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Abstract. The sequential probability ratio test (SPRT) and related drift-diffusion model (DDM)
are optimal for choosing between two hypotheses using the minimal (average) number of
samples and relevant for modeling the decision-making process in human observers. This
work extends these models to group decision making. Previous works have focused almost
exclusively on group accuracy; here, we explicitly address group decision time. First, we
derive explicit solutions for the error rate and probability distribution function of decision
times for a group of independent, (possibly) nonidentical decision makers using one of three
simple rules: Race, Majority Total, and Majority First. We illustrate our solutions with a
group of N i.i.d. decision makers who each make an individual decision using the SPRT-
based DDM, then compare the performance of each group rule under different constraints.
We then generalize these group rules to the η-Total and η-First schemes, to demonstrate
the flexibility and power of our approach in characterizing the performance of a group,
given the performance of its individual members.
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1. Introduction. Our society has a long tradition of valuing the wisdom of
groups. Groups offer the potential for redundancy and robustness, and are generally
thought of as being more cautious, more creative, more informed, and more accurate
than individuals. Many studies in social psychology have been dedicated to support-
ing or refuting these beliefs from a relatively qualitative standpoint [20, 48, 49, 56, 57];
see [15, 16] for reviews. A more quantitative approach to how human groups make
decisions in a restricted task has been pursued in cognitive psychology [33, 38, 46, 47].
These studies generally focus on group accuracy and the weight placed on each in-
dividual’s opinion as the main measures of performance. The group performance is
typically compared to that of an “ideal group,” which represents the best that the
group can do given its members’ abilities, in order to find the group’s efficiency [45].
The experiments cited above use fixed-sample statistical procedures, are typically data
driven, and are generally based on signal detection theory [23]; also see [39]. Similar

∗Received by the editors June 1, 2010; accepted for publication (in revised form) August 30, 2011;
published electronically February 8, 2012. This work was supported by a National Science Foundation
IGERT Fellowship, a University of California–Santa Barbara Graduate Division Doctoral Scholars
Fellowship, and the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from
the U.S. Army Research Office. The content of the information does not necessarily reflect the
position or the policy of the Government, and no official endorsement should be inferred.

http://www.siam.org/journals/sirev/54-1/79700.html
†Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106

(kimura@engineering.ucsb.edu, moehlis@engineering.ucsb.edu)

121



122 MARGOT KIMURA AND JEFF MOEHLIS

ideas have also been explored in ecology [13, 36, 55]. A separate group of work in
economics and political science [4, 5, 7, 24, 27, 28] focuses heavily on various aspects
of Condorcet’s (jury) theorem [12]. These works use more theoretical modeling, and
take an approach to calculating a group’s error rate similar to the one we present later.
These human-group-based studies inspire our current work as well as future directions
and considerations in characterizing the performance of a cybernetic (including both
humans and devices) group-based decision making system.

A more mathematics- and engineering-based approach to group decision making
is taken in the design of decision-making systems that utilize multiple sensors. This
has been an intensive area of study, particularly in the past thirty years. These
works generally focus on a collection of devices minimizing a cost or risk function in
choosing between two hypotheses, and thereby assert the resulting decision-making
scheme as “optimal.” A very good introduction to and overview of decentralized
detection is presented in [51], and a mathematical approach to sequential decision
theory can be found in [6, 44]. Centralized systems, in which measurements from
peripheral sensors are sent to a fusion center for processing, are largely considered a
finished problem; thus, most literature focuses on decentralized or distributed systems.
Despite the name, in most decentralized systems a very small amount of processing is
done at the peripheral sensors: a compressed “decision” based on a single observation
is sent to the fusion center for processing at each time step. Decentralized decision-
making systems, particularly ones that consider sequential processes, are a very large
area of research with many variations, including the following: general hypotheses
[18, 52], multiple hypotheses [17], quickest detection problems [14], sequential test
truncation [32, 43], and different group communication topologies [40, 50]. Various
applications are also considered, including networks with constrained communication
[10, 19, 31, 35], networks with power constraints [37], vehicle classifiers [30], and
probabilistic search [11]. Though our models are different from the ones cited here,
these studies illustrate a very different philosophy on how a collective can make a
decision, and have illustrated the methods and applications of interest in strictly
device-based engineering setups.

We consider the solution to a two-alternative forced-choice test (2AFC). Though
there are multiple definitions of what constitutes a 2AFC task, we follow the conven-
tion laid out in [8]: A 2AFC task is one in which one must choose between two specific
hypotheses (denoted H0 and H1), while making the following three assumptions: (i)
evidence favoring each alternative is integrated over time, (ii) the process that pro-
vides the decision makers (DMs) with observations is subject to random fluctuations,
and (iii) a decision is made when sufficient evidence favoring one of the alternatives
has accumulated.

