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Abstract
Deep brain stimulation (DBS) is an established method for treating pathological conditions such as Parkinson’s disease, dys-
tonia, Tourette syndrome, and essential tremor. While the precise mechanisms which underly the effectiveness of DBS are not
fully understood, several theoretical studies of populations of neural oscillators stimulated by periodic pulses have suggested
that this may be related to clustering, in which subpopulations of the neurons are synchronized, but the subpopulations are
desynchronized with respect to each other. The details of the clustering behavior depend on the frequency and amplitude
of the stimulation in a complicated way. In the present study, we investigate how the number of clusters and their stability
properties, bifurcations, and basins of attraction can be understood in terms of one-dimensional maps defined on the circle.
Moreover, we generalize this analysis to stimuli that consist of pulses with alternating properties, which provide additional
degrees of freedom in the design of DBS stimuli. Our results illustrate how the complicated properties of clustering behavior
for periodically forced neural oscillator populations can be understood in terms of a much simpler dynamical system.

Keywords Neural oscillators · Clustering · Phase models · Deep Brain Stimulation

1 Introduction

A primary motivation for this study is Parkinson’s disease,
which can cause an involuntary shaking that typically affects
the distal portion of the upper limbs, and difficulty initiat-
ing motion. For patients with advanced Parkinson’s disease
who do not respond to drug therapy, electrical deep brain
stimulation (DBS), an FDA-approved therapeutic procedure,
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may offer relief (Benabid et al. 1991). Here, a neurosurgeon
guides a small electrode into the sub-thalamic nucleus or
globus pallidus interna (GPi); the electrode is connected to
a pacemaker implanted in the chest which sends periodic
electrical pulses directly into the brain tissue. The efficacy
of DBS for the treatment of Parkinson’s disease has been
found to depend on the frequency of stimulation, with high-
frequency stimulation (70 to 1000 Hz and beyond) being
therapeutically effective (Benabid et al. 1991; Rizzone et al.
2001; Moro et al. 2002). The generally accepted therapeu-
tic range is 130–180 Hz (Volkmann et al. 2002; Kuncel and
Grill 2004). DBS has also shown promising results in treat-
ing other neurological conditions, for which the stimulation
electrode is implanted in the GPi (for dystonia) or the tha-
lamus (for Tourette syndrome and essential tremor) (Savica
et al. 2012; Benabid et al. 2002).

The precise mechanisms which underly the effectiveness
of DBS are not fully understood and may be due to inhi-
bition, excitation, disruption, and/or desynchronization of
local neural elements; moreover, the mechanism may be
different for different stimulation frequencies (Liu et al.
2008; Rosenbaum et al. 2014; Chiken and Nambu 2016;
Herrington et al. 2016). In this paper, we draw inspiration
from a body of experimental evidence that has suggested
that motor symptoms of Parkinson’s disease are associated
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with pathological synchronization of neurons in the basal
ganglia (Uhlhaas and Singer 2006; Chen et al. 2007; Ham-
mond et al. 2007; Levy et al. 2000; Schnitzler and Gross
2005), and theoretical studies that have shown that DBS-like
stimulation consisting of periodic pulses applied to neural
oscillator populations can lead to chaotic desynchroniza-
tion (Wilson et al. 2011) or clustering behavior (Wilson and
Moehlis 2015), in which subpopulations of the neurons are
synchronized, but the subpopulations are desynchronized
with respect to each other. Clustering has also been found
in theoretical studies of coordinated reset, in which multi-
ple electrodes deliver inputs which are separated by a time
delay (Lücken et al. 2013; Lysyansky et al. 2011, 2013; Tass
2003b). These studies, along with clinical successes with
coordinated reset (Adamchic et al. 2014), point to clustering
as an attractive objective for designing stimulationproperties;
this has motivated the design of single control inputs which
promote clustering (Matchen and Moehlis 2018; Monga and
Moehlis 2019; Wilson 2020), in contrast to methods which
seek to fully desynchronize the neural activity (Tass 2003a;
Nabi et al. 2013; Wilson and Moehlis 2014; Monga and
Moehlis 2020). Notably, clustering has at least two important
differences from chaotic desynchronization: clustered states
often exist over a much larger parameter range than chaotic
desynchronization, a possible explanationwhyeffectiveDBS
parameters are easier to find than chaotic desynchronization
would suggest; and clustered states may induce plasticity
changes more effectively than chaotic desynchronization,
whichmay explain why benefits aremore persistent for some
kinds of stimulation mechanisms than others (cf. (Adamchic
et al. 2014; Monga and Moehlis 2019)). In this paper, we
will focus on clustering which arises from a single stimula-
tion electrode, unlike coordinated reset which uses multiple
electrodes. It is important to note that clustering is not the
normal behavior for neural populations in the basal ganglia.
Moreover, note that this framework can also be used to help
identify stimuliwhich lead to desynchronizationwhileavoid-
ing clustering, if that is deemed a preferable control objective.

Despite substantial data backing the general efficacy
of DBS, it can have side effects including disorientation,
memory deficits, spatial delayed recall, response inhibition,
episodes of mania, hallucinations, or mood swings, as well
as impairment of social functions such as the ability to recog-
nize the emotional tone of a face (Cyron 2016;Buhmann et al.
2017). Our study develops tools which can help to identify
different stimuli that result in the same clustering behavior;
our hope is that the identification of these alternatives will
allow neurologists to consider different stimuli in order to
find those which are effective at treating neurological disor-
ders while minimizing the severity of side effects.

In this paper, we investigate how the details of clustering
due to periodic pulses of the type used in DBS can be under-
stood in terms of one-dimensionalmaps defined on the circle.

As a first step, Sect. 2 describes phase reduction, a powerful
classical technique for the analysis of oscillators in which
a single variable describes the phase of the oscillation with
respect to some reference state. Section 3 shows results from
simulations of populations of Hodgkin–Huxley neural oscil-
lators stimulated by periodic pulses of the type used for DBS;
this illustrates the different types of clustering which can
occur andmotivates the theoretical analysis. Section4derives
and investigates the one-dimensionalmapswhich can be used
to understand the types of clusters which occur, their stability
properties, their bifurcations, and their basins of attraction.
Section 5 then demonstrates how this analysis in terms of
maps can be generalized to consider stimuli that consist of
pulses with alternating properties, which provide additional
degrees of freedom for DBS stimulus design. Section 6 sum-
marizes the results. Themodels for the neurons considered in
this paper are given in Appendix A. Simulation and analysis
results for thalamic neurons are given in Appendix B; these
complement the results on Hodgkin–Huxley neurons from
the main text. Appendix C gives theoretical results on how
the various maps considered in the paper vary with stimula-
tion parameters.

2 Phase reduction

A common way to describe the dynamics of neurons is
to use conductance-based models such as the Hodgkin–
Huxley Eqs. (Hodgkin and Huxley 1952). Such models
are typically high-dimensional and contain a large number
of parameters, which can make them unwieldy for simu-
lations of large neural populations. A powerful technique
for the analysis of oscillatory neurons, whose dynamics are
described by a stable periodic orbit, is the rigorous reduc-
tion in conductance-based models to phase models, with a
single variable θ describing the phase of the oscillation with
respect to some reference state (Winfree 2001; Kuramoto
1984; Monga et al. 2019).

