [12,13], in which
streamwise vortices cause streak formation, then streaks break
down to give streamwise-dependent flow, then streamwise vor-
tices regenerate and the process repeats. Finally, Fig. 5(a) shows
boundaries of qualitatively different dynamics for E(t) in terms
of Re and θ . Fig. 5(b) shows the time series for E(t) in each dis-
tinct regions at Re = 20. For more details on calculating these
curves see [22].

3. Pseudospectra analysis

An alternative method of analyzing a non-normal matrix is to
calculate its pseudospectrum [20,21], which is a generalization
of eigenvalue analysis. For ε > 0, the ε-pseudospectrum of a
matrix A is defined as

(18)Λε(A) = {
z ∈ C:

∥∥(zI − A)−1
∥∥

2 � ε−1},
with ‖ · ‖2 representing the 2-norm. When z is an eigenvalue
of A, it is useful to take the convention that ‖(zI − A)−1‖2
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Fig. 3. Velocity fields for Lz = 1.2π , Re = 400, and (a) the initial condition which maximizes E′(0), and (b) the state for this initial condition when E is maximized;
(c) the initial condition which gives Emax, the absolute maximum of E, and (d) the state for this initial condition when this Emax is obtained. The velocity fields
are represented by vectors for the components shown in the plane and by grayscale for the velocity perpendicular to the plane. The vectors are identically scaled, so
the shorter arrows in the bottom plot indicate weaker vortices. The laminar profile has been included in these plots.

Fig. 4. Solution for (6) with Lz = 1.2π , and Re = 400 for the initial condition which gives the maximum initial energy growth E′
max(0) (solid lines) and the initial

condition which gives the absolute maximum energy Emax which can occur (dashed lines).
is infinite. Thus, the eigenvalues are given by Λ0(A). The
ε-pseudospectra are closed, and if ε1 < ε2, then Λε1 ⊂ Λε2 .

An equivalent definition of the pseudospectrum is that
Λε(A) is the set of all complex numbers z for which the small-
est singular value of L ≡ zI − A is less than or equal to ε. This
follows from the above definition and the fact that the 2-norm
of (zI −A)−1 equals the smallest singular value of zI −A = L.
The boundary of the ε-pseudospectrum Λε(A) is then found by
setting the smallest singular value of L equal to ε. Recall that
the singular values of L are the square roots of the eigenvalues
of LL†, with the 2-norm of L being equal to its largest singular
value.

Here, we let A = M23, and therefore the ε-pseudospectra can
be found exactly from the definition

L = zI − M23

(19)=
(

z − b −c

0 z − d

)
=

(
X + iY − b −c

0 X + iY − d

)
,

where z = X + iY . The boundary of Λε(A) is found by setting
the square root of the smallest eigenvalue of LL† equal to ε.
Kreiss’ theorem uses pseudospectra to obtain a lower bound for
the maximum attainable energy [20]:

(20)max
t>0

∥∥eAt
∥∥2

2 �
[

sup
ε>0

δ(ε)

ε

]2

,

where the left-hand side is the maximum attainable energy
given a unit energy initial condition, and

(21)δ(ε) = sup
R(z)>0
z∈Λε(A)

(
R(z)

)
,

that is, δ(ε) is the largest distance from the imaginary axis
to a point in the unstable half-plane lying within the ε-
pseudospectrum contour. See [20,22] for a detailed derivation.