An example of a 2AFC task is deciding if there is a signal (e.g., intruder, con-
tamination, etc.) in a given area. In this case, the system’s designer is typically given
a budget, and has a general idea of the possible consequences of failing to detect the
signal (miss) or declaring that the signal is present when it is not (false alarm), but
may not know the explicit costs for each type and instance of error. In general, the
goal is to have the group reach a decision quickly, while not exceeding certain levels
of error. In this situation, there are a number of system parameters to be deter-
mined. Important considerations include the total number of detectors, whether to
use a few sophisticated detectors or a large number of simple detectors, and how to
incorporate at least one human observer into the system to provide accountability.
We consider this problem in general for sequential cases, in which multiple samples of
data are available, but come at the cost of additional time. There are many situations
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Table 1.1 List of acronyms used in this paper.

Acronym Full name
2AFC Two-alternative forced choice (task)
cdf Cumulative probability distribution function
D Denotes a generic decision: D ∈ {S,N}
D̂ The other hypothesis: D̂ ∈ {S,N}, D̂ �= D

DDM Drift-diffusion model
DM Decision maker
GDT Group decision time
GER Group error rate
i.i.d. Independent and identically distributed
LDT Local (individual) decision time
LER Local (individual) error rate
N Number of decision makers
N Noise (or signal absent) response
pdf Probability distribution function
S Signal (or signal present) response

SPRT Sequential probability ratio test

Θ Maximal minority: for N odd, N−1
2

Υ Minimal majority: for N odd, N+1
2

in which the sample size is not fixed in advance or when one wants to minimize the
number of samples: for example, in ammunition quality control, tested samples are
unusable; and in clinical trials, there is a moral obligation to use the minimal number
of test subjects required to achieve the desired error rate (ER).

We begin with a brief discussion of our individual model, which is based on the
sequential probability ratio test (SPRT). We then derive the group error rate (GER)
and probability distribution function (pdf) of group decision times (GDTs) for N
independent DMs using one of three simple group decision rules: Race, Majority
Total, and Majority First. We illustrate each solution with an example using N
independent and identically distributed (i.i.d.) DMs characterized by the SPRT. We
then compare the performance of our schemes, and discuss the relative merits of each.
We finish with a brief discussion of two generalized forms of our group rules. For
convenience, Table 1.1 gives a list of acronyms used in this paper.

1.1. Individual Model. The SPRT is a particular procedure from sequential anal-
ysis that is “optimal” in the sense that it minimizes the average number of samples
required to choose between two hypotheses, while not exceeding specified ERs [54];
also see [21, 22, 34]. We use the SPRT and the related drift-diffusion model (DDM)
to model the individuals in our examples because it is optimal; however, we note that
our group results are general enough to accommodate any individual model that pro-
duces a cumulative probability distribution function (cdf) and pdf of local decision
times (LDTs), which covers cases in which the individual DM’s decision test is set
(and possibly nonoptimal). We provide a brief description of the SPRT and the DDM
below; for a full derivation of the cdf and pdf of LDTs and further detail on the model
and relevant works, see [29].

1.1.1. The Sequential Probability Ratio Test (SPRT). Suppose Y is a random
variable with unknown pdf P . The SPRT tests whether H0 : P = P0 or H1 : P = P1

is correct, with error no greater than a specified False Alarm (type-I error) rate α0

and Miss (type-II error) rate α1. The pdfs P0 and P1 are assumed to be known. Let
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Fig. 1.1 (a) A visual explanation of the SPRT. Each boundary is associated with a hypothesis, as
labeled. Here, the DM’s decision variable x starts with an unbiased prior (since x0 = 0).
The process terminates when the decision variable hits one of the boundaries. In this
example, the DM will select H1 at the 758th time step. (b) Histogram of DTs for a DM
using the SPRT over 10,000 trials, normalized and overlaid with the analytically calculated
pdf of LDTs. This verifies that our DDM solutions accurately model an individual DM
using the SPRT.

π0 (resp., π1) be the prior probability that one believes that H0 (resp., H1) is correct.
These priors are expressed in the initial condition x0 = log

(
π1

π0

)
.

The general idea is that we construct a one-dimensional decision space, whose
absorbing boundaries are each associated with one of the hypotheses. In practice, one
usually applies Wald’s small-overshoot assumption [53], which allows one to define the
boundaries by the (slightly) conservative valuesB0 = log

(
α1

1−α0

)
and B1 = log

(
1−α1

α0

)
.

At each time step, the DM observes a value of Y , denoted yi. We assume that the
observations are i.i.d. After processing the nth observation, the decision variable’s
position is given by

(1.1) xn = xn−1 +

n∑
i=1

log

[
P1(yi)

P0(yi)

]
.

After processing each observation, the observer chooses one of three possible actions,
based on the value of xn: if B0 < xn < B1, take another sample of data; if xn ≤ B0,
choose H0; and if xn ≥ B1, choose H1. A visual representation of this is given in
Figure 1.1(a).

The decision-making process under the SPRT is a discrete-time biased random
walk. It is intuitively clear that boundaries that are further away from the decision
variable’s initial condition provide longer decision times and more accurate decisions
because the decision variable is less susceptible to being driven across a boundary by
noise. Our examples consider parameters for which the small-overshoot assumption
approximately holds. For more detail, see [29]. We will use simulation to represent a
DM using the SPRT.