Suppose that our conductance-based model is described
by the n-dimensional dynamical system

dx
dt

= F(x), x ∈ R
n (n ≥ 2), (1)

with a stable periodic orbit γ (t) with period T . For each
point x∗ in the basin of attraction of γ (t), there exists a
corresponding phase θ (x∗) such that (Guckenheimer 1975;
Winfree 2001)

lim
t→∞

∣
∣
∣
∣
x(t) − γ

(

t + T

2π
θ(x∗)

)∣
∣
∣
∣
= 0, (2)

where, under the given vector field, x(t) is the trajectory of
the initial point x∗. The asymptotic phase of x, θ(x), ranges
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in value from [0, 2π). In this paper, θ = 0 will represent the
phase at which the neuron fires an action potential. Isochrons
are level sets of θ(x), and we define isochrons such that the
phase of a trajectory evolves linearly in time both on and off
of the periodic orbit (Winfree 1967, 2001). As a result, for
the entire basin of attraction of the periodic orbit,

dθ

dt
= 2π

T
≡ ω. (3)

If we now consider the dynamical system

dx
dt

= F(x) + U(t), x ∈ R
n, (4)

where U(t) ∈ R
n is an infinitesimal control input, phase

reduction gives the one-dimensional system (Kuramoto
1984; Brown et al. 2004; Monga et al. 2019)

dθ

dt
= ω + U(t)TZ(θ). (5)

In this equation, Z(θ) is the gradient of θ evaluated on the
periodic orbit and is known as the phase response curve
(PRC) (Winfree 2001; Ermentrout and Terman 2010; Netoff
et al. 2012); it represents the change in phase that the con-
trol input will cause when applied at a given phase. In this
paper, we consider electrical current inputs which only act
in the voltage direction defined by the unit vector V̂ , i.e.,
U(t) = u(t)V̂ , with the corresponding phase reduction

dθi

dt
= ω + Z(θi )u(t). (6)

Here, θi represents the phase of the i th neuron,ω is the natural
frequency of the neuron in radians per second, Z(θ) = ∂θ

∂V is
the component of the PRC in the voltage direction, and u(t)
is the input. For the populations of neurons considered in this
paper, we assume that the neurons are identical and they all
receive the same input, and we will consider uncoupled neu-
rons without noise; these assumptions allow a more detailed
analysis to be performed.

In the next section, we show simulation results for pop-
ulations of neurons described by such phase models with
periodic pulses of the type used for DBS.

3 Simulation results for identical periodic
DBS pulses

In this section, we show simulation results for populations
of neurons stimulated by periodic pulses of the type used for
DBS; these resultswill inspire the analysis in Sect. 4. To illus-
trate a range of clustering behaviors, we show simulations for
a prototypical Type II neuron model, the Hodgkin–Huxley
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Fig. 1 The phase response curve Z(θ) for theHodgkin–Huxley neurons
considered in this paper

Fig. 2 Periodic sequence of identical pulses

Eqs. (Hodgkin and Huxley 1952). The full equations are
given in Appendix A; for our simulations, we use the cor-
responding phase model. For reference, for these parameters
the Hodgkin–Huxley neurons have ω = 0.429 rad/s, and the
PRC is shown in Fig. 1. The PRC was calculated numer-
ically using XPP (Ermentrout 2002) and is approximated
by a Fourier series. See Appendix B for simulations for an
(approximately) Type I neuron model, the thalamic neurons
from (Rubin and Terman 2004). These models are not meant
to correspond to the neurons directly relevant to Parkinson’s
disease in human patients; rather, they are used to illustrate
typical clustering behaviors for populations of neural oscil-
lators under DBS-like stimuli.

The input u(t) that we consider, shown in Fig.2 and
inspired by DBS stimuli (Montgomery 2010), is a τ -periodic
sequence of identical charge-balanced pulses parameterized
by amplitude umax , period τ (with corresponding frequency
1/τ ), pulse width p, and multiplier λ (the ratio of time that
the pulse is negative to the time that the pulse is positive).
Mathematically, u(t) is given by:

u(t) =
⎧

⎨

⎩

umax mod(t, τ ) ≤ p
umin ≡ − umax

λ
p < mod(t, τ ) ≤ (λ + 1)p

0 otherwise.
(7)
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Unless otherwise stated, we will use umax corresponding to a
current density of 20μA/cm2, p = 0.5 ms, and λ = 3 in our
simulations.We consider different frequencies of stimulation
between 70–300 Hz, which includes the typical therapeutic
range of 130–180 Hz for DBS treatment of Parkinson’s dis-
ease.

We simulated 500 Hodgkin–Huxley neurons with initial
phases evenly spaced between 0 and 2π , corresponding to an
initial uniform phase distribution. The stimulation frequency
was varied from 70 Hz to 300 Hz in increments of 5 Hz.
Figure 3a shows the final phases after 40 periods of stimula-
tion, after transients have decayed away. The colors indicate
the initial phases of the neurons. Not all colors are visible
for most stimulation frequencies because the final phases of
entire subpopulations of neurons are nearly identical, and
only one representative initial phase can be seen. All of the
neuronswhich have nearly the samefinal phase are part of the
same cluster. Figure 3b shows the generalized order param-
eters (Daido 1996)

rm = 1

N

∣
∣
∣
∣
∣
∣

N
∑

j=1

eimθ j

∣
∣
∣
∣
∣
∣

, (8)

for m = 1, 2, 3. These help to identify cluster states. For
example, when the neurons all have the same phase (cor-
responding to a single cluster), r1 = r2 = r3 = 1. When
there are two equally populated clusters with a phase differ-
ence of π , r1 = r3 = 0 and r2 = 1. When r3 is large and
r1 and r2 are small, we expect that the system is in a state
with three clusters. A uniform phase distribution will have
r1 = r2 = r3 = 0.

Figure 4 shows the times series of the phases of a popu-
lation of Hodgkin–Huxley neurons for selected frequencies
and helps us to interpret the results shown in Fig. 3. For
example, Fig. 4a shows that for a 100 Hz stimulus the neu-
rons separate into three clusters, as is also the case for 250 Hz
as shown in Fig. 4e. (Notice that Fig. 3 shows three possible
final phases and high values for r3 for each of these frequen-
cies, corresponding to these three clusters.) Fig. 4b shows that
for a 150 Hz stimulus the neurons separate into two clusters.
For a 180 Hz stimulus, there is no clustering; see Fig. 4c; we
will argue below that this corresponds to chaotic dynamics.
By carefully looking at Fig. 4d, one sees that for a 185 Hz
stimulus there are five clusters, as expected from final states
shown at this frequency in Fig. 3. Such clustering behav-
ior and non-clustering (chaotic) behavior have been seen in
other studies, such as (Wilson et al. 2011) and (Wilson and
Moehlis 2015).

