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Abstract— A model for the dynamics of an emerging class of
electrostatically driven microelectromechanical oscillators, para-
metrically excited MEM oscillators, has been developed. The
equation of motion for these devices is a nonlinear version of
the Mathieu Equation, which gives rise to rich dynamics. A
standard perturbation analysis, averaging, has been adopted to
analyze this complicated system. Numerical bifurcation analysis
was employed and successfully verified these analytical results.
Using the analytical and numerical tools developed for this model,
along with the experimental results for such a device, parameters
for the system are identified. This model is a pivotal design tool
for the development of parametrically excited MEM filters.

I. INTRODUCTION

Parametric amplification has increased sensitivity in many
common MEMS devices: cantilevers [1], [2], torsional oscil-
lators [3], and translational oscillators [4], [5]. Some of the
current applications exploiting parametric resonance include:
mass sensing [5], scanning tunneling microscopy and atomic
force microscopy [3], and signal filtering [6]. Beneficial to
these applications is the unique ability of such oscillators to
remain quiescent outside the region of parametric excitation
and transition sharply to large amplitude oscillatory motion
at the edge of the stability boundaries. Due to the presence
of time varying stiffness terms in the equation of motion,
such devices experience parametric resonances when driven
at frequencies close to 2ωo/n, where n is an integer greater
than or equal to one and ωo is the natural frequency [7]. In the
aforementioned studies, as in the present study, the dominant
parametric regime occurs when driving the device near twice
the natural frequency, i.e., n = 1, which will be the region
studied here.

Commonly studied forms of the Mathieu Equation involve
linear time varying stiffness terms, e.g. [8]. The present work
builds on the recent work in [9], [5], and [10], wherein
the equations exhibit both linear and nonlinear parametric
excitation. As a result of these additional terms, the nonlinear
behavior of the system’s response takes on a much more
complicated form, where hardening, softening, and mixed
nonlinearities occur depending on driving voltage. In this
section the governing dynamics, analytical procedure, and
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Fig. 1. Scanning electron microscope image of a representative parametrically
excited MEMS oscillator.

numerical bifurcation analysis (used to verify analytical re-
sults) are reviewed. Section II highlights the process used for
the identification of system parameters and possible future
improvements to create a more accurate model. The current
model and analytical tools have been utilized to aid in the
development of parametrically excited MEMS filters.

A. Governing Dynamics

The oscillators of interest (a representative device is shown
in Figure 1) are composed of three major components: non-
interdigitated comb-drive actuators (A,B), flexures (C), and
backbone (D). To actuate these devices an AC signal is applied
to a single set of comb-drives. For tuning purposes a DC
signal can be applied to a second set of electrodes [4]. Due
to the unique geometry of non-interdigitated comb-fingers, a
time varying force is produced when an AC signal is applied,
which ultimately gives rise to the parametric excitation of these
devices. The nonlinear Mathieu Equation for a general device
without tuning describes the dynamics of interest,

mẍ+cẋ+k1x+k3x
3+

(
r1Ax + r3Ax3

)
V 2

A (1 + cos ωt) = 0,
(1)
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where, k1 and k3 are respectively the linear and cubic
nonlinear mechanical stiffness of the flexures, r1A and r3A

are respectively the linear and cubic nonlinear electrostatic
stiffness of the non-interdigitated comb-fingers, m is the mass,
VA is the excitation voltage amplitude of a square-root cosine
signal, and c is the damping coefficient. It is important to
note that a square-root cosine signal is applied to the device
to isolate harmonic and parametric excitation [3]. For more
information on the derivation of this governing equation, see
[10]. For filtering applications a second set of comb-drives is
added, to which a DC signal is applied for tuning purposes
[6]. The analysis in [10] deals with a generalized equation,
which can be applied to devices with or without this DC set
of comb-fingers. The time varying electrostatic forcing terms
of Equation (1) lead to both linear and nonlinear parametric
excitation, which creates the rich dynamics described in [10].

B. Analysis and Verification

In [10], a perturbation technique known as averaging was
employed to study Equation (1). Specifically, the second order
nonautonomous system was transformed into two first order
autonomous equations in amplitude and phase form. The am-
plitude and phase equations are coupled by a cubic nonlinear
excitation parameter, which is the direct result of the nonlinear
parametric term in Equation (1). As a result, the nontrivial
solutions of the system become more complicated than in the
case of purely linear parametric excitation. Since damping has
little effect on the qualitative nature of the system’s nonlinear
behavior, it was taken to be zero to simplify the analysis. It
was found that there are four distinct steady state solutions to
the averaged equations. One is a trivial solution, for which the
amplitude is equal to zero for all values of driving frequency,
which we refer to as the no-motion state. The three others are
nontrivial, corresponding to periodic solutions of Equation (1).
As a direct result of this analysis, effective nonlinearities are
defined for the system and six distinct regions in parameter
space are defined, each of which harbors a distinct qualitative
nonlinear behavior [10].

