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Abstract Information propagation in social media

depends not only on the static follower structure but also on

the topic-specific user behavior. Hence, novel models

incorporating dynamic user behavior are needed. To this

end, we propose a model for individual social media users,

termed a genotype. The genotype is a per-topic summary of

a user’s interest, activity and susceptibility to adopt new

information. We demonstrate that user genotypes remain

invariant within a topic by adopting them for classification

of new information spread in large-scale real networks.

Furthermore, we extract topic-specific influence backbone

structures based on content adoption and show that their

structure differs significantly from the static follower net-

work. We also find, at the population level using a simple

contagion model, that hashtags of a known topic propagate

at the greatest rate on backbone networks of the same topic.

When employed for influence prediction of new content

spread, our genotype model and influence backbones

enable more than 20 % improvement, compared to purely

structural features. It is also demonstrated that knowledge

of user genotypes and influence backbones allows for the

design of effective strategies for latency minimization of

topic-specific information spread.

1 Introduction

Trends and influence in social media are mediated by the

individual behavior of users and organizations embedded

in a follower/subscription network. The social media net-

work structure differs from a friendship network in that

users are allowed to follow any other user and follower

links are not necessarily bi-directional. While a link

enables a possible influence channel, it is not always an

active entity, since a follower is not necessarily interested

in all of the content that a followee posts. Furthermore, two

individuals are likely to regard the same token of infor-

mation differently. Understanding how information spreads

and which links are active requires characterizing the

users’ individual behavior, and thus going beyond the static

network structure. A natural question then arises: Are

social media users consistent in their interest and suscep-

tibility to certain topics?

In this work, we answer the above question by demon-

strating a persistent topic-specific behavior in real-world

social media. We propose a user model, termed genotype,

that summarizes a user’s topic-specific footprint in the

information dissemination process, based on empirical

data. The social media genotype, similar to a biological

genotype, captures unique user traits and variations in
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different genes (topics). Within the genotype model, a node

becomes an individual represented by a set of unique

invariant properties.

For our particular analysis, the genotypes summarize the

propensity and activity level in adoption, transformation,

and propagation of information within the context of dif-

ferent topics. We propose a specific set of properties

describing the adoption and use of topic-specific Twitter

hashtags—tokens that annotate messages and allow users

to participate in global discussions (Tsur and Rappoport

2012). The model, however, applies to more general set-

tings capturing, for example, dissemination of URLs or

sentiments in the network.

We construct the genome (collection of user genotypes)

of a large social media dataset from Twitter, comprised of

both follower structure and associated posts. The existence

of stable genotypes (behavior) leads to natural further

questions: Can this consistent user behavior be employed

to categorize novel information based on its spread pattern?

Can one utilize the genotypes and the topic-specific influ-

ence backbone to (1) predict likely adopters/influencers for

new information from a known topic and (2) improve the

network utility by reducing latency of disseminated infor-

mation? We explore the potential of the genotype model to

answer the above questions within the context of Twitter.

To validate the consistency of genotypes, we show that

combining genotype-based classifiers into a composite

(network-wide) classifier achieves accuracy of 87 % in

predicting the topic of novel hashtags that spread in the

network. We extract and analyze topic-specific influence

backbone networks and show that they structurally differ

from the static follower network. When considering the

population-level dynamics, using a simple contagion

model, we show that hashtags of a known topic propagate

at the greatest rate on backbone networks of the same topic,

and that this result is consistent with the local user model.

We, then, turn to two important applications: influence

prediction and topic-specific latency minimization. We

achieve 20 % improvement in predicting influencers/

adopters for novel hashtags, based on our model, as com-

pared to relying solely on the follower structure. We also

demonstrate that knowledge of individual user genotypes

allows for effective reduction in the average time for

information dissemination (a twofold reduction by modi-

fying the behavior of 1% of the nodes).

Our contributions include: (1) proposing a genotype

model for social media users’ behavior that enables a rich-

network analysis; (2) validating the consistency of the

individual genotype model; (3) quantifying the differences

of behavior-based influence backbones from the static

network structure in a large real-world network; (4)

showing that the propagation rate on each topic backbone

is greatest for hashtags of the same topic; and (5)

employing genotypes and backbone structure for adopter/

influencer prediction and latency minimization of infor-

mation spread. Many of these results were presented

in Bogdanov et al. (2013), yet the results and discussion of

(6) are entirely original to this manuscript. Furthermore,

the methods and interpretations of all results herein are

presented in greater detail, with emphasis on novel

insights.

2 Related work

The network structure has been central in studying influ-

ence and information dissemination in traditional social

network research (Kempe et al. 2003; Kimura et al. 2010).

Large social media systems, different from traditional

social networks, tend to exhibit relatively denser follower

structure, non-homogeneous participation of nodes, and

topic specialization/interest of individual users. Twitter, for

example, is known to be structurally different from human

social networks (Kwak et al. 2010), and the intrinsic topics

of circulated hashtags are central to their adoption (Romero

et al. 2011).

A diverse body of research has been dedicated to

understanding influence and information spread on net-

works, from theories in sociology (Friedkin 2006) to epi-

demiology (Hethcote 2000; Newman 2003), leading to

empirical large-scale studies enabled by social web sys-

tems (Romero et al. 2011; Dodds et al. 2011; Yang and

Leskovec 2011; Bandari et al. 2012). Here, we postulate

that the influence structure varies across topics (Weng et al.

2010) and is further personalized for individual node pairs.

Lin and colleagues (Lin et al. 2011) also focus on topic-

specific diffusion by co-learning latent topics and their

evolution in online communities. The diffusion that the

authors of Lin et al. (2011) predict is implicit, meaning that

nodes are part of the diffusion if they use language corre-

sponding to the latent topics. In contrast, we focus on topic-

specific user genotypes and influence structures concerned

with passing of observable information tokens and their

temporal adoption properties.

Earlier data-centered studies have shown that sentiment

(Dodds et al. 2011) and local network structure (Romero

et al. 2011) have an effect on the spread of ideas. The

novelty of our approach is the focus on content features to

which users react. Previous content-based analyses of

Tweets have adopted latent topic models (Suh et al. 2010;

Ramage et al. 2010). We tie both content and behavioral

features to the network’s individuals.

With regard to influence network structure and author-

itative sources discovery, Rodriguez and colleagues (Go-

mez Rodriguez et al. 2013) were able to infer the structure

and dynamics of information (influence) pathways, based
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on the spread of memes or keywords. Bakshy et al. (2011)

focus on Twitter influencers who are roots of large cas-

cades and have many followers, while Pal and Counts

(2011) adopt clustering and ranking based on structural and

content characteristics to discover authoritative users.

Although the above works are similar to ours in that they

focus on influence structures and user summaries, our

genotype targets capturing the invariant user behavior and

information spread within topics as a whole, involving a

collection of topically related information parcels.

