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Abstract We use Hamilton-Jacobi-Bellman methods to
find minimum-time and energy-optimal control strategies to
terminate seizure-like bursting behavior in a conductance-
based neural model. Averaging is used to eliminate fast
variables from the model, and a target set is defined through
bifurcation analysis of the slow variables of the model.
This method is illustrated for a single neuron model and
for a network model to illustrate its efficacy in terminating
bursting once it begins. This work represents a numerical
proof-of-concept that a new class of control strategies can
be employed to mitigate bursting, and could ultimately be
adapted to treat medically intractible epilepsy in patient-
specific models.

Keywords Optimal control · Neural bursting · Epilepsy

1 Introduction

Epilepsy affects as many as 3 million people in the United
States alone and annually costs approximately 12.5 billion
dollars (CDC 1994; Kobau et al. 2007). For many of these
people, seizures remain poorly controlled despite the use of
anti-convulsive medication. This has prompted researchers
to search for other therapies to help mitigate seizure fre-
quency and duration. Among these treatments, Deep Brain
Stimulation (DBS), a method by which a high frequency,
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pulsatile stimulus is periodically injected into the anterior
nucleus of the thalamus, has been successful in clinical tri-
als in suppressing seizure frequency and severity (Fisher
et al. 2010; Lee et al. 2006; Lim et al. 2007). Further-
more, brief pulses of electrical stimulation have been shown
to suppress seizure-like cortical afterdischarges, raising the
possibility that DBS could terminate seizures during the
ictal phase (Motamedi et al. 2002; Kinoshita et al. 2004).
While these medical interventions are undeniably effective
in some patients, these methods are ad hoc, are adminis-
tered in an open loop manner, do not take into account
the underlying seizure dynamics, and are most likely far
from optimal. This has led researchers to develop alterna-
tive control strategies to better control epileptic seizures. For
instance, Gluckman et al. (2001) used a proportional feed-
back algorithm to control epiliptic activity in brain slices
with an electric field. Methods for control of periodicity in
chaotically bursting neural systems have been proposed and
have proven successful in brain slices (Schiff et al. 1994;
Slutzky et al. 2003). Also, Ching et al. (2012) investigated
the feasibility of grid-based brain electrical stimulation to
suppress seizure propagation with a proportional control
strategy.

The exact mechanism by which seizures are created and
sustained is unknown, but many studies are beginning to
investigate the role of the extracellular microenvironment
in pathological neural bursting behavior (Kager et al. 2000;
Bazhenov et al. 2004; Park and Durand 2006; Fröhlich
et al. 2010). In this work, we present a control strategy
for terminating bursting behavior for the model presented
in Cressman et al. (2009), which includes a conductance-
based neural model as well as local intra- and extracellular
ion concentration dynamics. For certain parameters, this
model displays periodic, recurrent seizure-like activity, and
our control strategy seeks to find both time-optimal and
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energy-optimal DBS stimuli which will terminate seizure-
like bursting behavior by driving each pathological neuron
to a sufficiently refractory target set. We illustrate this strat-
egy for a single neuron and for a homogeneous network of
pathologically bursting neurons with the control objective
of terminating a seizure once it begins. This novel approach
to DBS has the potential to significantly improve the man-
agement of seizures in patients with medically intractable
epilepsy.

2 Single neuron model

We consider a six-dimensional conductance-based model
for neural activity with intracellular and extracellular ion
concentration dynamics (Cressman et al. 2009). We choose
this model because it exhibits periodic, seizure-like bursting
behavior. The equations for this model are as follows:

CV̇ = fV (V , n, h, [K]o, [Na]i, [Ca]i)
= INa(V , h, [Na]i)+ IK(V , n, [K]o, [Na]i, [Ca]i)+ ICl(V )+ u(t), (1)

ṅ = fn(V, n) = φ [αn(V )(1 − n)− βn(V )n] , (2)

ḣ = fh(V, h) = φ [αh(V )(1 − h)− βh(V )h] , (3)

˙[Ca]i = fCa(V ) = −0.002gCa(V − VCa)/[
1 + exp(−(V + 25)/2.5)

] − [Ca]i/80, (4)

˙[K]o = fK(V , n, [K]o, [Na]i, [Ca]i)
= −0.33IK(V, n, [K]o, [Na]i, [Ca]i)