To verify these analytical results numerical bifurcation
analysis was performed on the original equation of motion
(1) in the presence of small damping. The driving frequency
was treated as a bifurcation parameter and Floquet multipliers
were calculated to determine the stability of the solutions.
Figure 2 shows the numerically generated plot for the case
of small damping, with parameter values corresponding to
region IV of nonlinear parameter space in [10]. Figure 3 shows
the analytical results for the averaged equations taking the
same parameters, but with zero damping. See [10] for specific
parameter values. In both Figure 2 and 3, the detuning axis
refers to a non-dimensionalized frequency, which was scaled
to measure the closeness of the driving frequency to twice the
natural frequency, see [10] for further information on these
figures. Numerical simulations for small damping match well
with, and confirm the validity of, the analytical model that as-
sumes zero damping. Having the recently developed analytical
tools, combined with the fact that oscillators exhibiting dy-
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Fig. 2. Numerical bifurcation analysis of Equation (1) with small damping,
where solid lines represent stable solutions and dashed lines unstable solutions.
The parameters taken are described in [10] and correspond to region IV of
nonlinear parameter space therein.

Response Amplitude vs. Detuning in Region IV ( 3 = -0.005, 3 = -0.005)
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Fig. 3. Analytical bifurcation analysis of the averaged equations derived from
Equation (1) with zero damping, where solid lines represent stable solutions
and dashed lines unstable solutions. Apart from the damping coefficient, the
same parameters as Figure 2 are used.

namics described by Equation (1) are difficult to characterize,
motivates the development of a robust identification procedure,
which is discussed in the following section.

II. SYSTEM IDENTIFICATION

Experimental results, first shown in [9], for a parametrically
excited MEM oscillator have been obtained using a laser
vibrometer [11]. The device tested has a single set of non-
interdigitated comb-drives, to which a square root cosine sig-
nal is applied for actuation. Using these experimental results,
analytical and numerical predictions are validated and system
parameters are identified.

Theoretical stability boundaries are determined by calculat-
ing the eigenvalues of the Jacobian evaluated at the steady
state solutions of the averaged equations. A stability change
occurs when the real part of an eigenvalue crosses through
zero. Analyzing the trivial steady state solution in the presence
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of damping, the following boundaries yield zero eigenvalues:

f1 =
ωo

2π


2 +

r1AV 2
A

k1
−

√(
r1AV 2

A

2k1

)2

− c2

mk1


 , (2)

f2 =
ωo

2π


2 +

r1AV 2
A

k1
+

√(
r1AV 2

A

2k1

)2

− c2

mk1


 , (3)

where f1 and f2 are frequencies dependent on the excitation
voltage VA, and ωo =

√
k1/m. These two boundaries define

a wedge shaped zone, wherein the no-motion state transitions
from being stable outside the wedge, to unstable inside the
wedge. In dynamical systems language, this instability region
is known as an Arnold Tongue [12]. Next, the nontrivial
steady state solutions are analyzed in a similar manner, but
with damping taken to be zero due to complicated Jacobian
matrices. Analyzing these solutions gives rise to two distinct
boundaries,

f3 =
ωo

2π

[
2 − 3r1A

2k1

k3

r3A
− r1AV 2

A

k1

]
(4)

f4 =
ωo

2π

[
2 − 3r1A

2k1

k3

r3A

]
, (5)

at which bifurcations, associated with saddle-node bifurcations
for the case of small damping, occur. Notice that f4 is not
dependent on the excitation voltage; this is not the case in the
presence of damping, yet it still gives a good approximation
of the boundary location for small damping.

To identify system parameters Equations (2) and (3) are
considered first, since these boundaries are solely dependent
on linear parameters, k1, r1A, c, and m. Using a nonlinear least
squares fitting method, experimental data for the actual device
is fit to the theoretical Arnold Tongue. Approximations for
each parameter are determined in software packages, such as
ANSYS, to act as first guesses for the fit. Linear parameters for
the actual device are found to be, k1 = 2.85µN/µm, r1A =
2.96 × 10−3µN/V 2µm, c = 3.88 × 10−8kg/s, and m =
9.93 × 10−11kg. The theoretical wedge for these parameters
matches the experimental results very well; Figure 4 shows
the numerically determined Arnold Tongue, labeled AT, and
experimental Arnold Tongue, represented by diamonds.