Our framework is inspired by biology and evolution,

similar to Reali and Griffiths (2010). We broaden the

genotype interpretation beyond word variants, and dem-

onstrate their predictive utility. Our goal was to treat the

observable content as a genetic parcel of information that

users pass on to one another, while potentially introducing

a delay or alteration to the message. An added benefit of

this approach is that similarity of behavior toward certain

types of messages among users may indicate social affinity

(of interests, attitudes, etc.), provide important information

about transmission paths in the network, and predict future

edge formation (De Choudhury 2011).

Improving the network structure and utility has been

considered in the influence maximization (Kempe et al.

2003) problem with the purpose of maximizing the

expected set of nodes that eventually adopt specific infor-

mation, assuming uniform probabilistic spread to neighbors

and a specific infection process. In contrast, we employ

empirical user latency of information adoption and opti-

mize for the speed of spread. This approach can be com-

bined with our proposed node latency reduction, but we

leave such extensions for future work and focus on dem-

onstrating the utility of genotypes.

Directed Twitter links do not necessarily represent

friendship ties but sometimes merely interest in the infor-

mation produced by the followee. This leads to a denser

link structure than in traditional social networks. As such, a

follower network provides a middle ground between tra-

ditional broadcast media distribution (some nodes repre-

sent media outlets with millions of followers) and a more

personal information exchange. Recent research has dem-

onstrated that many follower links are actually recipro-

cal Weng et al. (2010), suggesting that a significant portion

of the network actually corresponds to personal friendship

ties. On the other hand, there are a number of extremely

high fan-out nodes corresponding to media outlets, com-

panies and prominent public figures. As a result, it is dif-

ficult to judge how individual influence propagates in the

network by simply observing the network structure on its

own. Instead this task requires understanding of the

behavior of nodes.

With regards to population-level dynamic behavior on a

network, the spread of information on a network has been

primarily explored using models adopted from epidemiol-

ogy (Hethcote 2000; Newman 2003), and have been

applied to describe propagation rates of memes (i.e.,

Twitter hashtags) in social media (Lehmann et al. 2012).

We adopt these methods of analysis to evaluate the popu-

lation-level topic behavior on influence networks, and

assume a simple contagion model as the underlying prop-

agation process in our data sets.

3 Genotype model

Here we define our genotype model capturing the topic-

specific behavior of a single user (node) within a social

media network. Our main premise is that, based on

observed network behavior, we can derive a consistent

signature of a user. Hence, the genotype model is an

individual user model, by definition, in the sense that it

represents the behavioral traits of a social network user. For

our analysis, the genotype captures adoption and reposting

of new information, activity levels, and latency of reaction

to new information sent by influential neighbors. Other

behavioral traits can be incorporated as well. The genotype

is topic specific as we summarize the behavioral traits with

respect to a set of predefined topics.

A social media network NðU;EÞ is a set of users (nodes)

U and a set of follow links E. A directed follow link e ¼
ðu; vÞ; e 2 E connects a source user u (followee) to a des-

tination user v (follower). The network structure deter-

mines how users get exposed to information posted by their

followees. The static network does not necessarily capture

influence as users do not react to all information to which

they are exposed. To account for the latter, we model the

behavior of individual users taking into account their

context in the follower network.

In its most general form, a user’s genotype Gu is an

entity embedded in a multi-dimensional feature space that

summarizes the observable behavior of user u with respect

to different topics. It is up to the practitioner to define the

different dimensions of the topic feature space and the

relevant aspects of observable behavior in the network

locality of a node. Each genotype value can be viewed as

an allele that the user introduces to the process of message

propagation through a network.

In our study, we focus on hashtag usage within Twitter,

since hashtags are simple user-generated tokens that

annotate tweets generated by either a social group or des-

ignating a specific social phenomenon, and are often

‘‘learned’’ from others on the social network (Tsur and

Rappoport 2012). In this context, a hashtag serves as a

genetic parcel of cultural information, just like alleles of a

gene within a biological context. Hashtags can be associ-

ated with topics such that an individual’s response to a
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collection of hashtags within a topic indicates a user’s

propensity to respond to other hashtags within that same

topic.

We consider a finite set of hashtags H ¼ hf g, each

associated with a topic Ti 2 T . To obtain the genotype, we

analyze the social media message (tweet) stream produced

by a user u, with respect to H. Let us define mð�Þ to be a

function that maps each occurrence of ðu; hÞ to a real

values m : fðu; hÞg7!R. The set of hashtags associated with

topic Ti and adopted by user u are denoted as

Hðu;TiÞ :¼ fhgTi
\ fhgu, where fhgTi

is the set of hashtags

in topic Ti and fhgu is the set of hashtags adopted by user u.

The ith element of the user genotype Gu is the set of

fmðu; hÞ j h 2 Hðu;TiÞg values. We remark that this set of

values may also be reduced to their average value or some

approximated distribution function if one wishes to have a

coarser representation of the data.

To construct each user’s topic genotype from empirical

data, we consider a variety of metrics mð�Þ for ðu; hÞ pairs,

listed in Table 1. These metrics serve the purpose of

quantifying a user’s response to a hashtag by defining the

data values that are used to estimate the topic distributions.

While TIME and N-USES are intuitively obvious metric

choices, LAT and LOG-LAT are novel to this manuscript.

N-PAR and F-PAR have been previously studied in a dif-

ferent context (Romero et al. 2011), and are included here

for comparison.

While we define the user genotypes based on adoption

of hashtags in Twitter similar models can be built in other

networks as well. The follower network structure in Twitter

forms a directed graph and hence the definition can be

easily generalized to undirected networks such as those of

systems like Facebook and Google?. Instead of hashtags

one can focus on other aspects of behavior such as adoption

of new phrases, hyper-links or other tokens that carry

topical information.

4 Datasets

We chose Twitter to analyze user behavior via our geno-

type model since Twitter has millions of active users and

messages have a known source, audience, time stamp and

content. Similar analysis can be performed in other social

media networks with a known follower structure and

knowledge of the shared content (memes, URLs or buzz

words) in time.

4.1 Twitter follower structure and messages

We use two datasets from Twitter: a large dataset SNAP

(Yang and Leskovec 2011) including a 20 % sample of all

tweets over a 6-month period and the complete follower

structure (Kwak et al. 2010); and a smaller CRAWL

dataset containing all messages of included users that we

collected using Twitter’s public API in 2012, where we

started from initial seed nodes (members of the authors’

labs) and crawled the follower structure and related posts.

SNAP includes a network-wide view for a 6-month period,

while CRAWL provides longitudinal completeness for a

smaller subnetwork of users. Statistics of the two datasets

are summarized in Table 2.