−2βIpump([K]o, [Na]i)− Iglia([K]o)− Idiff([K]o), (5)

˙[Na]i = fNa(V , h, [K]o, [Na]i)
= 0.33

β
INa(V , h, [Na]i)− 3Ipump([K]o, [Na]i). (6)

Here, V represents the transmembrane voltage of the
neuron, C represents the cell membrane capacitance, n

and h represent gating variables, and [Ca]i, [Na]i, and
[K]o represent intracellular calcium, intracellular sodium,
and extracellular potassium concentrations, respectively. We
have augmented the voltage equation by additively includ-
ing DBS input, u(t) = I (t)/C. For a full explanation of
all model functions and parameters we refer the reader to
Appendix B; code for this model is available from Mod-
elDB.1 For the parameters used in this paper, the model

1http://senselab.med.yale.edu/modeldb/

exhibits periodic seizure-like bursting behavior due to the
slow dynamics of [K]o and [Na]i. Figure 1 displays the
periodic behavior of the slow ion dynamics. The extracellu-
lar potassium rises slowly, increasing the excitability of the
neuron until it reaches a level where the neuron is depolar-
ized beyond its spiking threshold, leading to bursting behav-
ior which rapidly increases the extracellular potassium con-
centration. Finally, the intracellular sodium concentrations
grow until bursting behavior terminates, allowing [K]o and
[Na]i to recover.

3 Bifurcation analysis to determine a target set

In order to terminate seizure-like bursting in this model, we
must first identify the regimes for which Eqs. (1)–(6) exhibit
bursting behavior. To produce bursting, a model must have
a mechanism to generate spiking behavior and a separate
mechanism with slow dynamics (Ermentrout and Terman
2010). For the model presented in Section 2, Eqs. (1)–(4)
(fast variables) describe the neural spiking behavior, with
variables that change on a much shorter time scale than
[K]o and [Na]i (slow variables). Treating the slow variables
as constants, we perform a bifurcation analysis on the full
model to quantitatively analyze the bursting and quiescent
regimes of the model. Using MATCONT (Dhooge et al.
2003), we are able to follow a curve of Saddle-Node Infi-
nite Periodic orbit (SNIPER) bifurcations (Guckenheimer
and Holmes 2010), a codimension one bifurcation which
gives rise to a stable limit cycle. The left panel of Fig. 2
shows the curve of SNIPER bifurcations for the fast spik-
ing variables from Eqs. (1)–(4). For ion concentrations to
the right of the dotted curve, the neuron is in a bursting
regime, B, and for concentrations to the left of the curve,
the neuron is in a quiescent regime, Q. The right panel
of Fig. 2 shows the trajectory of the slow variables from
Fig. 1 with the line of SNIPER bifurcations shown for
reference.

A naive approach to terminating bursting behavior in
this model is to drive a neuron from B to anywhere in Q.
This objective can be accomplished, for instance, by sim-
ply giving an inhibitory stimulus until the neuron reaches
the quiescent regime. In Fig. 3 we employ this strategy to
drive a bursting neuron to a quiescent regime, but because
the ion concentrations have not been significantly altered,
the neuron begins bursting soon after the inhibitory control
is removed.

In order to further refine a target set, we define a refrac-
tory index for quiescent neurons,

R([K]o(0), [Na]i(0)) = min{t|([K]o(t), [Na]i(t)) ∈ B},
(7)
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Fig. 1 Periodic dynamics of the
full model. Neural dynamics
fluctuate between bursting and
quiescence for different
concentrations of extracellular
potassium and intracellular
sodium. Note that the line
showing the time evolution of
the slow variable [K]o appears
thicker at times because of small,
rapid fluctuations associated
with the fast bursting dynamics
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which measures the time it takes for a quiescent neu-
ron to begin bursting in the absence of a control input.
We note that the refractory index is largely independent
of the initial conditions of the fast variables, provided
they do not cause the neuron to spike. Figure 4 shows
the results of a numerical calculation of the refractory
index as well as the line which separates the boundary
of the target set T = {x|R(x) ≥ 15, d(x,B) ≥
0.2}, where x = [[K]o, [Na]i]T , and d(x,B) is the min-
imum distance from point x to the bursting regime using
the 2-norm. We recognize that in an experimental set-
ting, it may be difficult to measure the ion concentrations
precisely, and include the second condition, d(x,B) ≥
0.2 as a margin of safety to ensure that the neuron has
reached Q.