1.1.2. The SPRT-Based DDM. As the time between arriving increments of in-
formation goes to zero (equivalently, as sampling becomes continuous), the process
described above approaches the stochastic continuous-time process x(t). In this limit,
the SPRT approaches the DDM, which can be converted to a Kolmogorov or Fokker–
Planck equation and solved to find the DM’s pdf of LDTs. More detail on this limit
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can be found in [8], and the solution is derived in [29] (also see [41]). The DDM
has been used to model oculomotor decision making in the brain, supported by ex-
periments with in vivo recordings from monkeys [25] and psychophysical tasks with
humans [9, 42]. Therefore, the DDM can be reasonably used to model the performance
of human observers as DMs. Our solution to the SPRT-based DDM is an analytical
result that will be used in our group models below. For appropriate parameter values,
simulating a DM using the SPRT to perform a 2AFC task is equivalent to randomly
selecting a decision time from the pdf of LDTs given by the SPRT-based DDM. This
is verified in Figure 1.1(b), where the histogram of LDTs over 10,000 trials for an
individual using the SPRT have been compared with our analytical solution of the
same system.

Using these results as a building block for the performance of an individual, we
now show how the performance of a group of DMs can be characterized in the next
section.

2. Models for Centralized Group Decision Making. Many studies have focused
on group interactions and how they affect the final group decision. Our analysis
assumes that each individual DM has quantifiable abilities and is suitably motivated.
We first present our analytical results and general formulas for the GERs and GDTs for
each scheme given a group of N independent DMs with known (individual) local error
rates (LERs). We then provide details on our simulations, and compare the simulated
results with our derived formulas. We conclude this section with a discussion of the
relative performance of the different schemes.

2.1. Analytical Results. We present the analytical results for a group of N in-
dependent DMs using one of three simple group decision schemes: Race, Majority
Total, or Majority First. In these schemes, the individual DMs can only communicate
with the fusion center, as shown in Figure 2.1.

2.1.1. Race Scheme. In the Race scheme, the fusion center simply follows the
decision of the fastest decision maker. It is a race in the sense that only the first
decision made counts towards the group’s decision. As we will show later, the Race

...

Source

i.i.d. observations

DM1 DM2 DMN

individual
decisions

Fusion Center
decision
group

Fig. 2.1 Illustration of how our group models are organized. Each DM takes and processes i.i.d.
observations of the source (which represents the correct hypothesis). The observations are
i.i.d. both within and across DMs. Once a DM makes a decision, it sends that decision to
the fusion center, which then applies the group-decision rule and issues the group’s decision
once the group rule has been satisfied.
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scheme has the fastest GDT of all schemes for a given group of DMs under our
setup. Thus, we are primarily interested in this scheme as a benchmark for speed. A
similar group decision scheme was proposed in [1, 2] for independent and identically
distributed (i.i.d.) DMs; however, the treatment only finds the cdf of GDTs and
qualitatively discusses the scheme, dismissing a full analysis of the pdf of GDTs as
too complex.

Consider a group of N independent DMs using the Race scheme. In this case, the
GER will be equal to the LER of the fastest DM. We can also characterize the pdf
of GDTs without taking any further assumptions on the individual DMs, to derive
a general result. Let pi(t) be the pdf of LDTs for DMi, and let pg(t) be the pdf
of GDTs. Similarly, let qi(t) be the cdf of LDTs for DMi and qg(t) be the cdf of
GDTs. For a group using the Race scheme to make a decision by time tg, at least one
individual DM must reach a decision by tg. Subtracting the probability for the single
case where no DM reaches a decision by time tg from unity gives us an expression for
the cdf of GDTs, qrgN

g (tg), where the superscript specifies the decision rule, type of
individual DMs, and number of DMs in the group ([r]ace scheme, [g]eneral individual
DMs, [N ] DMs):

(2.1) qrgN
g (tg) = 1−

N∏
i=1

[1− qi(tg)] .

The corresponding pdf of GDTs is

(2.2) prgN
g (tg) =

d

dtg
qrgN
g (tg) =

N∑
i=1


pi(tg)

N∏
j=1,
j �=i

[1− qj(tg)]


 .

We can specialize these general results to the case where the N DM are i.i.d.: we
replace the individuals’ (possibly different) pdfs by a single common pdf pι(t) and the
individuals’ cdfs by a single common cdf qι(t), where ι indicates that the function is
generic for an i.i.d. individual. This simplifies prgN

g (tg) to p
riN
g (tg) ([r]ace scheme, [i]id

individual DMs, [N ] DMs): priN
g (tg) = Npι(tg) [1− qι(tg)]

N−1.
We can now plot the pdf of GDTs for N i.i.d. DMs using the Race scheme. This is

shown for N = 1 to 41 in Figure 2.2. For all numerical results in this paper, each DM
has a pdf of LDTs given by the N = 1 case shown in Figure 2.2. This corresponds to
an individual using the SPRT with an LER of 0.01. As N increases, the group’s pdf
moves to the left, and the distribution becomes more peaked. This is consistent with
what we would intuitively expect: as N increases, the probability that a DM in the
group has an LDT closer to 0 increases, so the minimum of the N samples decreases.