The SNAP dataset contains 467 million posts from June

to December 2009. The follower structure is based on the

complete follower crawl of Kwak et al. (2010) including

over 42 million Twitter users. CRAWL contains 14.5

million Twitter posts from March 2006 to May 2012. The

CRAWL follower structure was obtained at the time of

Table 1 Behavior-based metrics that are components of the topic-specific user genotype

Metric Function definition Notes

Time TIMEðu; hÞ ¼ minðu;hÞðtðu; hÞÞ �minv2Vu
ðtðv; hÞÞ, where tðu; hÞ is the

time ðu; hÞ occurs and Vu is the set of followees of u

The absolute amount of time between a users first

exposure to the given hashtag and his first use of

that same hashtag

Number of uses N-USESðu; hÞ ¼ fðu; hÞgj j, where j � j is the cardinality function The total number of occurrences of the ðu; hÞ pair

Number of parents N-PARðu; hÞ ¼ fv 2 Vu j tðv; hÞ\tðu; hÞgj j The number of followees to adopt before the

given user

Fraction of parents F-PAR ¼ N-PARðu; hÞ= Vuj j The fraction of a user’s followees who have

adopted the hashtag prior to the user

Latency LATðu; hÞ ¼ fhj 2 HTi
j HTi

3 h
�
�
�

, and tðu; hjÞ\tðu; hÞg
�
�
��1 The inverse of the number of same-topic hashtags

posted to the user’s time-line between his first

exposure to the hashtag and his first use of the

hashtag

Log-latency LOG�LATðu; hÞ ¼ log LATðu; hÞ=AvgðLATðw; hÞð s:t:w 2 UÞÞ The logarithm of each latency value after each

latency value has been divided by the mean

latency value for that hashtag.
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crawling the tweets and includes 9,468 users and 2.5 mil-

lion follower links (the number of links includes followees

for whom we do not have tweets). Due to its size, CRAWL

has a sparser hashtag representation (e.g., no hashtags from

our curated list of celebrity-related hashtags). We repro-

duce our experiments in both datasets in order to evaluate

the effect of sub-sampling the messages in SNAP. The

behavior and utility of our genotype model is persistent for

both datasets.

The data values for each genotype metric are likely to be

affected by the fact that 80 % of the SNAP users’ messages

were not recorded. In addition, not all hashtags we

encounter can be attributed to a topic. Nonetheless, all

metrics in this study are affected equally, and evaluated

relative to each other. Obtaining complete snapshots of

network structure at any given point in time in these

experiments is untenable. Thus, we acknowledge this

limitation and cast our results in the context of only what is

known about the network structures and posts within the

respective datasets.

4.2 Grouping hashtags into topics

While hashtags present a concise vocabulary to annotate

content, they are free-text user-defined entities. Hence, we

need to group them into topics in order to summarize user

behavior at the topic level. In this work, we assume each

hashtag belongs to exactly one topic, while in a more

general framework disseminated hashtags (URLs, memes,

etc.) can be ‘‘softly’’ assigned to more than one topic. We

work with five general topics as dimensions for our user

genotypes: sports, politics, celebrities, business and sci-

ence/technology. We obtain a set of 100 hashtag annota-

tions from a recent work by Romero and colleagues

(Romero et al. 2011), further augmented by a set of curated

business-related hashtags (Ribiero 2012). We combine this

initial set of annotated hashtags with a larger set based on

text classification.

To increase the number of considered hashtags, we

adopt a systematic approach for annotating hashtags based

on URLs within the tweets. To associate tweets with topics,

we treat user-generated hashtags as tokens that carry top-

ical identity, similar to previous studies (Romero et al.

2011). Users include hashtags to annotate (topically) their

tweets and to participate in a specific community discus-

sion (Yang and Leskovec 2011). Adopting the appropriate

hashtag for a message ensures better chances of surfacing

the content in search as well as attracting the attention of

interested followers.

We pair non-annotated hashtags with web URLs, based

on co-occurrence within posts. We extract relevant text

content from each URL destination (most commonly news

articles from foxnews.com, cnn.com, bbc.co.uk) and build

a corpus of texts related to each hashtag. We then classify

the URL texts in one of our 5 topics using the MALLET

(McCallum 2002) text classification framework trained for

our topics of interest. In order to train the MALLET

(McCallum 2002) topic classifier, we use annotated text

from two widely used topic-annotated text collections: the

20 newsgroups dataset (Rennie 2008) and the News Space

(Gulli 2012). Additional ground-truth text collections can

be used for wider topic coverage and to improve the

accuracy.

As a result, we get a frequency distribution of topic

classification for frequent (associated with at least 5 texts)

hashtags. The topic annotation of the hashtag is the topic of

highest frequency. The number of hashtags and their usage

statistics in our final topic-annotated set are presented in

Table 2 (columns Users and Uses/HT). The celebrities

hashtags do not occur frequently enough in the CRAWL

dataset and hence we exclude them from our analysis.

4.2.1 Discussion

Alternative information retrieval and natural language

processing approaches for annotating tweets into topics can

also be adopted within our framework. Hashtags, as a

means of annotation and defining a universal vocabulary,

are also common in systems for other types of content such

as music, photos and video. Examples include the photo-

sharing social site Flickr, the video-sharing site Youtube,

and music streaming sites such as Last.fm and Pandora. We

believe that our hashtag-based genotype framework might

extend to modeling and analysis of user behavior when

interacting and disseminating photos and multimedia as

well.

We adopt a model in which every information item

(hashtag) is associated with exactly one topic. This par-

ticular way to instantiate our genotype model is the first

attempt to demonstrate the preserved behavior within a

topic. One can naturally extend this to a richer analysis in

which we have ‘‘soft’’ association of content items and

topics. One promising direction is to learn such association

Table 2 Statistics of the SNAP and CRAWL data sets

Topic SNAP (users = 42 M,

tweets = 467 M)

CRAWL (users = 9 K,

tweets = 14.5 M)

Hashtags Users

(k)

Uses/

HT

Hashtags Users Uses/

HT

Business 27 20 1,155 19 1,493 88

Celebrities 32 26 1,009 – – –

Politics 485 349 2,020 121 5,480 49

Sci/Tech 33 415 6,889 63 4,982 100

Sports 98 76 3,274 24 320 14

Soc. Netw. Anal. Min. (2014) 4:204 Page 5 of 16 204

123



using latent topic models such as the ones introduced by

Blei and colleagues (Blei et al. 2003) in lieu of hard topic

classification. Our proposed applications (topic prediction,

latency minimization, and adoption prediction) can then be

extended naturally using the probabilistic association

weights of hashtags for different topics.