We note that for this particular model, only the intracel-
lular and sodium extracellular potassium dynamics fluctuate
on a slow time scale to give a bifurcation boundary that
exists in a two dimensional space. For a different model
with extra slow variables, for instance, if the glial buffer-
ing capacity also varied on a slow time scale, the bifurcation
boundary and subsequent target set will exist in a higher
dimensional space.

4 Optimal control of a bursting neuron

We consider a single neuron with DBS input u(t)

ż = F(z)+ Bu, (8)

Fig. 2 The left panel shows the
line of SNIPER bifurcations for
the full model (1)–(6). The
regions denoted by Q and B
denote regions of quiescence
and bursting, respectively. The
right panel shows the trajectory
of the potassium and sodium
concentrations for the full model
in the absence of control. Note
that the trajectory follows a
counterclockwise path
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Fig. 3 A naive approach to terminating bursting behavior. Top-left
and bottom-left panels show the voltage trace and applied control,
respectively. Soon after the onset of bursting, an inhibitory stimulus is
applied, terminating bursting. The right panel shows the correspond-
ing ion concentrations and the line of SNIPER bifurcations as a solid

and dashed line, respectively. The starting point and ending point are
shown as a solid and hollow dot, respectively. Soon after the control is
turned off, the neuron resumes bursting

where z = [V, n, h, [Ca]i, [K]o, [Na]i]T , B =
[1, 0, 0, 0, 0, 0]T , and

F(z) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

fV (V, n, h, [K]o, [Na]i, [Ca]i)
fn(V, n)

fh(V, h)

fCa(V )

fK(V, n, [K]o, [Na]i, [Ca]i)
fNa(V, h, [K]o, [Na]i)

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (9)

Implementing an optimal control strategy for the full model
would be difficult given the fast-slow dynamics of the sys-
tem, and would likely require a control feedback system
with knowledge of each of the state variables to be imple-
mented effectively. In order to simplify the control problem,
we first reduce the system by eliminating the fast-time-scale
dynamics. Notice that fK and fNa only depend on the fast
variables in the terms IK and INa. This allows us to reduce
(8) by averaging out the fast dynamics, resulting in

ẋ = G(x)+ I (x, u), (10)

Fig. 4 Refractory index, R,
plotted as a function of [K]o and
[Na]i. The boundary of the
target set, T = {x|R(x) ≥
15, d(x,B) ≥ 0.2} is plotted
as a solid line. The boundary of
SNIPER bifurcations is plotted
as a dashed line for reference
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where x = [[K]o, [Na]i]T , I (x, u) =
[−0.33IK(x, u),

0.33
β

INa(x, u)]T , and

G(x) =
[ −2βIpump([K]o, [Na]i)− Iglia([K]o)− Idiff([K]o)
−3Ipump([K]o, [Na]i).

]
.(11)

Here, IK and INa are determined by fixing the exter-
nal potassium concentration, internal sodium concentration,
and control input, then allowing the model cell to reach
either a steady state or a periodic orbit, and finally time-
averaging IK and INa over one second. The terms IK(x, u)

and INa(x, u) are calculated by interpolating the numeri-
cally time-averaged data.

4.1 Minimum time control

The following optimal control strategies will use a
Hamilton-Jacobi-Bellman (HJB) approach (Kirk 1998;
Danzl et al. 2010). If the control objective is to find a con-
trol law that will take the neuron to the target set, T , in the
minimum possible time, we can begin by defining the time,
tmin ∈ [0,∞), to be the minimum time it takes for some ini-
tial state, x(0), to reach the target set under the influence of
a control signal u(t), i.e.

tmin(x, u(t)) = min{t1|x(t1) ∈ T , x(0) = x}. (12)

For a given initial state, x, the time-optimal stimulus will
minimize the cost functional

Jt (x, u(t)) =
∫ tmin

0
1 dt = tmin(x, u(t)). (13)