Inspired by neural synchrony in Parkison’s patients, we
also considered an initial partially synchronized neural pop-
ulation, with phases distributed according to a von Mises
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Fig. 3 a The final phases θ of Hodgkin–Huxley neurons drawn from
an initial uniform distribution as a function of stimulation frequency,
after 40 periods of stimulation. Colors correspond to the neurons’ ini-
tial phases. Not all colors are visible for most stimulation frequencies
because the final phases of entire subpopulations of neurons are nearly
identical, and only one representative initial phase can be seen. The
vertical dotted lines correspond to frequencies shown in Fig. 4. bOrder
parameters r1 (black), r2 (blue), and r3 (red) for the final state as a func-
tion of frequency. For the initial uniform distribution, r1 = r2 = r3 = 0

distribution (Best and Fisher 1979) centered at θ = 0:

ρ0(θ) = eκ cos θ

2π I0(κ)
, (9)

where I0(κ) is the modified Bessel function of order 0. This
distribution is similar to a Gaussian distribution, but on a cir-
cle. We simulated 500 Hodgkin–Huxley neurons with initial
phases distributed according to the von Mises distribution
with κ = 50. As for Fig. 3, the stimulation frequency was
varied from 70 Hz to 300 Hz in increments of 5 Hz. Fig. 5a
shows the final phases after 40 periods of stimulation, after
transients have decayed away. We see that the final phases
of the neurons from the initial von Mises distribution lie on
a subset of the final phases of the neurons from the initial
uniform distribution. For example, when the stimulation fre-
quency is 100 Hz, the neurons from the initial von Mises
distribution are concentrated in two of the three clusters
which exist for the initial uniform distribution. From Fig. 5b,
the initial state is highly synchronized, and there are limited
frequencies for which these deviate significantly from their
initial values. Note that often a single cluster forms, which
has r1 = r2 = r3 = 1.

123



Biological Cybernetics (2020) 114:589–607 593
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Fig. 4 Time series showing the phases of Hodgkin–Huxley neurons
drawn from an initial uniform distribution for frequencies a 100 Hz, b
150 Hz, c 180 Hz, d 185 Hz, and e 250 Hz. The titles of these panels
indicate the number of clusters found after transients have decayed
away. For (c), clusters do not form. For this and subsequent time series
figures, t is measured in ms, and the colors indicate the initial phases
of the neurons, with colorbar as in Fig. 3
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Fig. 5 a As a function of stimulation frequency, the final phases θ of
Hodgkin–Huxley neurons drawn from an initial von Mises distribution
after 40 periods of stimulation are shown as black ∗’s, overlaid on the
final phases of Hodgkin–Huxley neurons drawn from an initial uniform
distribution (as was shown in Fig. 3). b Order parameters r1 (black), r2
(blue), and r3 (red) as a function of frequency, with their initial values
shown as dashed lines

We also designed an algorithm to detect the size of clusters
in a population. The algorithm groups the phases of neurons
in a population at each timestep into clusters by sorting the
phases in ascending order and checking if the i th phase is
within ε of the (i + 1)-th phase for an appropriate small
value of ε. If so, the size of the current cluster is increased by
one. If not, the algorithm creates a new cluster. The process
is repeated until all neurons have been grouped into clus-
ters. Figure 6 shows the number of neurons in the different
clusters over a range of frequencies for the initial uniform
distribution (for which three clusters are populated) and von
Mises distribution (for which only two clusters are popu-
lated). As we will see in Sect. 4, this figure can be explained
in terms of the basins of attraction of fixed points of iterates
of a one-dimensional map defined on the circle. The initial
phase of a given neuron will determine which cluster it ends
up in. These maps will also allow us to understand the types
of clusters which occur in these simulations, along with their
stability properties, and bifurcations. Note that Appendix B
shows simulation results for populations of thalamic neurons
with the same stimuli (7).
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Fig. 6 The number of Hodgkin–Huxley neurons in different clusters
for a population size of 500, with initial a uniform and b von Mises
distributions

4 Analysis of clusters due to identical pulses
using 1Dmaps

In this section, we show how the clustering behavior found
in the simulations from Sect. 3 can be understood in terms of
appropriate compositions of one-dimensional maps on the
circle. We note that the use of one-dimensional maps to
describe the dynamics of neural and other biological sys-
tems has a rich history, e.g., (Keener et al. 1981; Glass and
Mackey 1988; Ermentrout and Kopell 1998; Ermentrout and
Terman 2010).

We consider a systemof neural oscillators subjected to a τ -
periodic sequence of pulses as shown in Fig. 2 and described
by the dynamics (Wilson and Moehlis 2015)

θ̇i = ω + f (θi )δ(mod(t, τ )), i = 1, · · · , N . (10)

Here, the response function f (θ) describes the change in
phase due to a single pulse (including the positive current for
time p, and the negative current for time λp). If the pulse
was a delta function with unit area, f (θ) would be equal
to the infinitesimal PRC Z(θ); for more general pulses, it
can be calculated using a direct method in which a pulse is
applied at a known phase, and the change in phase is deduced
from the change in timing of the next action potential (Netoff
et al. 2012). We will think of the change in phase due to the
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Fig. 7 Response function f (θ)which characterizes the phase response
of Hodgkin–Huxley neurons to the stimulus, for umax corresponding to
a current density of 20μA/cm2, p = 0.5 ms, and λ = 3

pulse as occurring instantaneously, even though the pulsewill
typically have a finite duration; this will be a good approx-
imation for pulses of short duration. Figure 7 shows f (θ)

for the Hodgkin–Huxley neurons considered in this paper
for pulses as shown in Fig. 2 with umax corresponding to a
current density of 20μA/cm2, p = 0.5 ms, and λ = 3.

To understand the clustering behavior, it will be useful
to consider the map which takes the phase of a neuron to
the phase exactly one forcing cycle later, cf. (Wilson and
Moehlis 2015). To find this map, suppose that we start with
θ(0+) = θ0, immediately after the start of a pulse, where we
assume that we have already accounted for the effect of the
pulse according to the function f (θ). The next pulse comes
at time τ . Up until time τ , the phase evolves according to
θ̇ = ω; therefore,

θ(τ−) = θ0 + ωτ. (11)

Treating the change in phase due to the next pulse as occur-
ring instantaneously, we have

θ(τ+) = θ0 + ωτ + f (θ0 + ωτ). (12)

The system then evolves for a time τ without stimulus, giving

θ(2τ−) = θ0 + 2ωτ + f (θ0 + ωτ); (13)

the next pulse at time 2τ gives

θ(2τ+) = θ0 + 2ωτ + f (θ0 + ωτ)

+ f (θ + 2ωτ + f (θ0 + ωτ)), (14)
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and so on. It is useful to let (Wilson and Moehlis 2015)

g(s) = s + ωτ + f (s + ωτ), (15)

which gives

θ(nτ+) = g(n)(θ0), (16)

where g(n) denotes the composition of g with itself n times,
and θ0 is the initial state of the neuron.

We look for fixed points of g(n), that is, solutions to
θ∗ = g(n)(θ∗); for such solutions, the phase has the same
value after n pulses as where it started. We are particularly
interested in fixed points of g(n) which are not fixed points of
g(m) for any positive integer m satisfying m < n; then, there
will be n fixed points of g(n) that correspond to points on a
period-n orbit of g. If

∣
∣
∣
∣

d

dθ

∣
∣
∣
∣
θ=θ∗

(g(n)(θ))

∣
∣
∣
∣
< 1, (17)

then the fixed point θ∗ of g(n) is stable, as is the corresponding
period-n orbit of g. Neurons which start with initial phases
within the basin of attraction of a given fixed point of g(n)

will asymptotically approach that fixed point under iterations
of g(n). The n different fixed points will each have a basin
of attraction, so a uniform initial distribution of neurons will
form n clusters, one for each of these fixed points of g(n),
cf. (Wilson and Moehlis 2015).