5 Genotype model validation in Twitter

To justify the genotype model as a meaningful represen-

tation of social network users, we demonstrate that it is

capable of capturing stable individual user behavior for a

given topic. We seek to evaluate the stability of configu-

ration of multiple users’ genotype values within a topic,

and use a classification task and the obtained (training/

testing) accuracy as a measure of consistency for our

genotype model. Within this context, we compare different

genotype dimensions and evaluate the level to which each

of them captures characteristic invariant properties of a

social media user.

5.1 Topic consistency for individual users

Our hypothesis is that individual users exhibit consistent

behavior of adopting and using hashtags (stable genotype)

within a known topic. If we are able to capture such

invariant user characteristics in our genotype metrics, then

we can turn to employing the genotypes for applications.

We compute genotype values according to our collec-

tion of hashtags with known topics by training a per-user

linear discriminant (LD) topic classifier to learn the

separation among topics. Consider, for example, the

LOG-LAT genotype metric: for a user u, we have a set of

observed LOG-LAT values (based on multiple hashtags)

that are associated with the corresponding topics. If the

user u is consistent in her reaction to all topics, then the

LOG-LAT values per topic will allow the construction of

a classifier with low training and testing error. It is also

noted that each hashtag does end up having a topic dis-

tribution, but for the scope of this study, a sufficient

hashtag classification should at least agree in the topic of

greatest probability/likelihood, which is what is presented

here.

The consistency of user responses is evaluated using a

leave-one-hashtag-out validation. Given the full set of

ðu; hÞ response values, we withhold all pairs including a

validation hashtag h and employ the rest of the pairs

involving hashtags of known topic to estimate the indi-

vidual user’s topic genotype. We repeat this for all geno-

type metrics. The training and testing error rates for this

experiment are presented in Fig. 1, and their similar error

rates demonstrate how consistent users are at classifying

hashtags into topics. In both cases, our genotype metrics

enable significantly lower error rates than a Random model

(i.e., random prediction based on number of hashtags

within a topic), demonstrating that, in general, genotype

metrics capture consistent topic-wise behavior. One

exception is the Politics topic as it has comparatively many

more hashtags than other topics, skewing the random topic

distribution resulting in slightly lower error. Across geno-

type metrics, we observe that normalized latency of

adoption (LOG-LAT) is more consistent per user than

alternatives.

0.0

0.5

1.0

Business Celebrities Politics SciTech Sports

Business Celebrities Politics SciTech Sports

E
rr

or
 R
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e

Training error

Random
F-PAR

LAT
LOG-LAT

N-PAR
N-USES

TIME
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0.5

1.0

E
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 r

at
e

Testing Error

Random
F-PAR

LAT
LOG-LAT

N-PAR
N-USES

TIME

Fig. 1 Training and testing

accuracy of hashtag

classification in a leave-one-out

linear discriminant classification
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5.2 Topic consistency within the network

While individual users may exhibit some inconsistencies in

how they behave with respect to hashtags within a topic, an

ensemble of users’ genotypes remains more consistent

overall. To demonstrate this effect, we extend our classi-

fication-based evaluation to the network level. We imple-

ment a network-wide ensemble-based Naive Bayes (NB)

classifier that combines output of individual user classifiers

to achieve network-wide consensus on the topic classifi-

cation of each validation hashtag.

To implement a Naive Bayes consensus classifier on the

output of each user’s local LD classifier, posterior topic

distributions are required for each topic of each user’s

genotype. We assume normality for these distributions

within each topic, where the mean values are centered

about the correctly classified training hashtags and the

variance is computed from all training hashtags for that

topic. The topic prior distributions are estimated from the

relative proportion of hashtags in each topic, and the

hashtag’s ultimate topic classification is determined by the

maximum posterior likelihood over the network (all user-

wise LD classification outputs).

Table 3 summarizes the testing error rate of our NB

scheme for classifying hashtags into topics in a leave-

one-hashtag-out validation. The consensus error rate

decreases compared to local classifiers (Fig. 1), demon-

strating that the genotypes, as a complex, are more stable

and consistent than individual users. The lowest error

rate of 0.13 is achieved when using the LOG-LAT

metric. The TIME metric happened to be the least

accurate metric of them all, because individual user

response time values (TIME) showed the least discern-

able clustering behavior. The accuracy of the TIME

metric performed most similar to the null (Random)

model when compared the other metrics on a topic-by-

topic basis, but TIME happened to be more biased

towards political hashtags because they occurred most

frequently in the dataset.

The latency genotype metrics that are most invariant

(LAT and LOG-LAT) implicitly normalize their time

scales of response with respect to the user’s own frequency

of activity, which is a feature not captured by the absolute

TIME metric, or any of the other metrics. Furthermore,

both of these metrics incorporate the network structure,

measuring the message offset since the earliest exposure to

the hashtag via a followee. LOG-LAT has a slight advan-

tage over LAT because it suppresses the background noise

of each hashtag measurement. However, LOG-LAT has the

disadvantage of being dependent on a network-wide

latency measurement for the same hashtag, which might be

harder to obtain in practice. In this sense, LAT is a more

practical genotype dimension when summarizing individ-

ual user behavior in real time.

While the system of all user genotypes exhibits sig-

nificant consistency (high classification accuracy), it is

useful to know how many user genotypes are needed to

obtain a good classification (i.e., detect a network-wide

topic-specific spread). We observe an increasing classifi-

cation accuracy with the number of users included in the

NB scheme. Figure 2a and b shows the dependence of

accuracy on number of local LD classifiers included per

topic. All curves increase sharply, indicating that vari-

ability within individuals is easily overcome by consid-

ering a small subset of users within the network. In fact,

the Business and Sci./Tech. accuracies in Fig. 2 are most

accurate for the smallest subset of users (i.e., fewest

number of local classifiers), and then decrease slightly as

less reliable individuals are included in the network clas-

sifier. Overall, the accuracy of the LOG-LAT network

classifier tends to increase faster to its optimal level with

increasing number of local classifiers, since the LOG-LAT

metric features a network-wide normalization and thus

contains global information.

With increasing number of available individual geno-

types, the Business topic requires consistently fewer local

classifiers than the celebrities. One explanation of this

might be a higher heterogeneity of sub-topics within

celebrities and hence lower topic-wide response consis-

tency. For example, many businesses and brand names are

designed to be topically distinct, while celebrities may be

perceived as sports stars, politicians, or company execu-

tives. For topics like the latter, more individual genotypes

are needed to arrive at a correct hashtag classification.

It is important to note that we use classification only as a

way to evaluate if the topic-specific behavior captured by

our genotype metrics is invariant for users. While the

genotypes might be adopted for actual novel information

classification into topics, an improved classifier for such

applications may benefit from combining the genotypes

with textual features of tweets.