We note that tmin is not known a priori, and must be found
through calculation of the optimal stimulus and optimal
state trajectories. We also consider bounds on the maximum
input for practical hardware limitations and tissue sensitiv-
ity: umin ≤ u ≤ umax. For this problem, we take umin =
−2 and umax = 10, with a more restrictive limit on the
magnitude of hyperpolarizing (negative) current so that the
transmembrane voltage does not drop too far below its nor-
mal resting levels. We define the minimum-time-to-reach
value function

Vt (x) = inf
umin≤u(t)≤umax

Jt (x, u(t)) = inf
umin≤u(t)≤umax

tmin(x, u(t)). (14)

Using the minimum-time-to-reach, Hamilton-Jacobi-
Bellman framework, the value function Vt (x) is the solution
of the following equation (Bardi and Capuzzo-Dolcetta
2010):

0 = min
umin≤u(t)≤umax

{1 + ∇VT
t (x)(G(x)+ I (x, u))} = 1

+ ∇VT
t (x)G(x)+ min

umin≤u(t)≤umax
{∇VT

t (x)I (x, u)}, (15)

with boundary condition Vt (x) = 0 ∀x ∈ T , where
∇Vt is the gradient of the value function with respect to
the state x. To find the optimal control, u∗(t), we must first
solve (15) for Vt (x), and then minimize the term which
depends on the control, resulting in the control policy

u∗(x(t)) = arg min
(
∇VT

t (x)I (x, u)
)
. (16)

We will obtain a numerical solution for Eq. (15) using Ian
Mitchell’s “Level Set Methods Toolbox” (Mitchell 2007), a
computational tool to solve time dependent PDE’s. While
Eq. (15) is not time dependent, following the methodology
of Osher (1993) and Mitchell (2007) we can convert it to a
time dependent PDE. We first define a function

K(x,∇Vt (x)) = 1 +∇VT
t (x)G(x)+ min

umin≤u(t)≤umax
{∇VT

t (x)I (x, u)}, (17)

and rewrite (15) as

K(x,∇Vt (x)) = 0 on D\∂T ,

Vt (x) = 0 on ∂T , (18)

where ∂T is the boundary of the target set T and D is the
spatial domain. Provided that the boundary conditions are
not characteristic, i.e.

d∑

i=1

qi
∂K(x, q)

∂qi
	= 0 on ∂T , (19)

we can define an auxiliary function ϕ(x, s) and change
variables

Vt (x) ← s and ∇Vt (x) ← −∇ϕ(x, s)

ϕs(x, s)
, (20)

where ϕs = ∂ϕ/∂s. Algebraic manipulation yields

0 = ϕs(x, s)−∇ϕ(x, s)G(x) − min
umin≤u(t)≤umax

{∇ϕ(x, s)I (x, u)}, (21)

with initial conditions

ϕ(x, 0) = 0 ∈ ∂T ,

ϕ(x, 0) < 0 ∈ T \∂T , (22)

ϕ(x, 0) > 0 ∈ D\T .

Typically, Eq. (22) is achieved by using a signed distance
function for φ(x, 0). Equation (21) can be solved with the
Level Set Methods Toolbox, from which we can extract

Vt (x) = {t|ϕ(x, t) = 0}. (23)

The Matlab scripts for these calculations can be found at
http://www.me.ucsb.edu/∼moehlis/pubs.html.

4.2 Optimal energy control

Suppose we still want to reach the target set T , using a
stimulus which consumes a minimum amount of energy.

http://www.me.ucsb.edu/~moehlis/pubs.html
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We can solve this problem by defining a new cost
function

Je(x, u(t)) =
∫ tend

0
u2dt + γ q(x(tend)), (24)

where tend is the duration of the stimulus,
∫ tend

0 u2dt rep-
resents the amount of power consumed by the stimulus,
q(x(tend)) is an end point cost function, and γ is a penaliz-
ing scaler which sets the relative importance of each term.
As with the optimal time control problem, we set bounds on
the maximum input for hardware limitations and tissue sen-
sitivity: umin ≤ u ≤ umax . To maintain consistency with the
previous section, we take umin = −2 and umax = 10. We
define the minimum-energy value function

Ve(x, τ ) = inf
umin≤u(t)≤umax∀t∈[τ,tend ]

J (x, u(t)). (25)