We note some useful properties of g and its iterates. First,
consider gτ (θ) corresponding to a τ -periodic sequence of
pulses (that is, with frequency 1/τ ), and gσ (θ) corresponding
to a σ -periodic sequence of pulses (that is, with frequency
1/σ ). Letting

θ = θ̂ + ω(τ − σ), (18)

we see that

gσ (θ) = θ̂ + ω(τ − σ) + ωσ + f (θ̂ + ω(τ − σ) + ωσ)

= θ̂ + ωτ + f (θ̂ + ωτ) = gτ (θ̂ ).

Therefore,

gσ (θ) = gτ (θ + ω(σ − τ)). (19)

For σ < τ , σ -periodic forcing has a higher frequency (1/σ )
than τ -periodic forcing (frequency 1/τ ); thus, we see that
the function g keeps the same shape and shifts to the right as
the forcing frequency increases; see the top panel of Fig. 8.

Although this shift property is not true for higher iterates
of g, it does hold approximately, as shown in Proposition 1

of Appendix C and illustrated in the bottom panel of Fig. 8:

g(n)
σ (θ) = g(n)

τ (θ + ω(σ − τ)) + O(σ − τ). (20)

We now illustrate how these maps can be used to under-
stand the specific clustering behavior shown in Sect. 3.
Figure 8 shows g(θ) and g(2)(θ) for various frequencies.
We see, for example, that there are two fixed points for g for
80 Hz, one stable (the slope at the intersection is between
−1 and +1) and one unstable (the slope at the intersection
is greater than 1), corresponding to a stable and an unsta-
ble single cluster, respectively. In such a cluster, all neurons
have identical phases, giving synchrony. This explains the
single value of the final phase for 80 Hz in Fig. 3. As the fre-
quency increases (and g shifts to the right), these fixed points
annihilate in a saddlenode bifurcation (which occurs at the
frequency at which g becomes tangent to the diagonal), so
that at 90 Hz there are no fixed points of g.

From Fig. 8, we can also deduce the presence of saddle-
node bifurcations for the g(2) map as it shifts right with small
corrections according to (20) as the frequency increases,
leading to 2-cluster states for a range of frequencies. For
example, suppose that a population of Hodgkin–Huxley neu-
rons is stimulated with frequency 150 Hz, corresponding to
τ = 6.67 ms. We see that there are two stable fixed points
for g(2)(θ), at θ = 2.86 and θ = 5.86 (these fixed points
are stable because the slope at the intersection is between−1
and +1). There are also two unstable fixed points for g(2) at
θ = 1.305 and θ = 4.685, where the slope at the intersection
is greater than 1. There are no fixed points for g(θ) for 150
Hz, but a cobweb analysis verifies that there is a period-2
orbit

θ = 2.86 → 5.86 → 2.86 → · · · .

These fixed points of g(2) correspond a stable 2-cluster state
for a population of oscillators, as shown in Fig. 4b. We note
that we can deduce the basin of attraction for the different
stable fixed points of g(2); for example, the basin of attraction
for the stable fixed point at θ = 2.86 is the range 1.305 <

θ0 < 4.685, that is, between the two unstable fixed points.
This analysis of the g(2) maps explains the two values of the
final phase for the range from approximately 125 Hz to 170
Hz in Fig. 3.

As another example, suppose that a population of
Hodgkin–Huxley neurons is stimulated with frequency 100
Hz, corresponding to τ = 10 ms. Figure 9 shows g(θ) and
g(3)(θ), the latter for a range of frequencies. We see that
for 100 Hz, there are three stable fixed points for g(3)(θ), at
θ = 1.43, θ = 3.37, and θ = 5.86 (these fixed points are
stable because the slope at the intersection has slope between
−1 and+1). There are no fixed points for g(θ), but a cobweb
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Fig. 8 Maps g(θ) with stimulation frequencies 80, 90, 110, and 150
Hz, and g(2)(θ) with stimulation frequencies 120, 130, 140, 150, 160,
170, and 180 Hz for Hodgkin–Huxley neurons. Intersections with the
diagonal dashed line indicate fixed points of the respective map. The
dotted lines show θ values for the stable fixed points of the g(2) map for
150 Hz, corresponding to the period-2 orbit for g

analysis verifies that there is a period-3 orbit

θ = 1.43 → 5.86 → 3.37 → 1.43 → · · · .

These fixed points of g(3) correspond a stable 3-cluster state
for a population of oscillators, as shown in Fig. 4a. We can
deduce the presence of saddlenode bifurcations for the g(3)

map as it shifts right (with small corrections) as the frequency
increases, leading to 3-cluster states. This explains the three
values of the final phase for the range from approximately
100 Hz to 115 Hz in Fig. 3.

We can understand the cluster sizes shown in Fig. 6a by
looking at the basins of attraction of the different stable fixed
points, as indicated in Fig. 10 for 200 Hz and 260 Hz stim-
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Fig. 9 Maps g(θ) for stimulation frequency 100 Hz, and g(3)(θ) for
Hodgkin–Huxley neuron for stimulation frequencies 95, 100, 105, 110,
115, and 120 Hz

uli. The basin boundaries are at the phases of the appropriate
unstable fixed points. When the initial phase distribution is
uniform, the number of neurons which end up in each clus-
ter is proportional to the size of the corresponding basin of
attraction. For example, if there are 500 uniformly distributed
neurons, this predicts that there will be 144, 173, and 183
neurons in Clusters I, II, and III, respectively, for a 200 Hz
stimulus, and 209, 133, and 159 neurons in Clusters I, II, and
III, respectively, for a 260 Hz stimulus. This is consistent
with the results shown in Fig. 6a. The number of neurons in
each cluster for Fig. 6b would be determined by the num-
ber of neurons which are initially in the respective basin of
attraction, as determined by the initial phase distribution;
here, there were no neurons with initial phases that end up in
Cluster III.
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Fig. 10 Basins of attraction for the different clusters for a 200 Hz and
b 260 Hz stimuli

Finally, we can use g to calculate the Lyapunov exponent
Λ associated with the attractors for the map g. This is of
interest because it identifies stimulation frequencies which
give chaotic dynamics (Λ > 0) or non-chaotic states includ-
ing stable clusters and the fully synchronized state (Λ < 0).
Specifically (Ott 1993),

Λ = lim
n→∞

1

n

n−1
∑

j=0

log g′(θ j ), (21)

where θ0 is a point on the attractor. Here, g′(θ) = 1+ f ′(θ +
ωτ). We chose an initial phase and iterated the map for 1000
iterates to get rid of transients and then averaged the next
49000 iterates. Results are shown in Fig. 11. For example,
for stimulation frequency 180Hz,wefindΛ = 0.29,which is
consistentwith thenon-clusteringdynamics shown inFig. 4c;

100 150 200 250 300
-1

-0.5

0

0.5

180

185

frequency (Hz)

Λ

Fig. 11 Lyapunov exponent Λ as a function of stimulation frequency
for Hodgkin–Huxley neurons. The vertical dotted lines correspond with
the frequencies shown in Fig. 4

Fig. 12 Sequence of alternating pulses

for stimulation frequency 150 Hz, which gives a stable 2-
cluster state, Λ = −0.098.