Table 3 Error rates of the NB consensus topic classification. E [x] is

the expected error across topics

Bus. Celeb. Poli. Sci./Tech. Sport E [x]

Random error 0.96 0.95 0.28 0.85 0.95 0.45

F-PAR 0.50 0.88 0.61 0.15 0.09 0.41

LAT 0.09 0.46 0.18 0.19 0.25 0.21

LOG-LAT 0.05 0.13 0.19 0.12 0.03 0.13

N-PAR 0.09 0.50 0.88 0.09 0.03 0.40

N-USES 0.45 0.42 0.90 0.22 0.56 0.54

TIME 1.0 1.0 0.01 0.92 0.88 0.61
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6 Topic-specific influence backbones

As we demonstrate in the previous section, user behavior

remains consistent within a topic. A natural question

inspired by this observation is whether topics propagate

within similar regions of the shared medium that is the

follower network structure. By observing the behavior of

agents (adoption, reposting, etc.), one can reveal the

underlying backbones along which topic-specific informa-

tion is disseminated. In this section, we study the propa-

gation of hashtags within Twitter to identify topical

influence backbones—sub-networks that correspond to the

dynamic user behavior. We superimpose the latter over the

static follower structure and perform a thorough compar-

ative analysis to understand their differences in terms of

structure and population-level user behavior. The topical

backbones in combination with the individual user

genotypes will then enable various applications as we show

in the subsequent section.

6.1 Influence backbone definition and structure

An influence edge eiðu; vÞ connects a followee u who has

adopted at least one hashtag h within a topic Ti before the

corresponding follower v. Hence, the influence network

NiðU;EiÞ for topic Ti is a subnetwork of the follower

network NðU;EÞ (including the same set of nodes U and a

subset of the follower edges Ei 2 E). We weight the edges

of the influence network by the number of hashtags

adopted by the followee after the corresponding follower,

and within the same topic.

First, we seek to understand the differences between the

influence backbones and the static follower network. Fig-

ure 3 presents the overlap among influence backbones and

their corresponding follower network. For this comparison,

we augment an influence network with all follower edges

among the same nodes to obtain the corresponding fol-

lower network. In the figure, each network is represented

by a node whose size is proportional to the network size (in

edges). Connection width is proportional to the Jaccard

similarity (JS) (measured as the relative overlap

jEi

T
Ejj=jEi

S
Ejj) of the edge sets of the networks. The

Jaccard similarity for influence and follower networks

varies between 0.16 for sports and 0.3 for celebrities. The

influence networks across topics do not have high overlap

(JS values not exceeding 0.01), with the exception of Sci/

Tech and Politics with JS ¼ 0:07. This may be explained

partially by the fact that these are the largest influence

networks (5 and 11 million edges respectively). Another

reason could be that there are some ‘‘expert’’ nodes who

are influential and active in both topics.

The degree distributions of influence and follower net-

works within a topic maintain a similar shape. Figure 4

shows the in- and out-degree distributions for the sports

networks (in SNAP). The most dramatic change in the

distributions is for small degrees with almost one magni-

tude increase of the nodes of in-degree 1. Users who retain

Fig. 2 Accuracy of the network

classification as a function of

the number of local classifiers

(SNAP). A logistic function is

fit to each topic’s accuracy

Fig. 3 Overlap among topic influence and corresponding follower

sub-networks (in SNAP). Each network is represented as a node, with

every topic represented by an influence (encircled in the middle) and a

follower network. Node sizes are proportional to the size of the

network (ranging from 120 k for celebrities to 42 m for politics

follower). Edge width is proportional to the Jaccard similarity of the

networks (ranging from 10-3 inter-topic edges to 10-1 between

corresponding influence-follower networks)
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only a few influencers tend to have a variable number of

followees, hence the in-degree distribution decreases for

the whole range of degrees.

Beyond network sizes and overlap, we also quantify the

structural differences of the influence backbone in terms of

connected components. A strongly connected component

(SCC) is a set of nodes with directed paths among every

pair, while in a weakly connected component (WCC)

connectivity via edges regardless of their direction is suf-

ficient. Figure 5 compares the sizes of the largest SCC and

WCC in the topic-specific networks as a fraction of the

whole network size. When ignoring the direction (i.e.,

considering WCC), both the influence and follower struc-

tures have a single large component amounting to about

99 % of the network. The communities that are active

within a topic are connected, showing a network effect in

the spread of hashtags, as opposed to multiple disjoint

groups which would suggest a more network-agnostic

adoption. When, however, one takes direction into con-

sideration (SCC bars in Fig. 5), the size of the SCC reduces

drastically in the influence backbones. Less directed cycles

remain in the influence backbone, resulting in a structure

that is close to a directed acyclic graph with designated

root sources (first adopters), middlemen (transmitters) and

leaf consumers. The reduction in the size of the SCC is

most drastic in the celebrities topic, indicative of a more

explicit traditional media structure: sources (celebrity

outlets or profiles) with a large audience of followers and

lacking feedback or cyclic influence.

How does a user’s importance change when comparing

influence to following? In Fig. 5 (bottom) we show the

correlation of node ranking based on number of followers,

followees and PageRank (Brin and Page 1998) in the

influence and follower networks. The correlation of each

pair of rankings is computed according to the Kendall s
rank correlation measure. The correlation is below 0.5 for

all measures and topics. Global network importance

(PageRank) is the most distorted when retaining only

influence edges (0.4 versus 0.5 on average), while locally

nodes with many followers (or followees) tend to retain

proportional degrees in the influence network.

While the follower structure features a lot of reciprocal

(bi-directional) links (above 50 % on average), these

reciprocal links disappear almost completely in the influ-

ence backbone (retaining 4 % on average), as shown in

Fig. 6. This effect is most prominent in the celebrities topic

where reciprocal links drop from 36 % to \1 % in the

influence network. Reciprocal links are related to friend-

ship ties, i.e., nodes who are possibly friends declare

interest in each other’s posting by a bi-directional link.
Fig. 4 Out- and in-degree distributions for the follower and influence

networks for sports (SNAP)
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Fig. 5 Largest weakly and

strongly connected component

(WCC and SCC) sizes as a

fraction of the network size

(top); and Kendall s rank

correlation of node importance

measures for the influence and

follower networks (bottom)

(SNAP)

Soc. Netw. Anal. Min. (2014) 4:204 Page 9 of 16 204

123



When it comes to influence, however, the ties tend to be

uni-directional with only one of the nodes affecting the

other.

Our comparative analysis of the influence and follower

structure demonstrates that the influence backbone is

quantitatively different from the overall follower network.

The explanation for this lies in the fact that the influence

backbone is based on the dynamic behavior of users

(information dissemination on specific topics), while the

follower structure represents the static topic-agnostic

media channels among users. Not all followees tend to

exert the same amount of influence over their audiences in

the actual information dissemination process, giving rise to

distinct topic-specific influence backbones. We obtain

similar behavior in the smaller Twitter data set CRAWL

(omitted due to space limitation).