Notice that the minimum-energy value function, Ve, is a
function of the time and state, whereas in the minimum-
time-to-reach scenario, the value function, Vt , is only a
function of the state. We can find the optimal stimulus for
Eq. (24) by solving the HJB equation (Kirk 1998)

0 = ∂Ve

∂t
(x, τ )+ min

umin≤u(t)≤umax
H(x,∇Ve, u), (26)

where

H(x,∇Ve, u) = u(t)2 + [∇Ve(x(t), t)]T (G(x(t))+ I (x(t), u(t))), (27)

and with endpoint boundary condition

Ve(x(tend), tend) = γ q(x(tend)). (28)

Here ∇Ve is the gradient of the value function with respect
to state x. The resulting optimal control policy is

u∗(x, t) = arg min(u2 +∇VT
e (x, t)I (x, u)). (29)

To calculate the optimal control u∗(x, t) from Eq. (29),
we first solve (26) for Ve(x, t) with endpoint boundary
condition (28). We use a sigmoid q(x(tend)) = 1/(1 +
exp(−5(d(x, T ) − 1.2))) as the endpoint cost, where
d(x, T ) is the minimum distance from x to the target set
using the 2-norm. This endpoint cost is chosen as an appro-
priate penalty for failing to reach T . Using Ian Mitchell’s
“Level Set Methods Toolbox” (Mitchell 2007), we solve
(26) with γ = 1000.

The Matlab scripts for these calculations can be found at
http://www.me.ucsb.edu/∼moehlis/pubs.html.

5 Results and discussion

We first solve for Vt using the minimum-time methodol-
ogy presented in Section 4.1. Using this information, we
determine an optimal control policy based on Eq. (16). The
cost function Vt (x) and optimal control policy are shown in

Fig. 5. The numerics suggest that for our particular choice of
parameters in Eq. (15), argmin(∇VT

t (x)I (x, u)) is unique
for all x, thus Eq. (16) would imply that the resulting
minimum-time control policy is unique. Notice that the con-
trol policy is not strictly of the bang-bang type as is common
for minimum time problems. This happens because, unlike
problems for which the control input is simply added to the
right-hand-side of the dynamic equations, the influence of
the applied control is a function of the time-averaged neural
dynamics.

In order to test the validity of the reduction, we apply
the control policy shown in Fig. 5 to both the reduced and
full dynamics, Eqs. (10) and (8) respectively. The external
control is set to zero until the neuron exhibits seizure-like
behavior (i.e. bursting), and to calculate the control we use
an initial condition that is just to the right of the SNIPER
bifurcation along the orbit shown in the right panel of Fig. 2.
Figure 6 shows the result of this simulation. The left panel
shows the trajectory for the reduced model and full model
as thin, grey and black lines, respectively. The top-right
panel gives the control input applied to the full and reduced
model as a black and grey line, respectively. Note that for
the reduced model, the control and associated state trajec-
tory are time optimal. The bottom right panel gives the
voltage trace for the neuron from the full model. The con-
trol policy applied to the reduced model gives tmin = 1.61
while the same control policy applied to the full model
gives tmin = 1.65. We see good agreement between the
solutions obtained from full and reduced models, and con-
clude that the reduction by elimination of fast variables is
a useful approach to solving this problem. Note that even
though it takes more than one second to reach the target set,
bursting activity terminates as soon as the stimulus switches
from positive to negative. When we apply this control pol-
icy to the full model, bursting activity terminates after 0.53
seconds while, without any control input, bursting activity
lasts for 6.36 seconds. The control policy applied to the full
model yields a 92 % decrease in the duration of bursting
activity. Note that the positive stimulus induces bursting that
is more rapid than when the control is not applied, but there
are approximately half as many spikes as compared to when
control is not applied. Also, it is possible to further improve
the reduction in bursting time by reducing the restriction on
the size of the external input, particularly, by increasing the
value of umax .