5 Analysis of clusters due to pulses with
alternating properties using 1Dmaps

In this section, we consider more general stimuli, specifically
pulses with alternating properties, as shown in Fig. 12. These
provide additional degrees of freedom in the design of DBS
stimuli. Here, the pulses from before, that is with umax cor-
responding to a current density of 20μA/cm2, p = 0.5 ms,
and λ = 3, will be assumed to occur at times 0, τ, 2τ, · · · .
But now additional pulses with u2max corresponding to a cur-
rent density of 10μA/cm2, λ = 3, u2min = −u2max/λ and
p = 0.5 ms, will be assumed to occur at times τ2, τ + τ2,
2τ +τ2, · · · . Figure 13 shows that the clustering behavior for
such alternating pulses with τ2 = τ/2 strongly resembles the
clustering behavior found at twice the frequency for identical
pulses, as shown in Fig. 3, although there are differences. The
analysis in this section shows how the methods from Sect. 4
can be adapted to understand clustering behavior for such
alternating pulses.

It will again be useful to consider the map which takes the
phase of a neuron to its phase at a time τ later. To formu-
late this map, we need the response curves for each type of
pulse: the response curve f (θ) for the pulse with umax cor-
responding to 20μA/cm2 was already shown in Fig. 7; the
response curve f2(θ) for the pulse with umax corresponding
to 10μA/cm2 is shown in Fig. 14. To find this map, suppose
that we start with θ(0+) = θ0, immediately after the start of
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Fig. 13 aThefinal phases θ ofHodgkin–Huxleyneurons drawn froman
initial uniform distribution as a function of stimulation frequency, after
80 periods of pulses with alternating properties (to allow transients to
decay), as described in the text. Colors correspond to the neurons’ initial
phases. The vertical dotted lines correspond to stimulation frequencies
which are analyzed in more detail in the main text. b Order parameters
r1 (black), r2 (blue), and r3 (red) for the final state as a function of
frequency. For the initial uniform distribution, r1 = r2 = r3 = 0. c
Lyapunov exponent Λ as a function of stimulation frequency

a pulse, where we assume that we have already accounted for
the effect of the pulse according to the function f (θ). The
next pulse, of different type, comes at time τ2. Up until time
τ2, the phase evolves according to θ̇ = ω; therefore,

θ(τ−
2 ) = θ0 + ωτ2. (22)

Treating the change in phase due to the next pulse as occur-
ring instantaneously, we have

θ(τ+
2 ) = θ0 + ωτ2 + f2(θ0 + ωτ2). (23)
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Fig. 14 Response function f2(θ) which characterizes the phase
response of a Hodgkin–Huxley neuron to a pulse with u2max corre-
sponding to a current density of 10μA/cm2, u2min = −u2max/3, and
p = 0.5 ms

The system then evolves for a time τ − τ2 without stimulus,
giving

θ(τ−) = θ0 + ωτ2 + ω(τ − τ2) + f2(θ0 + ωτ2)

= θ0 + ωτ + f2(θ0 + ωτ2).

At time τ , we have another pulse of the type that started at
t = 0, so

θ(τ+) = θ0 + ωτ + f2(θ0 + ωτ2)

+ f (θ0 + ωτ + f2(θ0 + ωτ2)).

Continuing in this fashion, we obtain

θ(τ + τ−
2 ) = θ0 + ω(τ + τ2) + f2(θ0 + ωτ2)

+ f (θ0 + ωτ + f2(θ0 + ωτ2)),

θ(τ + τ+
2 ) = θ0 + ω(τ + τ2) + f2(θ0 + ωτ2)

+ f (θ0 + ωτ + f2(θ0 + ωτ2))

+ f2(θ0 + ω(τ + τ2) + f2(θ0 + ωτ2)

+ f (θ0 + ωτ + f2(θ0 + ωτ2)))

θ(2τ−) = θ0 + 2ωτ + f2(θ0 + ωτ2)

+ f (θ0 + ωτ + f2(θ0 + ωτ2))

+ f2(θ0 + ω(τ + τ2) + f2(θ0 + ωτ2)

+ f (θ0 + ωτ + f2(θ0 + ωτ2)))

θ(2τ+) = θ(2τ−) + f (θ(2τ−)).

A useful formulation is to let

G(s) = s + ωτ + f2(s + ωτ2) + f (s + ωτ

+ f2(s + ωτ2)), (24)
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which gives

θ(nτ+) = G(n)(θ0). (25)

Proposition 2 in Appendix C shows that G and its iter-
ates have an approximate shift property when τ and/or τ2
are changed to nearby values, which will be useful for
understanding bifurcations of the cluster states. In particular,
letting Gτ,τ2(θ) be the map for G corresponding a sequence
of alternating pulses with parameters τ and τ2,

G(n)
σ,σ2

= G(n)
τ,τ2

(θ + ω(σ − τ) + ω(σ2 − τ2))

+O(σ − τ) + O(σ2 − τ2) (26)

for n ≥ 1. Note that there are O(σ − τ) and O(σ2 − τ2)

corrections even for n = 1.
Alternatively, we can view G as a composition of two

maps:

θ(0+) = θ0,

θ(τ+
2 ) = θ0 + ωτ2 + f2(θ0 + ωτ2) ≡ h2(θ0),

θ(τ+) = θ(τ+
2 ) + ω(τ − τ2)+ f (θ(τ+

2 ) + ω(τ − τ2))

≡ h1(θ(τ+
2 )) = h1(h2(θ0)) = G(θ0).

Note that we have written G, which is a map over the time
interval τ , as the composition of two maps h1 and h2, that is,

G = h1 ◦ h2.

Thesemaps h1 and h2 also have shift properties. In particular,
letting h1τ,τ2(θ) be the h1 map for a sequence of alternating
pulses with parameters τ and τ2, and letting h2τ2 be the h2
map for a sequence of alternating pulses with parameter τ2,
Proposition 3 of “Appendix” C shows that

h1σ,σ2(θ) = h1τ,τ2(θ + ω(σ − τ) + ω(τ2 − σ2)),

h2σ2(θ) = h2τ2(θ + ω(σ2 − τ2)).

Similar to before, we will look for fixed points of G(n),
that is, solutions to θ∗ = G(n)(θ∗). If
∣
∣
∣
∣

d

dθ

∣
∣
∣
∣
θ=θ∗

(G(n)(θ))

∣
∣
∣
∣
< 1, (27)

then the fixed point of G(n) is stable. Note that the rela-
tionship between fixed points of G(n) and clusters is more
subtle for pulses with alternating properties than the relation-
ship between fixed points of g(n) and n-clusters for identical
pulses, because each τ -interval for the alternating case con-
tains two pulses. This will be illustrated in the following
examples.
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Fig. 15 Functions h1(θ) for umax corresponding to a current density
of 20μA/cm2 and (red) h2(θ) for u2max corresponding to a current
density of 10μA/cm2, for τ = 10 ms and τ2 = τ/2