2.1.2. Majority Total Scheme. In the Majority Total scheme, the fusion center
waits until all N DMs have submitted a decision before declaring the group decision,
which is chosen using a majority rule. To avoid ties in the fusion center decision, we
consider only N odd, though it would be simple to include additional constraints such
as ignoring one DM at random or ignoring the slowest DM to account for N even. A
rule equivalent to the Majority Total scheme was mentioned in [51]; however, to the
best of our knowledge, there has not been a detailed analysis of this rule.

The Majority-based scheme assigns equal weights to each DM. Here, we derive
an expression for the GER of N general DMs under a majority rule. The GER for
DMs with unequal weighting is discussed in economics and political science [4, 5, 28].
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Fig. 2.2 Plots of priN
g (tg), the pdf of GDTs for a group of N i.i.d. DMs using the Race scheme,

where tg denotes the group’s decision time. In this plot, N varies from 1 to 41. As the
number of DMs increases, the mean GDT decreases and the group pdf becomes more peaked.
This is consistent with the intuition that a larger group of DMs using the Race scheme has
a lower average GDT.

For i.i.d. DMs, equal weighting is optimal. For nonidentical DMs, equal weighting is
not optimal; however, in cases where one does not or cannot know a DM’s true LER,
or when including humans in the loop, equal weighting is a reasonable strategy.

Let Θ = �N−1
2 � be the number of DMs in the largest minority possible (“maximal

minority”). Note that by our problem definition, the probability that a specific DM
makes an error is given by LER, and the probability that a specific DM makes a
correct decision is given by (1-LER). Then the GER for a group of N independent
DMs using the Majority Total scheme is

P (group errs) = P (majority errs) ≡ GER
= P (N err) + C[P (1 correct, (N − 1) err)]

+ C[P (2 correct, (N − 2) err)] + · · ·
+ C[P (Θ correct, (Θ + 1) err)]

=
Θ∑
θ=1

C[P (θ correct, (N − θ) err)],

where C[P (θ correct, (N − θ) err)] represents all unique combinations of DMs such
that θ DMs reach a correct decision and (N − θ) DMs make an error. This translates
into the following equation for the GER of a general group:

(2.3)

GER =

N∏
i=1

LERi

+
Θ∑
θ=1




(N−θ+1)∑
j1=1

(N−θ+2)∑
j2=j1+1

· · ·
N∑

jθ=jθ−1+1




θ∏
k=1

[1− LERjk ]
N∏

m=1,
m/∈J

LERm




 ,

where J = {j1, . . . , jθ}, the subset of DMs who answered correctly in the combination
being considered.
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Fig. 2.3 Plot of pmtiN
g (tg), the pdf of GDTs for N i.i.d. DMs using the Majority Total scheme, with

N varying from 1 to 41. As the number of DMs increases, the mean GDT also increases,
and the distribution spreads out. This is intuitive: since the fusion center declares the
group’s decision only after the slowest DM has responded, as N increases, the slowest
DM’s LDT tends to increase and can take on a wider range of values.

We now calculate the cdf and pdf of GDTs. In the Majority Total scheme, the
GDT is the LDT of the slowest group member. The probability that a group of N
independent DMs using the Majority Total rule makes a decision by time tg is the
same as the probability that all N DMs make a decision by time tg. Thus, we can
write out the cdf of GDTs, qmtgN

g (tg) ([m]ajority [t]otal, [g]eneral individual DMs, [N ]
DMs), as

(2.4) qmtgN
g (tg) =

N∏
i=1

qi(tg).

The group pdf of GDTs is then

(2.5) pmtgN
g (tg) =

N∑
i=1


pi(tg)

N∏
j=1,
j �=i

qj(tg)


 .

For N i.i.d. DMs, the cdf of GDTs is qmtiN
g (tg) = [qι(tg)]

N
, and the pdf of GDTs

is pmtiN
g (tg) = Npι(tg) [qι(tg)]

N−1
. The pdfs of GDTs for N i.i.d. DMs are shown for

N = 1 to 41 in Figure 2.3. As N increases, the group pdf spreads out and drifts to
the right, which is intuitive—a larger group should take longer to decide, since the
group must wait for the slowest DM.

2.1.3. Majority First Scheme. The Majority First scheme is a slight modifica-
tion of the Majority Total scheme. Given that our two major measures of perfor-
mance are GDT and GER, it naturally follows that one can speed up the Majority
Total scheme by ignoring the DMs whose decisions will not contribute to the fusion
center’s decision. Thus, the fusion center makes a decision as soon as the smallest
possible majority (“minimal majority”) Υ = �N+1

2 � of DMs reach the same decision.
As before, we consider only N odd. Though similar ideas have been expressed in
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models by Audley [3] and Hussain [26], to the best of our knowledge, this particular
group decision-making rule is novel.

The Majority First and Majority Total schemes have identical GERs because they
apply the same decision rule to choose a hypothesis. Thus, the GER for N general
DMs using the Majority First scheme is also given by (2.3).