Next, we compare the minimum-time stimulus to other
similar, non-optimal stimuli, with results shown in Fig. 7.
The total time to reach the target set for uopt , u2, u3, and u4

is 1.651, 1.664, 1.653, and 1.799 units of time, respectively.
The stimuli u2 and u3 use signals with similar amplitude to
uopt , but change the time at which the transition from pos-
itive and negative control occurs. We find that these two
non-optimal stimuli only marginally increase the time to

http://www.me.ucsb.edu/~moehlis/pubs.html
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Fig. 5 Left and right panels
show Vt (x) and u∗(x),
respectively, for the target set
defined in Section 3. The
boundary of the target set is
shown as a solid line and the
line of SNIPER bifurcations is
shown as a dashed line for
reference

reach the target set. The stimulus u4 varies from the uopt in
the magnitude of the positive control used. We find that this
has a relatively larger effect on the overall time required to
reach the target set. It is worth noting that neural spiking
ends when each stimulus switches from an excitatory (pos-
itive) to an inhibitory (negative) stimulus, but spiking will
return if the inhibitory stimulus is not applied for a sufficient
amount of time. We also note that each stimulus reaches the
target set in a different location and, if desired, the cost func-
tion in the optimal control problem could be reformulated
to balance the trade off between the time to reach the target
set and the refractory index at the end time, R(x(tend)).

For simulations of multiple neurons, we consider a net-
work model consisting of two layers of one-dimensional

networks comprised of 60 excitatory pyramidal cells (PC’s)
and 60 inhibitory interneurons (IC’s), which is inspired by
Ullah et al. (2009) and Gutkin et al. (2001). Both neuron
types are modeled as conductance-based cells with ionic
concentration gradients. Neurons within the same layer are
aligned in a ring and coupled through spatially dependent
synapses as well as lateral diffusion of potassium through
extracellular space. For further details of the equations and
parameters used in the network model, we refer the reader
to Appendices A and B.

We apply control to the network model assuming that
each neuron receives an identical control input. The popu-
lation average potassium, [K]o, and sodium, [Na]i, levels of
the excitatory neurons in the network are monitored, and the

Fig. 6 The left panel shows the
trajectory of the slow potassium
and sodium variables under the
influence of the time-optimal
control policy from Fig. 5 for
the reduced system (grey line)
and the full system (black line).
The top-right panel shows the
resulting optimal control
waveforms for the full and
reduced systems shown as black
and grey lines, respectively. We
see good agreement between the
two models. The bottom-right
panel shows the transmembrane
voltage as a function of time for
the full system
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Fig. 7 A comparison of the
minimum-time control, uopt to
other similar, but non-optimal
controls. The left panel shows
the trajectory of each neuron
under the influence of their
respective controls in the
([K]o, [Na]i) plane. The target
set and line of SNIPER
bifurcations are shown as thick,
solid and dashed lines,
respectively. The total time to
reach the target set for
uopt , u2, u3, and u4 is 1.651,
1.664, 1.653, and 1.799 units of
time, respectively
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control is applied based on the strategy from Fig. 5. Network
results are shown in Fig. 8. The average value of the ion con-
centrations reaches the target set approximately 1.6 seconds
after onset of bursting activity, and the bursting lasts approx-
imately one half-second, whereas in the absence of control,
network bursting lasts for approximately 6.4 seconds. Note
that the results for the noisy network simulation are similar
to the results for the single neuron from Fig. 6.

For most of the duration of the minimum-time stimulus,
the controller is operating at or close to the positive and neg-
ative limits of the applied stimulus. Thus, we expect that
if we relax the minimum time constraint, to give solutions
that reach the target set at times that are larger but still close
to the minimum time, we could save a significant amount
of energy. With this in mind, we use the minimum-energy

methodology presented in Section 4.2 to solve for Ve(x, t),
and calculate the optimal stimuli for the full model for dif-
ferent choices of tend . The resulting energy-optimal stimuli
and the associated trajectories in the ([K]o, [Na]i) plane are
shown in the right and left panels of Fig. 9, respectively.
For the energy-optimal stimuli in Fig. 9, the overall energy
used,

∫ tend
0 u2dt , in order of decreasing values of tend is

5.65, 6.29, 7.42, and 55.3 units. We find that by slightly
relaxing the minimum time constraint, it is possible to find
stimuli which use an order of magnitude less energy than
the minimum-time stimulus, which may be attractive from
a clinical perspective.