Figure 15 shows h1(θ) for umax corresponding to a current
density of 20μA/cm2 and h2(θ) for u2max corresponding to
a current density of 10μA/cm2, for τ = 10ms and τ2 = τ/2.
We notice that these functions are quite similar to each other.
Next, we show G(θ) = h1(h2(θ)) and G(3)(θ) in Fig. 16,
the latter for several different stimulation frequencies 1/τ .
We see that for τ = 10 ms (frequency 100 Hz) there is
a stable period-3 orbit for G, corresponding to three stable
fixed points for G(3). This corresponds to a 3-cluster state, as
expected from Fig. 13 evaluated at 100 Hz. Here, the stable
fixed points ofG(3) correspond to a stable period-3 orbit ofG,
which in turn corresponds to a 3-cluster state. The lower panel
shows that as the stimulation frequency increases, the G(3)

function shifts right with small corrections according to (26),
giving a saddlenode bifurcation in which the 3-cluster state
disappears. We note that Fig. 16 for frequency 100 Hz looks
very similar to Fig. 9 for identical pulses with frequency 100
Hz; however, the sequence of pulses is different. For Fig. 16,
there is a “large” pulse at t = 0, a “small” pulse at t = 5
ms, another large pulse at t = 10 ms, another small pulse at
t = 15 ms, another large pulse at t = 20 ms, etc. For Fig. 9
for 100 Hz, there is a large pulse at t = 0, another large pulse
at t = 10 ms, another large pulse at t = 20 ms, etc, with no
small pulses.

Figure 17 showsG(θ) andG(2)(θ) forumax corresponding
to a current density of 20μA/cm2 and h2(θ) for u2max corre-
sponding to a current density of 10μA/cm2, for τ = 6.67ms
and τ2 = τ/2. We see that there are four stable fixed points
for G(2); these actually correspond to a 4-cluster state, as
shown in Fig. 13 evaluated at 150 Hz. While at first it might
seem surprising that stable fixed points for G(2) correspond
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Fig. 16 Functions G(θ) and G(3)(θ) for pulses with alternating prop-
erties with umax corresponding to a current density of 20μA/cm2 and
u2max corresponding to a current density of 10μA/cm2. In the top panel,
the stimulation frequency is 100 Hz (τ = 10 ms), and τ2 = τ/2. The
bottom panel shows G(3) for stimulation frequencies of 100, 110, 120,
and 130 Hz, all with τ2 = τ/2

to a 4-cluster state, we note that these results are similar to
what we found for identical stimuli for a 300 Hz stimulus
(or, equivalently, for alternating pulses with τ = 6.67 ms
and umax = u2max corresponding to a current density of
20μA/cm2, τ2 = τ/2). The proper comparison is that G
for alternating pulses with a stimulation frequency of 150
Hz is similar to g(2) for identical pulses with a stimulation
frequency of 300 Hz, and G(2) for alternating pulses for a
stimulation frequency of 150Hz is similar to g(4) for identical
pulses with a stimulation frequency of 300 Hz. These results
show that we can obtain 4-cluster solutions for a population
of oscillators with these alternating pulses; see Fig. 18a.
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Fig. 17 Functions G(θ) and G(2)(θ) for pulses with alternating prop-
erties with umax corresponding to a current density of 20μA/cm2 and
u2max corresponding to a current density of 10μA/cm2, and τ = 6.67
ms (corresponding to a stimulation frequency of 150 Hz), τ2 = τ/2

Our formulation also allows one to consider alternating
pulses for which τ2 �= τ/2. For example, Fig. 19 shows
results for umax corresponding to 20μA/cm2, u2max corre-
sponding to 10μA/cm2, and τ2 = 0.4τ and τ2 = 0.6τ .
Interestingly, for τ2 = 0.4τ there are four fixed points of
the G(2) map, corresponding to a 4-cluster solution, but for
τ2 = 0.6τ there are only two fixed points of the G(2) map,
corresponding to a 2-cluster solution. Figure 18b and c shows
the corresponding time series for these cases.ComparingFig-
ure 19 with the bottom panel of Figure 17, we deduce that
if τ2 is treated as a bifurcation parameter, there is a sad-
dlenode bifurcation for τ2 slightly larger than 0.5. This is
as expected from (26), which implies that for new stimu-
lation parameters σ and σ2 satisfying σ = τ = 6.67 and
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Fig. 18 Time series showing the phases of Hodgkin–Huxley neu-
rons drawn from an initial uniform distribution with alternating pulses
with umax corresponding to 20μA/cm2 and u2max corresponding to
10μA/cm2, for τ = 6.67msand a τ2 = 0.5τ ,b τ2 = 0.4τ , c τ2 = 0.6τ .
Four clusters form for (a) and (b), while only two clusters form for (c)

0.6τ = σ2 > τ2 = 0.5τ , the G(2) map will shift left. Here,
the shift is enough that a saddlenode bifurcation has occurred.

6 Conclusion

Populations of neural oscillators subjected to periodic pul-
satile stimuli can display interesting clustering behavior, in
which subpopulations of the neurons are synchronized, but
the subpopulations are desynchronized with respect to each
other. The details of the clustering behavior depend on the
frequency and amplitude of the stimuli in a complicated way.
Such clustering may be an important mechanism by which
deep brain stimulation can lead to the alleviation of symp-
toms of Parkinson’s disease and other disorders.

In this paper, we illustrated how the details of clustering
for phase models of neurons subjected to periodic pulsatile
inputs can be understood in terms of one-dimensional maps
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Fig. 19 Function G(2)(θ) for alternating pulses with umax corre-
sponding to 20μA/cm2 and u2max corresponding to 10μA/cm2, with
τ = 6.67 ms, and (top) τ2 = 0.4τ and (bottom) τ2 = 0.6τ

defined on the circle. In particular, the analysis allows one
to predict the number of clusters, their stability properties,
their bifurcations, and their basins of attraction. Moreover,
we generalized our analysis to consider stimuli with alternat-
ing properties, which provide additional degrees of freedom
in the design of DBS stimuli.

As part of our study, we found multiple ways to get the
same type of clustering behavior, for example by using iden-
tical pulses or pulses with alternating properties, or from
stimuli with different parameters such as stimulation fre-
quency or the time spacing between pulses with alternating
properties. Such clustering occurs through the use of a sin-
gle stimulation electrode, unlike coordinated reset which
requiresmultiple electrodes.We expect that the same cluster-
ing behavior can also be obtained for different amplitudes of
the pulses, cf. (Wilson andMoehlis 2015).Webelieve that the
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analysis techniques used in this paper can be useful for iden-
tifying a collection of stimuli which give the same desirable
clustering dynamics for a population of neurons, which will
make it easier to find stimuli which are effective while min-
imizing the severity of side effects for DBS treatments. We
note that this framework can also be used with other types of
periodic stimuli besides (7) and also to help identify stimuli
which lead to desynchronization while avoiding clustering,
if that is a preferable control objective.

Our analysis assumed certain properties of a neural pop-
ulation: all neurons are identical, they all receive the same
input, they are uncoupled, and there is no noise. For real neu-
ral populations, none of these assumptions would be valid.
We also assumed that the phasemodels accurately capture the
dynamics of the neurons, which is only true for sufficiently
small inputs; see, for example, (Wilson and Ermentrout
2018). However, we believe that the results presented here
form an important baseline for the analysis of more realistic
neural populations stimulated by periodic pulses. We note
that the effect of noise on periodically forced neural popu-
lations has been considered in Wilson and Moehlis (2015),
which shows that for weak noise and long times, the number
of neurons in each cluster is roughly the same. We expect
that similar results will hold for neurons in the presence of
weak noise subjected to alternating stimuli.