The calculations used to find the GDT under the Majority First scheme differ
from the previous two schemes in that they must track the decision made in addition
to the decision time. To express the hypothesis selected, we add a second subscript
to the individual’s cdf or pdf: we denote that the individual chooses H1 (resp., H0)
with “S” (resp., “N”). We chose letter subscripts for the decision to avoid confusion
with the numerical subscripts identifying each DM, and to express a signal detection
theory viewpoint [23, 39]: “S” is for “signal present” (signal + noise, to be precise)
and “N” is for “noise only”. The cdf of GDTs for N general DMs, where we drop the
explicit (tg) notation on the right-hand side for brevity, is given by

(2.6) qmfgN
g (tg) =

N∏
i=1

qiS +

N∏
i=1

qiN +

Θ∑
θ=1


ΓθgJS

N∏
k=1,
k/∈J

qkS + ΓθgJN

N∏
k=1,
k/∈J

qkN


 .

The first term represents the case where all N DMs select S before time tg. Similarly,
the second term represents the case where all N DMs select N before time tg. The
last term denotes all combinations [J ] where up to [θ] [g]eneral DMs either answer by
time tg but disagree with the (final) group decision [D] or answer after time tg. The

subfunction ΓθgJD
specifies the noncontributing and dissenting DMs, and is defined as

(2.7) ΓθgJD
=

(N−θ+1)∑
j1=1

(N−θ+2)∑
j2=j1+1

· · ·
N∑

jθ=jθ−1+1

(
θ∏

m=1

[1− qjmD]

)
,

where D ∈ {S, N} and J = {j1, . . . , jθ}. The summation indices indicate which DMs
are in each unique combination (J ) of DMs, and the product term uses the subindex
m to iterate through each DM in the combination.

Taking the derivative with respect to tg, we get the group pdf for N general DMs:

(2.8) pmfgN
g (tg) = ΓΘg

JS

N∑
k=1,
k/∈J


pkS

N∏
m=1,
m/∈J ,
m �=k

qmS


+ ΓΘg

JN

N∑
k=1,
k/∈J


pkN

N∏
m=1,
m/∈J ,
m �=k

qmN


 .

This formula makes intuitive sense: in the first term, there are Θ DMs who either
select N or do not finish by time tg, there is one DM who finishes at time tg and
selects S, and there are (N − Θ − 1) DMs who finish by time tg and select S. Thus,
the minimal majority Υ selects S at time tg and the fusion center finishes at time tg.
The second term holds the equivalent expression for the group choosing N.

As before, this expression can be simplified for i.i.d. DMs. The pdf of GDTs for
N i.i.d. DMs is pmfiN

g (tg) =
∑

D∈{S,N}
(
N
Θ

)
Υ[1 − qιD(tg)]

ΘpιD(tg)[qιD(tg)]
Θ. We plot
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Fig. 2.4 Plot of pmfiN
g (tg), the pdf of GDTs N i.i.d. DMs using the Majority First decision rule,

with N varying from 1 to 41, for N odd. As N increases, the mean of the distribution
increases slightly, while the pdf becomes more peaked.

the pdf of GDTs for N i.i.d. DMs using the Majority First scheme in Figure 2.4, for
N odd, from N = 1 to 41. In the Majority First scheme, the slowest member is
between the Υth and Nth to respond, and as N increases, the number of DMs that
can potentially be ignored also increases. The increase in the number of ignorable
DMs seems to balance out the increase in Υ, so the mean GDT increases more slowly
while the distribution becomes more peaked.

2.2. Simulation Results. In our simulations, each DM takes and processes one
sample of data at each time step. When a DM chooses a hypothesis, it sends that
decision to the fusion center: if the DM chooses H1 (resp., H0), it submits +1 (resp.,
−1). In each time step, the fusion center sums over all decisions that have arrived
in that time step, and checks to see if the group decision rule has been satisfied. If
the group decision rule is not yet satisfied, the fusion center does nothing, and the
process repeats in the next time step. In the unlikely situation where an equal number
of DMs reach opposing decisions in the same time step in the Race scheme, the fusion
center simply cancels out the two decisions and takes the next DM’s decision as the
group’s decision. While the DMs and fusion center are synchronized in our simulation
for convenience, we stress that our analysis and solutions are directly applicable to
completely asynchronous systems.

We assume that after a detector has sent a decision to the fusion center, it shuts
itself down, and that the process ends once the fusion center returns a decision. All of
the group decision rules presented here work in cases where the fusion center can send
a message to the individual DMs so they shut down after the fusion center’s process
ends as well as cases where the fusion center cannot send out messages.

2.2.1. Comparison. The various fusion center decision rules each have different
strengths and weaknesses, which we will discuss here in terms of performance. Below,
we use two different cases to explore the relative advantages of the schemes: the equal
LER case for different N and the equal GER case for different N . The results shown
in this section are averaged over 10,000 trials and compared to the results for a single
DM for reference.
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Fig. 2.5 Simulation results for the mean GDT of N i.i.d. DMs using the Race, Majority Total, and
Majority First schemes, overlaid on our analytical solution for the same group, where all
of the schemes were given the same set of DMs. The group schemes are compared to an
individual DM using the SPRT. In this case, the LER was set to 0.01, and N was varied
from 1 to 21.