As with all control methods, this methodology is not
without limitations. Safety concerns such as Faradaic charge
injection (Merill et al. 2005) become important when DBS

Fig. 8 Network simulation
using the minimum-time control
strategy from Fig. 5. The top left
panels show the path of average
ion concentrations for excitatory
cells from the network. The
boundary of the target set is
shown as a bold line for
reference. The top right panel
shows the applied control, and
the bottom panel shows the
transmembrane voltage of a
characteristic excitatory neuron
within the network
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Fig. 9 Optimal energy control
to the target set. The left panel
gives the trajectories in the
([K]o, [Na]i) plane. The target
set and line of SNIPER
bifurcations are plotted as grey
solid and dashed lines,
respectively. The right panel
shows the minimum-energy
stimulus for various choices
of tend
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is implemented in the long term. Also, positive charge injec-
tion during the application of the optimal control serves
to temporarily increase the bursting activity of the neu-
ron, which may be harmful. These and other biologically
relevant safety issues must be carefully considered before
experiments can be performed on real neurons, but because
of the generality of the Hamilton-Jacobi-Bellman approach,
they can be addressed through modification to parameters in
the calculation of the optimal control. This implementation
of the time-optimal control strategy would require a model
of real epileptic neurons that is accurate enough for control
purposes, as well as a way to estimate the intra- and extra-
cellular ion concentrations in real time. These challenges
are beginning to be addressed through Kalman filtering, and
may be feasible in the future (Ullah and Schiff 2010; Schiff
2010).

While this particular analysis was applied to a single-
neuron model of seizure-like bursting activity, this method-
ology can be adapted to include different considerations for
different models. For instance, this particular control strat-
egy was applied to a model of periodic recurrent seizure-like
activity, which does not accurately reflect all types of
seizures. For a different model which exhibits seizure-like
activity spontaneously or as the result of an external input,
this methodology could still be implemented by defining
an appropriate, non-pathological target set without consid-
eration of the refractory period, as the seizure-like activity
does not occur periodically. Furthermore, the single-neuron
mechanism of bursting activity in this model is caused by
pathological fluctuations of cellular ion concentrations, but
at a network level, seizures are thought to occur as the
result of an imbalance of synaptic excitation and inhibition
(Cossart et al. 2001; Wendling et al. 2002; Gnatkovsky et al.
2008; Avoli and de Curtis 2011). This framework can still
be handled for an appropriate model of seizure-like activ-
ity with fast-slow dynamics by averaging the fast, spiking

dynamics for any general control input and applying the
HJB control framework to the remaining slow dynamics.

6 Conclusion

We have described a method for driving a periodically
bursting neuron to a sufficiently refractory target set in min-
imum time using electrical stimuli. Also, the total energy
consumption for the minimum-time stimulus has been com-
pared to the energy-optimal stimuli obtained for stimuli of
slightly larger duration than the minimum time. We find
when an entire network exhibits pathological, seizure-like
bursting, this control methodology can reduce the amount
of time the network spends in the bursting state by an
order of magnitude. While the problem formulation is
relatively complex, the resulting control strategy is quite
simple.

The specific model used in this study examines the
dynamic relationship between cellular sodium, potassium
and calcium concentrations and their effect on the qualita-
tive behavior of inhibitory and excitatory neurons. In this
study, we find that once bursting begins, an initial excita-
tory stimulus increases the firing rate of bursting neurons,
quickly increasing the extracellular sodium and extracellu-
lar potassium levels. Once a sufficiently large concentration
of intracellular sodium has been reached, an inhibitory
stimulus suppresses neural firing allowing ion exchange
pumps, glial cells, and diffusive mechanisms to remove
excess potassium, ending the bursting activity. Interestingly,
when the intracellular sodium concentration is larger, ion
exchange pumps work faster to remove excess potassium,
causing the refractory index of x(tend) for the minimum
time to reach control strategy to be much larger than
required. For a different model, such as a network model
for seizure-like behavior with large scale network dynamics
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such as network excitation and inhibition, different mech-
anisms of seizure termination could be exploited to find
minimum-time, or optimal-energy control inputs.