Our hope is that the techniques in this paper will help to
guide the design of stimuli for the treatment of Parkinson’s
disease and other disorders. We believe that the use of pulses
with alternating properties is particularly worthy of further
investigation, since it represents a larger class of stimuli than
has been considered in previous studies.
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Appendix A: neuronmodels

In this appendix, we give details of the neural models used
in this paper, specifically the Hodgkin–Huxley model con-
sidered in the main text, and the thalamic neuron model
considered in Appendix B.
Hodgkin–Huxley neuron model

The full Hodgkin–Huxley model is given by:

V̇ = (Ib − ḡNah(V − VNa)m
3 − ḡK (V − VK )n4

−ḡL(V − VL))/c + u(t) ,

ṁ = am(V )(1 − m) − bm(V )m ,

ḣ = ah(V )(1 − h) − bh(V )h ,

ṅ = an(V )(1 − n) − bn(V )n ,

where

am(V ) = 0.1(V + 40)/(1 − exp(−(V + 40)/10)) ,

bm(V ) = 4 exp(−(V + 65)/18) ,

ah(V ) = 0.07 exp(−(V + 65)/20) ,

bh(V ) = 1/(1 + exp(−(V + 35)/10)) ,

an(V ) = 0.01(V + 55)/(1 − exp(−(V + 55)/10)) ,

bn(V ) = 0.125 exp(−(V + 65)/80) ,

The parameters for this model are

VNa = 50 mV , VK = −77 mV , VL = −54.4 mV ,

ḡNa = 120 mS/cm2 , ḡK = 36 mS/cm2 ,

ḡL = 0.3 mS/cm2 , Ib = 10 μA/cm2 ,

c = 1 μF/cm2.

Thalamic neuron model
The full thalamic neuron model is given by:

V̇ = −IL − INa − IK − IT + Ib
Cm

+ u(t),

ḣ = h∞ − h

τh
,

ṙ = r∞ − r

τr
,

where

h∞ = 1/(1 + exp((V + 41)/4)),

r∞ = 1/(1 + exp((V + 84)/4)),

αh = 0.128 exp(−(V + 46)/18),

βh = 4/(1 + exp(−(V + 23)/5)),

τh = 1/(αh + βh),

τr = (28 + exp(−(V + 25)/10.5)),

m∞ = 1/(1 + exp(−(V + 37)/7)),

p∞ = 1/(1 + exp(−(V + 60)/6.2)),

IL = gL(V − eL),

INa = gNa(m∞3)h(V − eNa),

IK = gK ((0.75(1 − h))4)(V − eK ),

IT = gT (p2∞)r(V − eT ).

The parameters for this model are

Cm = 1 μF/cm2 , gL = 0.05 mS/cm2 , eL = −70 mV ,

gNa = 3 mS/cm2 , eNa = 50 mV , gK = 5 mS/cm2 ,

eK = −90 mV , gT = 5 mS/cm2 , eT = 0 mV ,

Ib = 5 μA/cm2.
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Appendix B: results for thalamic neurons

In this appendix, we show simulations and analysis for an
(approximately) Type I neuron model, the thalamic neurons
from (Rubin and Terman 2004). The full equations are given
inAppendixA; for our simulations,we use the corresponding
phasemodel. For reference, for these parameters the thalamic
neurons have ω = 0.748 rad/s.

We consider populations of thalamic neurons with the
same stimuli (7)with umax corresponding to a current density
of 20 μA/cm2, p = 0.5 ms, and λ = 3. We simulated 500
thalamic neuronswith initial phases evenly spaced between 0
and2π , corresponding to a uniformdistribution. The stimula-
tion frequencywas varied from70Hz to 300Hz in increments
of 5 Hz. Figure 20 shows the final phases after 40 periods of
stimulation, after transients have decayed. Figure 21 shows
the time series of the phases of a population of such neurons
for selected frequencies. Here, we again see clustering for
some frequencies (such as 250 Hz, where r2 is large and r1
and r3 are small, indicating a 2-cluster solution), and non-
clustering behavior for other frequencies (such as 200 Hz,
where the Lyapunov exponent Λ is positive, corresponding
to chaotic dynamics).

The same analysis techniques can also be used to under-
stand the dynamics of thalamic neurons subjected to periodic
pulses. Figure 22a shows the response function f (θ) for
thalamic neurons with the stimulus given by (7) with umax

corresponding to a current density of 20μA/cm2, p = 0.5
ms, and λ = 3; Fig. 22b shows that there is a stable 2-cluster
state for a stimulation frequency of 250 Hz, as expected from
Fig. 20.

Appendix C: shift properties of themaps

Proposition 1 (Shift properties of g(n)): Iterates of the map

gτ (θ) = θ + ωτ + f (θ + ωτ) (28)

satisfy the property

g(n)
σ (θ) = g(n)

τ (θ + ω(σ − τ)) + O(σ − τ). (29)

Proof We will prove this by induction. First, (29) holds for
n = 1 from (19) in the main text (in fact, in this case the
O(σ − τ) correction term vanishes). Next, let us assume that
(29) holds for n; we will show that this implies that it also
holds for n + 1. For reference,

g(n+1)
τ (θ) = gτ (g

(n)
τ (θ))

= g(n)
τ (θ) + ωτ + f (g(n)

τ (θ) + ωτ). (30)
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Fig. 20 a The final phases θ of thalamic neurons drawn from an initial
uniform distribution as a function of stimulation frequency, after 40
periods of stimulation. Colors correspond to the neurons’ initial phases.
bOrder parameters r1 (black), r2 (blue), and r3 (red) for the final state as
a function of frequency. For the initial uniform distribution, r1 = r2 =
r3 = 0. c Lyapunov exponent Λ as a function of stimulation frequency

Now,

g(n+1)
σ (θ) = gσ (g(n)

σ (θ))

= g(n)
σ (θ) + ωσ + f (g(n)

σ (θ) + ωσ)

= g(n)
τ (θ + ω(σ − τ)) + O(σ − τ) + ωσ

+ f (g(n)
τ (θ + ω(σ − τ)) + O(σ − τ) + ωσ),

wherewehaveused (29).Wenowuseωσ = ωτ+ω(σ−τ) =
ωτ + O(σ − τ) to give

g(n+1)
σ (θ) = g(n)

τ (θ + ω(σ − τ)) + ωτ + O(σ − τ)

+ f (g(n)
τ (θ + ω(σ − τ)) + ωτ + O(σ − τ)).
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(b)

(a)

250 Hz: 2 clusters

200 Hz: no clustering

θ

t

θ

t

Fig. 21 Time series showing the phases of thalamic neurons drawn
from an initial uniform distribution for frequencies a 200 Hz, and b 250
Hz. For (a), clusters do not form; for (b), there are two clusters after
transients decay away

Next, we Taylor expand the last term about g(n)
τ (θ + ω(σ −

τ)) + ωτ , treating (σ − τ) as small:

f (g(n)
τ (θ + ω(σ − τ)) + ωτ + O(σ − τ))

= f (g(n)
τ (θ + ω(σ − τ)) + ωτ) + O(σ − τ)

Thus,

g(n+1)
σ (θ) = g(n)

τ (θ + ω(σ − τ)) + ωτ

+ f (g(n)
τ (θ + ω(σ − τ)) + ωτ) + O(σ − τ)

= g(n+1)
τ (θ + ω(σ − τ)) + O(σ − τ),

where the last equality follows from (30). Therefore, (29)
holds for all n ≥ 1, with no O(σ − τ) term necessary for
n = 1 from (19).