Equal LER, Different N. In many realistic applications, it is reasonable to assume
that one is supplied with N i.i.d. DMs, and then must choose a group decision rule
that will provide the best performance for one’s goals.

The GER for the Majority schemes under the equal LER case with i.i.d. DMs
can easily be calculated using (2.3), and the GER for the Race scheme with i.i.d.
DMs will be the LER of an individual DM. As N increases, the GER of the Majority
schemes drop off rapidly, whereas the GER of the Race scheme does not change.
For LER = 0.01, the mean GDTs under each rule as a function of group size N are
shown in Figure 2.5. The GDTs for the Majority Total scheme rises with N , while
it quickly levels off for the Majority First scheme. The Race scheme clearly provides
the fastest performance. Thus, in this case, if one prioritizes GDT, the Race scheme
is a reasonable option; otherwise, the Majority First scheme provides a good balance
of low GER and low GDT.

Set GER, Different N. As another way to compare the different group decision
rules, suppose one has a desired GER in mind, and is interested in seeing which deci-
sion rule can achieve it with some other desirable properties (speed, cost, etc). This
assumes that one can acquire individual DMs of any given LER to achieve the desired
GER. The results are shown in Figure 2.6 for GER = 0.01 and different values of N .

The results are interesting in that they are not immediately intuitive. As N
increases, for a set GER, the LER of the DMs using a majority scheme increases, which
results in faster individual decisions. The Majority Total scheme rapidly becomes
faster than a single DM because the members in the Majority Total group have a
higher LER (and therefore a shorter LDT) than the single DM. However, this is not
enough to make the Majority Total scheme faster than the Race scheme for the N
values shown, even though the Race scheme samples from DMs each with LER =



132 MARGOT KIMURA AND JEFF MOEHLIS

0 2 4 6 8 10 12 14 16 18 20 22
0

100

200

300

400

500

600

700

800

900

1000

N

M
e
an

D
e
c
is
io
n
T
im

e

Group Decision Time for GER Fixed and N varying

 

 

Single DM

Race Simulation

Majority Total Simulation   .

Majority First Simulation

Race Analytical

Majority Total Analytical

Majority First Analytical

Fig. 2.6 Simulation results for the mean GDT of N i.i.d. DMs using the Race, Majority Total,
and Majority First schemes overlaid on our analytical results for the case where the group
members’ i.i.d. characteristics were chosen to achieve a GER of 0.01. The group schemes
are compared to an individual DM using the SPRT, and N was varied from 1 to 21. All
results are averaged over 10,000 trials. The difference between the Majority Total scheme’s
simulation-based and analytical results are the result of overshoot. For more detail, see
[29].

GER. We find that for a set GER, the Majority First scheme is the fastest for a given
N , since it combines the benefits of using DMs with a higher LER (like the Majority
Total scheme) with being able to finish before every DM in the group has made a
decision (like the Race scheme). In addition to providing faster results, the Majority
First scheme may also be better than the Race scheme because it is generally more
difficult and/or more expensive to obtain individual DMs with lower LERs. Whether
the Majority First or the Race scheme is best for a particular experiment may depend
on the experimenter’s specific budget and cost function, which formally set the best
trade-off between speed and accuracy.

2.3. Discussion. The Race scheme provided consistently fast GDTs in both sce-
narios, and is the simplest to design, since the fusion center needs very little compu-
tational power and memory. Therefore, for situations where one is given a set of i.i.d.
DMs to work with, the Race scheme provides a simple and fast solution. However, we
point out that in the case where one DM encounters a malfunction that causes it to
very quickly return a decision that is not related to its observations (i.e., it is either
faulty or is hijacked), the overall group decision is vulnerable: since the group scheme
itself is very fast, it would be very difficult to differentiate between a group decision
drawn from the left-hand tail of the pdf of GDTs and an erroneous or malicious re-
sponse, especially for large N . The group decision scheme also does not provide a
GER that is better than the individual DMs’ LER. On the other hand, this scheme
is robust to multiple individual DM failures, where the DM(s) cannot communicate
with the fusion center.

The Majority Total scheme was the slowest in the set-LER case, but had a GDT
close to the other two group schemes in the set-GER case. It also can use less accurate
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individual DMs to achieve a higher level of accuracy at the group level, which is
desirable because lower-accuracy DMs are typically cheaper and easier to acquire.
The scheme is also robust to a small number of DMs being hijacked or faulty in a
way that has them respond without processing data, and may allow one to calculate
an additional confidence on the group response, since one has responses from all N
DMs (i.e., if all N agree, then the group is very confident in its decision, whereas
if Θ disagree with the majority, then the probability that the group made an error
is higher). On the other hand, the Majority Total scheme is vulnerable to sensor
failure, since it must wait for the slowest DM: if even one sensor becomes unable to
communicate with the fusion center, the group never reaches a decision.