Knowing the four linear parameters, the last two nonlinear
parameters are estimated using a similar technique. A nonlin-
ear least squares method is used to fit Equations (4) and (5)
to experimentally determined saddle-node bifurcations. Since
both equations depend on k3/r3A, this ratio is determined from
such a fit to be −455.7V 2. Unfortunately, the experimental
saddle-node boundaries do not match well with the theoretical
boundaries in this case, but it serves as a good first approxi-
mation. So, additional information is used to improve the fit.
Qualitative changes in the systems’ nonlinear response have
been predicted to occur at the following transition voltages
[10],

VA,C1 =
√−3k3

5r3A
, VA,C2 =

√−3k3

r3A
(6)
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Fig. 4. Two parameter plot, voltage amplitude versus excitation frequency,
mapping out numerical and experimental instability boundaries. Lines labeled
AT and SN are respectively the Arnold Tongue and the curve along which
saddle-node bifurcations of periodic orbits occur, as obtained by numerical
bifurcation analysis of Equation (1). Symbols indicate the experimental results,
with diamonds giving the location of the Arnold Tongue and pluses and
triangles giving the location of saddle-node bifurcations
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Fig. 5. Experimental and numerical responses for drive amplitude of 7.6V are
depicted in (a) and (b), respectively. In (a), dashed lines with X’s represents
the response when sweeping up in frequency and dashed-dotted lines with
O’s represents the response when sweeping down in frequency. Bifurcations
at either edge of the Arnold Tongue are indicated with diamonds in (b).

which represent the transition from a pure hardening to
a mixed nonlinearity and from a mixed to pure softening
nonlinearity, respectively. Using these transition voltages and
numerical simulations, a ratio is determined that gives better
quantitative, namely −352V 2. Numerically determined saddle-
node bifurcations, shown as solid curves labeled SN, and
corresponding experimental data, labeled with pluses and
triangles, are given in Figure 4. Transitions between the three
nonlinear response regimes, labeled in Figure 4 with horizontal
dashed lines, match well with the experimental transitions.
Also, the right saddle-node bifurcation branch shows good
quantitative agreement. On the other hand, the left saddle-
node branch does not match as well with experimental results,
therefore suggesting that further improvement is needed in the
full identification of this system.

Once the ratio is determined for the nonlinear parame-
ters, the magnitude of these parameters is chosen so that
numerically generated response amplitudes are close to ex-
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Fig. 6. Experimental and numerical responses for drive amplitude of 16.6V
are depicted in (a) and (b), respectively. Conventions are the same as in Figure
5.

perimental response amplitudes. Nonlinear parameters giving
reasonable correspondence between numerical simulation and
experimental response amplitudes are: k3 = 0.075µN/µm3

and r3A = −2.1 × 10−4µN/V 2µm3. Figures 5(a) and 5(b)
depict an experimentally and numerically generated response
when driving the oscillator with a 7.6V amplitude square root
cosine signal, respectively. Notice, the parameters determined
with this procedure result in a theoretical response that predicts
the actual response of the device with reasonable accuracy.
Figures 6(a) and 6(b) depict an experimentally and numeri-
cally generated response when driving the oscillator with a
16.6V amplitude square root cosine signal, respectively. At
this voltage, the theory predicts the frequency at which each
bifurcation occurs with reasonable accuracy and, qualitatively
speaking, captures the mixed nonlinear nature nicely; however,
it does not fully agree with the experimental results. For
example, the amplitude of the right saddle-node bifurcation
in Figure 6(b) is close in value to the right saddle-node
bifurcation in Figure 6(a), but the left saddle-node bifurcation
in Figure 6b occurs at a much higher amplitude than Figure
6(a). In fact, in Figure 4, it is evident that the left saddle-
node bifurcation deviates more from the experimental results
as the voltage is increased. This suggests that higher order
nonlinearities might need to be included into the model to
more accurately capture the dynamics of this type of device.
Inconsistencies between experiment and theory may also be
due to the presence of noise in the experiment, which is not
taken into account in the model. The basin of attraction for
stable periodic solutions may be small enough for noise to
perturb the oscillator into the no-motion basin of attraction,
before the theoretical saddle-node bifurcation is reached [13].

III. CONCLUSION

A generalized model for the dynamics of electrostatically
driven nonlinear parametric MEM oscillators has been devel-
oped. Until now, studies have only grazed the surface of the
rich dynamics inherent to this system. Analytical studies, for
the case of zero damping, have been verified with numerical
simulations, for the case of small damping. These analytical

results will ultimately serve as useful tools for designers
creating filters [6], mass sensors [5], and many other devices
where a high degree of sensitivity is desired. The set of
six system parameters have been characterized for an actual
parametrically excited MEMS device. Fitting experimental
data to theoretical boundaries for the Arnold Tongue produces
accurate estimates for the system’s linear parameters, k1,
r1A, c, and m. To determine a ratio between the nonlinear
parameters, experimental data is fit to theoretical saddle-node
bifurcation boundaries. This ratio is then optimized using the-
oretical transitions between various qualitative regions of the
nonlinear response. Numerical simulations reveal that further
improvements need to be made to the model and possibly the
experiment. For instance including higher order nonlinearities
in the model would improve system identification, but it
would also complicate the analysis drastically. Overall, the
parameters chosen capture the dynamics of the oscillator well
qualitatively, and for the most part quantitatively.
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