3.1. Results for Lz = 1.2π

For Lz = 1.2π , Re = 10, the eigenvalues of M23 are b =
−0.6068 and d = −0.5245. For small values of ε, the boundary
of Λε(M23) is disconnected, with separate components sur-
rounding each eigenvalue individually; for larger values of ε,
the boundary encloses both eigenvalues; see Fig. 6(a). To find a
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Fig. 5. Boundaries of qualitatively different E(t) for Lz = 1.2π . (a) The θ values inside the solid curve correspond to initial conditions for which E′(0) > 0. The θ

values to the right of the dashed curve and to the left of the right branch of the solid curve correspond to initial conditions for which E(t) > E(0) for some t > 0. The
dot-dashed line shows the initial condition giving [E′(0)]max. (b) The points A, B , C, D give the qualitatively distinct behaviors shown in the lower plot describing
time evolution of energy for Re = 20 and E(0) = 1 for (A) θ = 0.5 (dashed), (B) θ = 1.5 (solid), (C) θ = 2.5 (dot-dashed), and (D) θ = 3 (dotted).

Fig. 6. Boundaries for pseudospectra for Lz = 1.2π with (a) Re = 10 and (b) Re = 400, with ε values as labeled.

Fig. 7. (a) Comparison of Emax (solid) to lower bound (dashed) for variable Re values and Lz = 1.2π . (b) shows the same results as (a) but using logarithmic axes.
The dotted line in (b) has slope equal to 2.
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lower bound for Emax, the ratio of δ(ε) to ε was calculated as a
function of ε and was found to be maximized for ε = 2.6, yield-
ing a lower bound which is close to the numerically-obtained
absolute maximum energy of Emax.

Keeping Lz = 1.2π but for Re = 400, the eigenvalues are
much closer to one another, with b = −0.0152, and d =
−0.0131. This means that extremely small ε values, on the or-
der of 10−8, are needed to give boundaries which surround each
eigenvalue individually; see Fig. 6(b). As above, a lower bound
for Emax can be calculated. Here, ε = 5.8 × 10−4 which gives
a lower bound for the maximum attainable energy of 613.70,
which is approximately half the numerically-obtained value of
Emax. Fig. 7 shows the relationship between Emax and the lower
bound obtained using Kreiss’ theorem as a function of Re. The
lower bound becomes less sharp as Re increases, but both the
absolute maximum attainable energy and the lower bound scale
as Re2, the former being expected from (16); see Fig. 7(b).
These results show that although pseudospectra is an impor-
tant tool for studying non-normal matrices, it may not provide
the sharpest results.

4. Conclusion

We have analyzed transient growth due to the linear inter-
action between streaks and streamwise vortices. It was shown
that it is possible to get substantial transient growth before the
system decays to the laminar state and how the magnitude of
growth depends on initial conditions, Re, and aspect ratio. For
large Re, it was found that the maximum energy obtained for the
initial condition which maximizes initial energy growth, which
corresponds to an equal initial energy distribution between the
streaks and streamwise vortices, is half the absolute maximum
energy, which is obtained when the initial energy is entirely in
the streamwise vortices. Furthermore, a neutral transient growth
curve, below which no initial condition gives transient growth
was found. The results were compared with an alternative inter-
pretation of transient growth using pseudospectra, which gives
to a lower bound for the maximum attainable energy. Our analy-
sis allowed for a sharper characterization of transient growth
than can be obtained from pseudospectra.

It is worth emphasizing that these results provide much more
insight into the dynamics of this interaction than standard sta-
bility analysis, which just calculates eigenvalues, and hence
only captures asymptotic behavior. Furthermore, the standard
analysis would not identify key differences in the situation, for
example, in which there is an equal initial distribution of energy
between streaks and rolls, or when the energy is all initially in
the streamwise vortices. The analysis in this Letter overcomes
these limitations by usefully capturing the transient behavior
and the importance of different initial distributions of energy.
The results show that the linear dynamics of the streaks
and streamwise vortices can lead to substantial transient growth
and are consistent with previous results for plane Couette flow
[17] and Taylor–Couette flow [18,24]. The approach presented
in this Letter has the advantage of exploring how the results
depend on the aspect ratio, Reynolds number, and initial condi-
tions. An investigation into the role of transient growth for trig-
gering non-linear interactions and the transition to turbulence,
in the context of the full nonlinear nine-dimensional model of
[10], is currently in progress.
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