Thus, in several ways, the Majority First scheme is the best group decision rule of
the three shown here: it provides relatively quick performance in the set-LER case and
the quickest performance in the set-GER case. It also shares the same LER-related
advantages as the Majority Total scheme, and is fairly robust to sensors respond-
ing without processing data (due to being faulty or hijacked). At the same time, it
is robust to a small number of sensors failing (due to either faulty communication
equipment or being destroyed), since it only waits for the Υth slowest agreeing mem-
ber. Thus, while the Majority First scheme may not be time-optimal for the equal
LER case, its robustness and combination of being both accurate and relatively quick
make it an attractive choice, especially when there is uncertainty in the situations
that the system may face.

3. Generalizing the Group Decision Rules. There are two obvious extensions
to the group rules presented above, which we briefly discuss here: the η-Total and
η-First group schemes.

3.1. The η-Total Scheme. The general form of the Majority Total scheme is the
η-Total rule, in which the fusion center returns a decision once η DMs have returned
an individual decision. The fusion center then applies a majority rule to the individual
responses to reach a group decision. For an actual decision rule, it is best to use odd
values of η, since this guarantees that there will not be any ties; however, from a
calculation-based standpoint, there is no reason why η must be odd, so our formulas
also hold for η even. For this rule, N can easily be either even or odd.

The general formula for the cdf of GDTs for the η-Total rule is qTgN
gη (tg) (super-

script: η-[T]otal group rule, [g]eneral individual DM, N DMs; subscript: [g]roup cdf,
[η] individual DMs must finish for the fusion center to finish),

(3.1) qTgN
gη (tg) =

N∑
θ=η




(N−θ−1)∑
i1=1

(N−θ+2)∑
i2=i1+1

· · ·
N∑

iθ=iθ−1+1

(
θ∏

m=1

qim

)
N∏
j=1,
j /∈I

[1− qj ]


 ,

where I = {i1, i2, . . . , iθ}, which designates the set of DMs who have reached a decision
by time tg. To get the pdf of GDTs, we take the derivative of the cdf. After some
simplification, we arrive at the following general formula:

(3.2) pTgN
gη =

(N−η+1)∑
i1=1

(N−η+2)∑
i2=i1+1

· · ·
N∑

iθ=iθ−1+1




η∑
m=1

pim

η∏
k=1,
k �=m

qik






N∏
j=1,
j /∈I

[1− qj ]


 .
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Fig. 3.1 Analytical results for the η-Total group rule for different values of η, with N = 11. For
η = 1, this rule is identical to the Race scheme, and for η = N , this rule is identical to the
Majority Total scheme.

For i.i.d. DMs, the formula for the pdf of GDTs simplifies considerably: pTiN
gη =(

N
η

)
ηpιq

η−1
ι [1− qι]

N−η
. For N = 11, the effect of increasing η from 1 to N is shown

in Figure 3.1. For η = 1, the η-Total rule is identical to the Race scheme, and for
η = N , the η-Total rule is identical to the Majority Total scheme. This can also be
seen by comparing (3.2) with the pdf of GDTs for the Majority Total scheme, given
by (2.5). We have also verified our analytical results numerically.

For i.i.d. DMs, we can also find the GER in a straightforward manner. Let
Φ = η−1

2 , the smallest possible minority for η total DMs, and let us consider only odd
values of η to avoid ties. Then we have

(3.3) GERι =

Φ∑
φ=0

(
η
φ

)
LERη−φι (1− LER)

φ
ι ,

where φ represents the number of DMs in the minority.

3.2. The η-First Scheme. The general form of the Majority First scheme is the
η-First rule, in which the fusion center returns a decision once η DMs have returned
the same individual decision. Realistically, any implementation of this scheme should
require that η ≤ Υ, the minimal majority: if η > Υ, there is no guarantee that the
fusion center’s rule will ever be satisfied. However, it is still possible to calculate the
cdf and pdf of GDTs given that the group does reach a decision in finite time, and
we provide formulas for doing so below. When η = Υ, the η-First rule is identical to
the Majority First scheme, and when η = 1, the η-First rule is identical to the Race
scheme. This rule can easily accommodate both even and odd N and η.

If η DMs finish by time tg and agree, then up to (N − η) DMs do not contribute.
Using this, we can construct the cdf of GDTs, qFgN

gη (superscript: η-[F]irst scheme,
[g]eneral individual DM, N DMs; subscript: [g]roup pdf of GDTs, [η] DMs must agree
for the fusion center to finish). Because of the ordering that occurs under this scheme,
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our formula is split into two cases: η ≤ Θ and η ≥ Υ. For simplicity, we define

Γγg
I =

(η+γ+1)∑
i1=1

(η+γ+2)∑
i2=i1+1

· · ·
N∑

i(N−η−γ)=i(N−η−γ−1)+1

(
N−η−γ∏
m=1

[1− qim ]

)
,

ΛξgJD
=

(N−ξ+1)∑
j1=1,
j1 /∈I

(N−ξ+2)∑
j2=j1+1,
j2 /∈I

· · ·
N∑

jξ=jξ−1+1,
jξ /∈I

(
ξ∏

k=1

qjkD

)
,

where Γγg
I specifies all unique sets of (N − η − γ) DMs who do not reach a decision

by time tg, Λ
ξg
JD

specifies all unique sets of ξ DMs who choose decision D by time

tg when the fusion center chooses D̂ (the other hypothesis: D̂ ∈ {S,N}, D̂ �= D), and