6.2 Population behavior on topic backbones

Thus far, the topical influence backbone networks are

comprised of the individuals responsive within a given

topic. In addition, the results at the individual scale, as

described in Sect. 5, demonstrate aggregate consistency

among users for how they behave towards hashtags of

similar topic. Since many users are members of more than

one backbone, yet may be more responsive towards one

topic than another, an ensuing question is whether

dynamics on the topic backbones are consistent with

individual behavior. Does the Business backbone, for

example, propagate business hashtags faster than, say, the

Sports backbone? In general, we find this hypothesis to be

true, assuming that the underlying hashtag propagation

process follows a simple epidemic-inspired compartmental

population model.

Compartmental population models are often imple-

mented to study average behavior of a disease or meme

within a population (Hethcote 2000; Newman 2003; Leh-

mann et al. 2012). In the simplest case where we have only

two classes of individuals, susceptible ðSÞ and informed ðIÞ,
a susceptible individual can become informed of a meme,

and once informed will remain informed. Such coarse two-

state models for simple contagions (i.e., cascades) describe

average rates of adoption from one class of individuals to

the next. For static populations, where Sþ I ¼ N for some

fixed population of size N, the dynamics of a typical S-I

process are defined by Newman et al (2003) as:

dI

dt
¼ bIðN � IÞ; ð1Þ

which has the solution

IðtÞ ¼ NIð0Þebt

N þ Ið0Þ ebt � 1ð Þ ;
ð2Þ

where b is the transmission rate and IðtÞ is the size of the

infected population at time t.

One can quantify and compare the contagiousness of a

hashtag on different networks by comparing its respective

b values. An example set of realizations is depicted in Fig.
Fig. 6 Comparison of the percentage of reciprocal (bi-directional)

links in the influence and follower networks

0 50 100 150 200
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Celebrity
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Fig. 7 Example of typical regression result, from data of the Political

hashtag #beck, referring to the political commentator Glenn Beck.

a The measured data (solid lines) and the approximated regression

function (dashed lines) in the unnormalized coordinates, and b the

same data in the normalized coordinates. The plotted curves are

colored according to the topic backbone that the #beck hashtag was

detected on (color figure online)
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7a and b. It is important to note the sigmoidal shape of the

adoption curves and their least-squares approximations.

This sigmoidal shape is characteristic of processes gov-

erned by Eq. (2).

For this particular study, we track a hashtag of known

topic on the Twitter network in order to observe whether or

not the hashtag is most viral on its own topic backbone. We

begin by considering only hashtags that have been tweeted

by users who are members of more than one topic backbone

within the SNAP dataset. A distinct realization of Eq. (1) for

a hashtag is defined by the total population of individuals

who have tweeted that hashtag with respect to time.

When comparing the model defined by Eq. (2) to tem-

poral hashtag data, one needs to account for the fact that

the hashtag may have existed on the network prior to the

time of initiating data acquisition. Hence, the first observed

use of a hashtag in our data is possibly not the actual first

use of that hashtag. To account for this uncertainty of

initial hashtag usage time, we shift the initial tweet of each

hashtag to the origin by an amount of time s, such that

Ið0Þ ¼ 1 in all cases, and add a variable It� to account for

the existence of an informed population before the first

hashtag detection. Therefore, Eq. (2) becomes a regression

problem with four degrees of freedom: N, b, s, and It�. The

least-squares objective function is defined as

minimize
X

i

yðtiÞ � IðtiÞj j2 ð3Þ

for all i data points of the given hashtag. Here, yðtiÞ are the

observed data points, and IðtÞ is given by

IðtÞ ¼ Nebðt�sÞ

N þ ebðt�sÞ � 1ð Þ � It�: ð4Þ

Since Eq. (4) requires a count of only the total population for

IðtÞ rather than the specific backbone network topology, the

backbones are used to identify the subset of topic users

whose collective hashtag adoption makes each IðtÞ signal.

The N, b, s, and It� parameters are deduced from a non-linear

least-squares regression of Eq. (4) on the set of ðt; IðtÞÞ points

for each hashtag realization on a backbone network.

For each hashtag h that is tweeted on more than one

topic backbone B, there exists a transmission rate param-

eter bðhÞ and effective population size NðhÞ for each of

those backbones. In order to compare the bðhÞ parameters

for backbones of different effective population sizes, we

must first normalize each IðtÞ signal with respect to its best

fit NðhÞ. By factoring N out of the right-hand side of Eq.

(1) and dividing both sides of Eq. (1) by N, one obtains

dÎ

dt̂
¼ b̂Îð1� ÎÞ; ð5Þ

where b̂ ¼ bN and Î ¼ I=N. It is also noted that substi-

tuting b ¼ b̂=N into Eq. (2) leads to the normalized time

scale t̂ ¼ t=N. In this normalized setting, one interprets b̂
as the number of interactions per unit of time (i.e., tweets

among individuals that contain the hashtag of interest).

There are many hashtag users who are present on more

than one topic backbone such that when one of these indi-

viduals uses a hashtag, that hashtag is observed to be simul-

taneously propagating on each topic backbone to which the

user belongs. For example, suppose a Business-related

hashtag is used by an individual who is a member of the

Business, Politics, and Sports topic backbones. The true topic

ðTÞ of this particular hashtag is business, and a not true topic

ð:TÞ is either politics or sports. In this case, there will be two

ðT;:TÞ pairs: (business, politics) and (business, sports).

We denote the transmission rate of the hashtag on its

actual topic backbone b̂TðhÞ and the hashtag transmission

rate on an off-topic backbone as b̂:TðhÞ. For each hashtag,

we also denote the Jaccard similarity between the subset of

those hashtag users on the backbones of a ðT ;:TÞ pair as

Jaccard (UTðhÞ;U:TðhÞ), where UTðhÞ :¼ u 2 BT j 8u 2f
ðU; hÞg and U:TðhÞ :¼ u 2 B:T j 8u 2 ðU; hÞf g. Recall that

B represents the topic backbone, and should not be confused

with b, which represents the transmission rate of Eq. (1).

Figure 8a and b shows the data comparing b̂TðhÞ relative

to each b̂:TðhÞ in the vertical dimension, and the Jaccard

similarity of the respective users of h in the corresponding

T and :T backbones, in the horizontal dimension. Overall,

we see that, on average, each hashtag propagates fastest on

its own topic network since an overwhelming majority of

the data points lie below the b̂:TðhÞ=b̂TðhÞ ¼ 1 line.

Figure 8a demonstrates that the relative rates of propaga-

tion tend to increase as the topic backbones increasingly

overlap. This is particularly evident for the business, celeb-

rity, and sports topic backbones. The collection of Sci./Tech

points below the trend line of Fig. 8b indicates that these

hashtags have transmission rates on off-topic backbones

b̂:TðhÞ that are much less than their true topic backbone

b̂TðhÞ. The corresponding points in Fig. 8b indicate which

off-topic backbone yields the transmission rate b̂:TðhÞ.
Outliers in Fig.8a and b are an artifact of the SI model not

being an appropriate underlying model for their data, but are

included in the results because either the T or :T backbones

for the associated hashtag proved to have SI-type behavior.