We emphasize that the specific control strategy employed
in this paper is not meant to be a definitive treatment for
epileptic seizures. The model we have used is not perfect,
as each neuron in this model spends much time close to a
bifurcation point, and cannot spike more than a few times
before reaching bursting state, which does not reflect the
physiological need to propagate information through neuro-
logical spikes. The preceding method is meant as a proof of
concept that more sophisticated methods than proportional
feedback control have the potential to be successfully imple-
mented given an accurate model of epilepsy and a clear
control objective. Further investigation of models and mech-
anisms of seizure initiation and termination are needed,
but this method shows promise in improving existing DBS
strategies for termination of medically intractable epileptic
seizures.
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Appendix A: Network model of epilepsy

The excitatory and inhibitory model for network simulations
is as follows:

CV̇ e/i = I
e/i

Na + I
e/i

K + I
e/i

Cl + I
e/i
syn + ηe/i(t)+ u(t), (30)

ṅe/i = φ
[
αn(1 − ne/i)− βnn

e/i
]
, (31)

ḣe/i = φ
[
αh(1 − he/i)− βhh

e/i
]
, (32)

˙[Ca]ie/i = −0.002gCa(V
e/i − VCa)/[

1 + exp(−(V e/i + 25)/2.5)
]
, (33)

˙[K]oe/i = −0.33I e/iK − 2βI e/ipump − I
e/i

glia − I
e/i

diff (34)

+ D


x2 ([K]i/eo + [K]e/io(+) + [K]e/io(-) − 3[K]e/io ), (35)

˙[Na]ie/i = 0.33

β
I
e/i

Na − 3I e/ipump. (36)

Here, the equations from Eqs. (1)–(6) have been modified
to include synaptic currents Isyn, and Gaussian white noise.
The equations and parameters that describe the synaptic cur-
rent to each neuron can be found in Ullah et al. (2009).

Neurons in the same layer are positioned in a ring. In
the potassium dynamic equations, [K]i/eo refers to the ion
concentration around the nearest neighbor in the adjacent
layer, and [K]e/io(+) and [K]e/io(−) refer to ion concentrations of
adjacent neurons within the same layer. Parameters 
x =
20.0μm and D = 2.5 × 10−6cm2/s represent distances
between cells and the diffusion coefficient for potassium
in water, respectively. The i.i.d. noise associated with each
neuron, ηe/i = √

2BN (0, 1), is assumed to be zero-mean
Gaussian white noise with variance 2B = 0.01. We use
the algorithm presented in Honeycutt (1992) to simulate
the noisy system. Supporting ionic functions are given in
Appendix B.

Appendix B: Supporting ionic functions

Supporting ionic functions are as follows; note that the e/i

superscripts for the network model from Appendix A have
been dropped for convenience of notation:

INa = −gNa[m∞(V )]3h (V − VNa)− gNa(V − VNa),

IK = −
(
gKn

4 + gAHP[Ca]i
1 + [Ca]i

)
(V − VK)− gK(V − VK),

ICl = −gL(V − VL),

Idiff = ε([K]o − ko,∞),

Ipump =
(

ρ

1 + exp((25 − [Na]i)/3)

)(
1

1 + exp(5.5 − [K]o)
)
,

I
e/i

glia = Gglia

1 + exp((18 − [K]o)/2.5)
,

VNa = 26.64 log

( [Na]o
[Na]i

)
,

VK = 26.64 log

( [K]o
[K]i

)
,

[Na]o = 144 + β(18.0 − [Na]i),
[K]i = 140 + (18.0 − [Na]i).

For inhibitory neurons, gAHP = 0, otherwise gAHP =
0.01mS/m2. Supporting rate equations are:

m∞(V ) = αm(V )/(αm(V )+ βm(V )),

αm(V ) = 0.1(V + 30)/(1 − exp(−0.1(V + 30))),

βm(V ) = 4 exp(−(V + 55)/18),

αn(V ) = 0.01(V + 34)/(1 − exp(−0.1(V + 34))),

βn(V ) = 0.125 exp(−(V + 44)/80),

αh(V ) = 0.07 exp(−(V + 44)/20),

βh(V ) = 1/(1 + exp(−0.1(V + 4)))),

Other constants are as follows: C = 1μF/cm2, gNa =
100mS/m2, gK = 40mS/m2, gL = 0.05mS/m2, gK =
0.05mS/m2, gNa = 0.0175mS/m2, φ = 3s−1, VL =
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81.93mV, gCa = 0.1mS/m2, VCa = 120mV, β = 7, ρ =
1mM/s, ko,∞ = 8mM, ε = 4/3s−1, Gglia = 66.6mM/s.
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