Proposition 2 (Shift properties ofG(n)): Iterates of themap

Gτ,τ2(θ) = θ + ωτ + f2(θ + ωτ2)

+ f (θ + ωτ + f2(θ + ωτ2)) (31)

satisfy the property

G(n)
σ,σ2

= G(n)
τ,τ2

(θ + ω(σ − τ) + ω(σ2 − τ2))

+O(σ − τ) + O(σ2 − τ2). (32)
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Fig. 22 a Response function f (θ) which characterizes the phase
response of thalamic neurons to a pulse with umax corresponding to
a current of 20μA/cm2, p = 0.5 ms, and λ = 3. b Map g(2)(θ) for
the thalamic neuron with stimulation frequency 250 Hz, showing two
stable fixed points which correspond to a 2-cluster state

Proof We will prove this using induction. Let us first show
that (32) holds for n = 1. By definition,

Gσ,σ2(θ) = θ + ωσ + f2(θ + ωσ2)

+ f (θ + ωσ + f2(θ + ωσ2)).

Letting

θ = θ̂ + ω(τ − σ) + ω(τ2 − σ2),

and simplifying, we obtain

Gσ,σ2(θ) = θ̂ + ωτ − ω(σ2 − τ2)

+ f2(θ̂ + ωτ2 − ω(σ − τ))

+ f (θ̂ + ωτ − ω(σ2 − τ2)
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+ f2(θ̂ + ωτ2 − ω(σ − τ)))

= θ̂ + ωτ + f2(θ̂ + ωτ2)

+ f (θ̂ + ωτ + f2(θ̂ + ωτ2))

+O(σ − τ) + O(σ2 − τ2)

= Gτ,τ2(θ̂) + O(σ − τ) + O(σ2 − τ2)

= Gτ,τ2(θ + ω(σ − τ) + ω(σ2 − τ2))

+O(σ − τ) + O(σ2 − τ2).

Here, the second equality follows from Taylor expansion,
treating (σ − τ) and (σ2 − τ2) as small. Thus, (32) holds for
n = 1.

Now, suppose (32) holds for n; we will show this also
implies that it holds for n + 1. For reference,

G(n+1)
τ,τ2

(θ) = Gτ,τ2(G
(n)
τ,τ2

(θ))

= G(n)
τ,τ2

(θ) + ωτ + f2(G
(n)
τ,τ2

(θ) + ωτ2)

+ f (G(n)
τ,τ2

(θ) + ωτ + f2(G
(n)
τ,τ2

(θ) + ωτ2)).

(33)

Now,

G(n+1)
σ,σ2

(θ) = Gσ,σ2(G
(n)
σ,σ2

(θ))

= G(n)
σ,σ2

(θ) + ωσ + f2(G
(n)
σ,σ2

(θ) + ωσ2)

+ f (G(n)
σ,σ2

(θ) + ωσ + f2(G
(n)
σ,σ2

(θ) + ωσ2))

= G(n)
τ,τ2

(θ + ω(σ − τ) + ω(σ2 − τ2))

+O(σ − τ) + O(σ2 − τ2) + ωσ

+ f2(G
(n)
τ,τ2

(θ + ω(σ − τ) + ω(σ2 − τ2))

+O(σ − τ) + O(σ2 − τ2) + ωσ2)

+ f (G(n)
τ,τ2

(θ + ω(σ − τ) + ω(σ2 − τ2))

+O(σ − τ) + O(σ2 − τ2) + ωσ

+ f2(G
(n)
τ,τ2

(θ + ω(σ − τ) + ω(σ2 − τ2))

+O(σ − τ) + O(σ2 − τ2) + ωσ2)),

where the last equality follows from (32). Letting

ωσ = ωτ + ω(σ − τ) = ωτ + O(σ − τ)

and

ωσ2 = ωτ2 + ω(σ2 − τ2) = ωτ2 + O(σ2 − τ2),

G(n+1)
σ,σ2

(θ) = G(n)
τ,τ2

(θ + ω(σ − τ) + ω(σ2 − τ2))

+ωτ + O(σ − τ) + O(σ2 − τ2)

+ f2(G
(n)
τ,τ2

(θ + ω(σ − τ) + ω(σ2 − τ2))

+ωτ2 + O(σ − τ) + O(σ2 − τ2))

+ f (G(n)
τ,τ2

(θ + ω(σ − τ) + ω(σ2 − τ2))

+ωτ + O(σ − τ) + O(σ2 − τ2)

+ f2(G
(n)
τ,τ2

(θ + ω(σ − τ) + ω(σ2 − τ2))

+ωτ2 + O(σ − τ) + O(σ2 − τ2))).

Finally, treating (σ − τ) and (σ2 − τ2) as small and Taylor
expanding f and f2,

G(n+1)
σ,σ2

(θ) = G(n)
τ,τ2

(θ + ω(σ − τ) + ω(σ2 − τ2)) + ωτ

+ f2(G
(n)
τ,τ2

(θ + ω(σ − τ)

+ω(σ2 − τ2)) + ωτ2)

+ f (G(n)
τ,τ2

(θ + ω(σ − τ) + ω(σ2 − τ2)) + ωτ

+ f2(G
(n)
τ,τ2

(θ + ω(σ − τ)

+ω(σ2 − τ2)) + ωτ2))

+O(σ − τ) + O(σ2 − τ2)

= G(n+1)
τ,τ2

(θ + ω(σ − τ) + ω(σ2 − τ2))

+O(σ − τ) + O(σ2 − τ2),

as desired, where the last equality follows from (33). Thus,
(32) holds for all n ≥ 1.

Proposition 3 (Shift properties of h1 and h2):
The maps

h1τ,τ2(θ) = θ + ω(τ − τ2) + f (θ + ω(τ − τ2)) (34)

h2τ2(θ) = θ + ωτ2 + f2(θ + ωτ2) (35)

satisfy the properties

h1σ,σ2(θ) = h1τ,τ2(θ + ω(σ − τ) + ω(τ2 − σ2)), (36)

h2σ2(θ) = h2τ2(θ + ω(σ2 − τ2)). (37)

Proof First, consider

h1σ,σ2(θ) = θ + ω(σ − σ2) + f (θ + ω(σ − σ2)).

Letting

θ = θ̂ + ω(τ − σ) + ω(σ2 − τ2)

and simplifying,

h1σ,σ2(θ) = θ̂ + ω(τ − τ2) + f (θ̂ + ω(τ − τ2))

= h1τ,τ2(θ̂)

= h1τ,τ2(θ + ω(σ − τ) + ω(τ2 − σ2)).

Now, consider

h2σ2(θ) = θ + ωσ2 + f2(θ + ωσ2).

Letting

θ = θ̂ + ω(τ2 − σ2)
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and simplifying,

h2σ2(θ) = θ̂ + ωτ2 + f (θ̂ + ωτ2) = h2τ2(θ̂)

= h2τ2(θ + ω(σ2 − τ2)).
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