Γ
(N−η)g
I = Λ0g

JD
= 1. Then, for η ≤ Θ, we have

(3.4)

qFgN
g(η≤Θ) =

η−1∑
γ=0


Γγg

I

γ∑
ξ=0


ΛξgJS

N∏
�=1,
�/∈I,J

q�N + ΛξgJN

N∏
�=1,
�/∈I,J

q�S






+

N−η∑
γ=η


Γγg

I

η+γ∑
ξ=0

ΛξgJS

N∏
�=1,
�/∈I,J

q�N


 .

The formula for qFgN
g(η≥Υ) is essentially the same, except that it only includes the first

term of (3.4) and the limit on the outermost summation in that term is (N−η) instead
of (η− 1). Here, γ denotes the maximum number of excess members in the subgroup
that sets the group’s decision (i.e., for the γ = 0 case, exactly η DMs finish by time tg
and agree), and ξ denotes the number of DMs that finish by time tg but do not agree
with the fusion center’s final decision. Since pFg

gη (tg) =
d
dtg

[
qFg
gη (tg)

]
for both cases of

η, it is relatively straightforward to calculate the corresponding formulas for the pdf
of GDTs.

Like before, the formula for the cdf of GDTs simplifies considerably for the i.i.d.
case. Let Γγi =

(
N

N−η−γ
)
[1− qι]

(N−η−γ) and Λξi
D
=
( η+γ

ξ

)
qξιD. Then we have

(3.5) qFiN
g(η≤Θ) =

η−1∑
γ=0

Γγi


 γ∑
ξ=0

[
ΛξiS q

η+γ−ξ
ιN + ΛξiNq

η+γ−ξ
ιS

]+

N−η∑
γ=η

Γγi

η+γ∑
ξ=0

ΛξiS q
η+γ−ξ
ιN ,

and again, the formula for qFiN
g(η≥Υ) contains only the first term, with the limit on the

first summation sign modified to (N − η). For N = 11, the effect of increasing η from
1 to N is shown in Figure 3.2. For η = 1, the η-First scheme is equivalent to the
Race scheme, and for η = Υ, it is equivalent to the Majority First scheme. We have
verified these analytical results with simulation.

For the i.i.d. case, we can also calculate the GER for the η-First scheme. Like for
the pdf of GDTs, the limits in the formula change for different values of η relative to
N . If η ≤ Υ, then

(3.6) GERι,η≤Υ =

η−1∑
φ=0

(
η + φ− 1

φ

)
(1− LERι)

φ
LERηι .
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Fig. 3.2 Analytical results for the η-First group rule for different values of η, with N = 11. For
η = 1, this rule is identical to the Race scheme, and for η = Υ, this rule is identical to the
Majority First scheme. This rule is not guaranteed to finish for η > Υ; however, we can
still calculate the pdf of GDTs given that the group does finish for those values of η, which
is shown in this figure.

The formula for GERι,η>Υ is the same except that the limit on the summation is
(N − η) instead of (η − 1).

3.3. Discussion. For the particular examples shown, the pdf of GDTs for the
correct answer dominates the overall pdf of GDTs. Therefore, while the formulas are
different for the η-Total and η-First schemes, Figures 3.1 and 3.2 are similar. However,
we stress that the pdfs in each figure for each value of η are not identical, except for the
case of η = 1, where both schemes are equivalent to the Race scheme. The difference
between the curves of the η-Total and η-First schemes with i.i.d. DMs will be more
pronounced for DMs whose pdf of GDTs is different for the correct hypothesis than
for the incorrect hypothesis, or who have a higher LER.

4. Conclusion. We derived the pdf of GDTs for a general group using a fusion
center to apply the Race, Majority Total, or Majority First scheme in a 2AFC task,
given the members’ pdfs of LDTs. We also illustrated these results for the case of
N i.i.d. DMs using the SPRT for each scheme, and compared the GDT of the three
schemes against each other and against the LDT of an individual under set-LER and
set-GER conditions. In our analysis, the best overall performance was achieved by
the Majority First scheme, in that it provided a given GER with higher LERs than
the Race scheme, was not hampered by having to wait for the slowest DM like the
Majority Total scheme, and was the most robust to various types of possible problems
with the individual DMs. We also showed the results of two natural generalizations
of our group decision rules: the η-Total and η-First schemes.

The models presented here are relevant to many situations in which a group of
DMs must reach a collective decision in a sequential task. Since our models only
use each member’s performance to find the group’s performance, they can easily
be used for cybernetic groups (including both human observers and detectors), and
naturally extend to hierarchical and more complicated group topologies in which
some “members” are groups. Our models are interesting because they present a novel
and general way in which one can intuitively yet mathematically model a group’s
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performance based on its members’ statistics, establish a reasonable base model which
can be extended to build up more complicated models for realistic groups, and provide
a means by which one can compare different group decision rules.
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