The outliers, however, have little effect on the trend line

shown in Fig. 8a and b, since the trend line has an average

point-wise residual of 0.15 on the log–log scale shown.

7 Applications of genotypes and backbones

In this section, we employ the user genotypes and the

topic-specific backbones for two important applications:

Soc. Netw. Anal. Min. (2014) 4:204 Page 11 of 16 204

123



(1) prediction of hashtag adopters and influencers and (2)

latency minimization of topical information spread. In both

applications knowledge of individual genotypes and influ-

ence backbones enables superior performance compared to

the static network structure on its own.

7.1 Topic-specific influence prediction

We employ the influence structure and the user genotypes

to predict likely influencers/adopters for a hashtag. We aim

to answer the following question: which followees are

likely to influence a given user to adopt a hashtag of a

certain topic and analogously which followers are likely to

adopt a hashtag? This question is of paramount importance

from both research and practical perspectives. On one

hand, uncovering the provider-seeker influence will further

our understanding of the global information network

dynamics. On the other hand, the question has practical

implications for social media users offering guidelines on

following high-utility sources or keeping the follower

audience engaged.

In this experiment, we consider (u, h) pairs, for users

who have at least 10 followees and have used the hashtag at

least once. The goal is to predict the subset of all followees

who have used the hashtag prior to the user in question and

similarly all adopting followers who are likely to use the

hashtag later. We construct three structural predictors uti-

lizing the follower structure that rank influencers/adopters

by followees, followers and reciprocal links. Ties are

broken in a random manner.

The genotype-based predictors utilize genotypes and

influence edges to rank influencers and adopters. This

group of predictors includes ranking by (1) topic-specific

activity in terms of number of usages of hashtags within the

same topic (dimension N-USES of the genotype) as the

target tag (topic act); (2) general tweeting activity involv-

ing all hashtags (act); and (3) a predictor that combines the

activity and the influence backbone (RW?Act). RW?Act

performs random walks in the influence backbone for the

same topic and considers the probability of visit of the

followees/followers of the target as a weight of the can-

didate. Ties in the probabilities (certain to arise when

candidates are isolated after removing the target hashtag or

lacking influence links altogether) are broken using the

topic-based activity. When a tie is observed in topic-based

activity as well, the overall activity is used for ranking. One

can view the RW?Act predictor as combining act, topic

act and a random walk importance measure in the influence

network. None of the predictors has information about the

spread of the specific hashtag.

A prediction instance is defined by a user u and an

adopted hashtag h. Only a subset Iðu; hÞ of all structural

followees/followers of the user are true influencers/adopt-

ers (positives for the prediction task). Our goal was to

predict the subset of true influence neighbors using their

features and local influence structure (excluding informa-

tion about the same hashtag h). A good predictor ranks the

true neighbors first. In order to overcome the effect of

sparsity in the data, we consider prediction of instances for

which at least one candidate followee is not isolated in the

influence network after removing the links associated with

the target hashtag. We measure true positive and false

positive rates for increasing value of k (the maximal rank

of predicted influencers/adopters) and compute the average

area under the curve (AUC) as a measure of the predictor
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Fig. 8 Relative transmission rate with respect to Jaccard similarity

between two backbones on which a hashtag propagates in the SNAP

dataset. The same data points are shown in both a and b, but with

different marking schemes, and each point in either plot represents a

ðT;:TÞ pair. Color is added to improve marker differentiation.

a Colors indicate the topic backbone on which a given hashtag h is

propagating (i.e., colored by the :T topic). b Colors indicate the true

topic to which the given hashtag h belongs (i.e., colored by the T

topic) (color figure online)
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quality. We report this measure within each topic in Fig. 9

for the SNAP (top) and CRAWL (bottom) datasets and for

influence followees (left) and adopter (right) prediction.

Overall, in both datasets, the genotype-based predictors

outperform the structure-only counterparts. The existence

of a reciprocal follow link is the best structure-only pre-

dictor implying the importance of bi-directional links

which often may correspond to a friendship relation-

ship (Romero et al. 2011). Social friends have been found

to re-share the same information with a very low latency in

a recent large-scale field experiment (Bakshy et al. 2012),

which may also be related to reciprocal links performing

closer to the genotype-based predictors as compared to

number of followees or followers. The genotype-based

predictors relying on topic-specific activity, overall activity

and the influence structure allow over 20 % improvement

with respect to the reciprocity predictor and above twofold

improvement compared to number of followees/followers

predictors. Although node information alone (act and topic

act) provides a good accuracy, this effect is even stronger

when combining them with the knowledge of the topic

influence network in the composite RW?Act predictor.

The RW?Act increases the rank of followees who have

influenced the same user or other users within the same

topic for different hashtags.

RW?Act’s improvement is highest in the business and

sports topics and lowest in politics and SciTech for the

SNAP dataset. This may be due to the fact that in business

and sports there are highly topic-specialized authoritative

users that followers pay attention to, while politics and

sports constitute wider-spread topics that appeal to

everyone, and hence followers tend to adopt them from

their most active followees.

The predictor performance is similar in the CRAWL

dataset (Fig. 9), showing the generalization of our models

to different types of data. The smaller improvement in

CRAWL (compared to SNAP) can be explained partially

by sparser usage of analyzed hashtags or due to possibly

evolving genotypes of users over longer time frames, a

hypothesis we are planning to evaluate in future work.

7.2 Network latency minimization

Another important problem that can be addressed given

knowledge of topic-specific user behavior is that of

improving the speed of information dissemination. Fast

information dissemination is critical for social media-aided

disaster relief, large social movement coordination (such as

the Arab Spring of 2010), as well as time-critical health

information distribution in developing regions. In such

scenarios, genotypes and the influence structure among

users are critical for improving the overall ‘‘latency’’ of the

social media network. In this subsection, we demonstrate

the utility of our individual user models for latency

minimization.

Consider a directed path in a topic-specific influence

backbone N, defined by a sequence of nodes

P ¼ ðu1; u2:::ukÞ. The path latency lðPÞ is defined as the sum

of topic-specific latencies (time measure of the genotype)

lðPÞ ¼
X

j¼1:::k�1

TimeðujÞ; uj 2 P
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Fig. 9 Influential followee and

adopter prediction accuracy. We

consider several predictors of a

user’s influencers by a hashtag

in a known topic. Genotype-

based predictors (act, topic act

and RW?Act) perform better

than follower structure-only

counterparts (follower, followee

and reciprocal)
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of all nodes except the destination. The source-destination

latency (or just latency) lðu1; ukÞ ¼ minP:u1!uk
lðPÞ is

defined as the minimum path latency considering all

directed paths between the target nodes. The concept of

latency is similar to that of shortest path length, except that

‘‘length’’ is measured according to the responsiveness of

traversed nodes (i.e., minimal time until uk’s adoption of a

hashtag introduced by u1). The average network latency is

defined as the mean of all node pair latencies.

Given a directed network NðV ;EÞ and latency for every

node, we define the problem of k Latency Minimization (k-

LatMin) as finding the k best target nodes, whose latency

reduction leads to the largest average network latency

decrease. We assume that specific nodes could be targeted

to reduce their individual latency. In real application sce-

narios, node latency can be reduced by timely and relevant

content recommendation to target nodes and/or financial

incentives. For our analysis we optimistically assume that

every node’s latency could be reduced to 0; however, node-

wise constraints can be incorporated according to known

limitations of users.

One can show (via a reduction from the set cover

problem) that k-LatMin is NP-hard. We consider three

heuristics: Max Lat targets nodes in descending order of

their latency values; Max BC targets nodes in decreasing

order of their structural node betweenness-centrality mea-

sure; and Greedy targets nodes based on their maximal

decrease of average latency combining both structural

(centrality) and genotype (latency) information.

Figure 10 shows the performance of the three heuristics

in minimizing the average latency in subgraphs (of size 500

nodes) of the largest strongly connected components within

the influence backbones of our SNAP dataset. Considering

the node genotypes (Max Lat) or the influence backbone

(Max BC) on their own is less effective than jointly

employing both (Greedy) across all topics. The Greedy

heuristic enables about twofold reduction of the overall

network latency by targeting as few as 1% (5 out of 500

nodes) of the user population. It is interesting to note that in

sports and celebrities, since there are central nodes of large

degrees, the betweenness-centrality criterion performs

almost as good as Greedy.

8 Discussion and future directions

The presented study is a first step towards characterizing

topic-specific user behavior as genotypes, and our real-

world analysis was focused on Twitter hashtags only.

While this restriction leads to sparsity in the data and

limited observations to construct the genotype dimensions

and influence backbones, our goal was to demonstrate the

utility of creating such a user behavioral model. More

general information parcels can also be adopted in the

future, including spread of URLs and topic sentiment.

Establishing the minimum sufficient number of observa-

tions to obtain stable genotypes is another issue that needs

to be addressed in the future.

Another future direction is investigating if genotypes

change over time. While genotypes remain constant for

a certain period, they might drift over longer periods of

time, e.g., people developing new interests or changing

political views. The slightly lower influence predictions
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in the longitudinal dataset CRAWL attests to such

possibility, and we are planning to investigate the

existence of drift in the genotype values as future

research.

Important future challenges related to our latency min-

imization application include (1) a constant factor

approximation algorithm, (2) scaling up the Greedy

approach (the current naive approach takes computation

times on the order of hours for networks larger than 500

nodes); and (3) considering cost-aware network manipu-

lations by relating the utility of decreased latency to the

cost of targeting nodes for real-world scenarios. In addi-

tion, one can also allow link addition manipulations similar

to in the average shortest path minimization (Min-SP)

problem (Meyerson and Tagiku 2009).

9 Conclusion

We introduced the social media genotype—a genetically-

inspired framework for modeling user participation in

social media. Features captured by the user genotypes

define the actual topic-specific user behavior in the net-

work, while the traditionally analyzed follower network

defines only what is possible in the information dissemi-

nation process. Within our genotype model, each network

user becomes an individual with a unique and invariant

behavioral signature within the topic-specific content dis-

semination. In addition, we demonstrated that users are

embedded in topic-specific influence backbones that differ

structurally from the follower network. Using a simple

contagion model, these backbones were shown to propa-

gate hashtags fastest when the backbone and hashtag

belong to the same topic.

We instantiated our topic-based genotype and back-

bone framework within a large real-world network of

Twitter and employed it for the tasks of (1) discovering

topic-specific influencers and adopters, and (2) minimiz-

ing the network-wide information dissemination latency.

The genotype framework, when combined with the topic-

specific influence backbones, enabled good influence

predictive power, achieving improvement by more than

20 % over using the follower structure alone. In the

latency minimization application, we demonstrated that

the knowledge of topic backbones and genotypes can

enable twofold reduction of the overall network latency

by reducing the latency of appropriately selected nodes

that represent only 1 % of the user population.

Acknowledgments This work was supported by the Institute for

Collaborative Biotechnologies through grant W911NF-09-0001 from

the U.S. Army Research Office and by the Army Research Laboratory

under cooperative agreement W911NF-09-2-0053 (NS-CTA). The

content of the information does not necessarily reflect the position or

the policy of the Government, and no official endorsement should be

inferred. The U.S. Government is authorized to reproduce and dis-

tribute reprints for Government purposes notwithstanding any copy-

right notice herein.

References

Bandari R, Asur S, Huberman BA (2012) The pulse of news in social

media: forecasting popularity, in ICWSM

Bakshy E, Hofman JM, Mason WA, Watts DJ (2011) Everyone’s an

influencer: quantifying influence on Twitter. In: WSDM

Bakshy E, Rosenn I, Marlow C, Adamic L (2012) The role of social

networks in information diffusion. In: WWW p 519–528

Bogdanov P, Busch M, Moehlis J, Singh AK, Szymanski BK (2013)

The social media genome: modeling individual topic-specific

behavior in social media, in ASONAM

Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation.

J Mach Learn Res 3:993–1022

Brin S, Page L (1998) The anatomy of a large-scale hypertextual web

search engine. Comput Netw ISDN Syst 30(1):107–117

Dodds P, Harris K, Kloumann I, Bliss C, Danforth C (2011) Temporal

patterns of happiness and information in a global social network:

Hedonometrics and Twitter. PLoS One 6(12):e26752

De Choudhury M (2011) Tie formation on Twitter: homophily and

structure of egocentric networks. In: PASSAT and SocialCom.

IEEE p 465–470

Friedkin N (2006) A structural theory of social influence. vol. 13.

Cambridge University Press, Cambridge, UK

Gomez Rodriguez M, Leskovec J, Schölkopf B (2013) Structure and

dynamics of information pathways in online media. In: WSDM,

p 23–32

Gulli A (2012) News space. http://www.di.unipi.it/*gulli/. Accessed

July 2012

Hethcote H (2000) The mathematics of infectious diseases. SIAM

Rev 42(4):599–653

Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of

influence through a social network, in SIGKDD, p 137–146

Kimura M, Saito K, Nakano R, Motoda H (2010) Extracting influential

nodes on a social network for information diffusion, DMKD

Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social

network or a news media? in WWW, p 591–600
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