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Abstract We show that populations of identical un-
coupled neurons exhibit partial phase synchronization
when stimulated with independent, random unidirec-
tional current spikes with interspike time intervals
drawn from a Poisson distribution. We characterize
this partial synchronization using the phase distribution
of the population, and consider analytical approxima-
tions and numerical simulations of phase-reduced mod-
els and the corresponding conductance-based models
of typical Type I (Hindmarsh–Rose) and Type II
(Hodgkin–Huxley) neurons, showing quantitatively
how the extent of the partial phase synchronization de-
pends on the magnitude and mean interspike frequency
of the stimulus. Furthermore, we present several simple
examples that disprove the notion that phase synchrony
must be strongly related to spike synchrony. Instead,
the importance of partial phase synchrony is shown to
lie in its influence on the response of the population
to stimulation, which we illustrate using first spike time
histograms.
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1 Introduction

Synchronized neural activity is believed to be important
for various brain functions, including visual process-
ing (Gray et al. 1989; Usrey and Reid 1999), odor
identification (Friedrich and Stopfer 2001), signal en-
coding (Stevens and Zador 1998), cortical process-
ing (Singer 1993), learning (Stent 1973), and memory
(Klimesch 1996). It can also be detrimental. For exam-
ple, resting tremor in patients with Parkinson’s disease
has been linked to synchronization of a cluster of neu-
rons in the thalamus and basal ganglia (Pare et al. 1990).
Similarly, essential tremor and epileptic seizures are
commonly associated with synchronously firing neu-
rons (Elble and Koller 1990; Traub et al. 1989), which
can become (partially or fully) synchronized due to
coupling and/or stimulation by common inputs.

Even common inputs that are random or noisy can
lead to synchronization (Goldobin and Pikovsky 2005a,
b; Nakao et al. 2005). This applies to a broad range
neuron models (Ritt 2003; Teramae and Tanaka 2004),
with little constraint on intrinsic properties. It has
also been shown experimentally that some neurons, in
particular olfactory bulb mitral cells, can synchronize
in this manner in vitro (Galán et al. 2006). This is
relevant to spike timing reliability experiments, which
found that repeated injection of the same fluctuating
current into a single cortical neuron leads to a more
reproducible spiking pattern than injection of a con-
stant current (Mainen and Sejnowski 1995). Indeed,
an experiment in which multiple uncoupled neurons
are subjected to a common input is equivalent to an
experiment in which a single neuron is subjected to
the same input over multiple trials, as in Mainen and
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Sejnowski (1995), so that spike timing reliability can be
viewed as synchronization across trials.

Typically, as in the references cited above, synchrony
in the context of neuroscience is discussed in terms of
synchronization of action potentials (spikes). Synchro-
nization of spike times is a natural way to quantify
the dynamic behavior of a population of neurons, since
typically the only observable quantities are voltages.
There is, however, another form of synchrony that can
play an important role in the dynamic response of a
population of oscillatory neurons to stimulus.

In this paper, we consider partial phase synchroniza-
tion, a characteristic that provides information about
the dynamical state of a population of oscillatory neu-
rons not easily obtained by studying spike synchrony
alone. The concept of partial phase synchronization
applies to populations of oscillatory neurons, each
of which evolves in time according to dynamics can
be represented by a one-dimensional phase oscillator
(a “simple clock”, in the terminology of Winfree 2001).
Here, the phase of a neuron relates its state, in time,
to the firing of an action potential (or other marker
event on its periodic orbit), as described for example
in Guckenheimer (1975) and Brown et al. (2004a). The
dynamical state of a population of phase oscillators
can be characterized by the distribution of their phases
(over the unit circle). Partial phase synchronization
refers to the degree to which this phase distribution
possesses a single dominant mode, meaning that there
is a higher density of neurons with phases near this re-
gion than anywhere else on the circle. Complete phase
synchronization is the limiting case of partial phase
synchronization where all the neurons have exactly the
same phase, which yields a phase distribution in the
form of a Dirac delta function.

After specifying the neuron and stimulus models
we consider, we present an intuitive description of
the mechanism by which partial phase synchronization
can occur. We then consider a case in which partial
phase synchronization occurs in a population of iden-
tical uncoupled neurons that each receive different (un-
correlated) spike trains with interspike time intervals
drawn from a Poisson distribution, which could rep-
resent, for example, the background activity of other
neurons (Softky and Koch 1993). We then present
a detailed theory for calculating the long-time phase
distribution, the results of which are compared with
simulation data for populations of phase oscillators
and conductance-based neuron models. Two different
neural models are studied: Hindmarsh–Rose (Rose and
Hindmarsh 1989), a prototypical Type I neuron, and
Hodgkin–Huxley (Hodgkin and Huxley 1952), a proto-
typical Type II neuron (Rinzel and Ermentrout 1998).

These models are considered for parameter regions in
which the neurons spike periodically in time. We show
that the simulation results for a population of phase
oscillators very closely match those for a population
of conductance-based neuron models exposed to the
same type of stimulus, and both sets of simulation data
yield long-time phase distributions that are very similar
to the theoretical predictions. This verifies that the
concept of phase synchronization, although developed
based on phase oscillators, is an effective and accurate
tool for modeling populations of conductance-based
neuron models. We then exploit the computational
efficiency of simulating phase oscillator models in or-
der to map how the degree of phase synchronization
depends on the magnitude and mean spike frequency of
the stimulus.

The balance of the paper will be devoted to dis-
cussing the practical implications of partial phase syn-
chrony to the response of the population. We will
develop several simple examples that illustrate some
of the complex relationships between phase synchro-
nization and spike synchronization. We stress that
phase synchronization does not necessarily imply spike
synchronization, and spike synchronization guarantees
phase synchronization only in the weakest sense. The
two phenomena are distinct, and both are important
dynamical characteristics of a neural population.

2 Methods

2.1 Models

2.1.1 Conductance-based models

We consider a population of N identical neurons with
dynamics governed by a conductance-based model of
the form

CV̇i = Ig(Vi, ni) + Ib + Ii(t), (1)

ṅi = G(Vi, ni), (2)

for i = 1, · · · , N. For the ith neuron, Vi ∈ R is the volt-
age across the membrane, ni ∈ R

m
[0,1] is the vector of

gating variables, C ∈ R
+ is the membrane capacitance,

Ig : R × R
m → R is the sum of the membrane currents,

Ib ∈ R is a constant baseline current, and Ii : R → R is
the current stimulus.

We choose prototypical systems to represent two
common types of neurons (Rinzel and Ermentrout
1998). As a Type I neuron model, we consider the
Hindmarsh–Rose equations (Rose and Hindmarsh



J Comput Neurosci (2008) 25:141–157 143

1989), which represent a reduction of the Connor
model for crustacean axons (Connor et al. 1977):

V̇ = [
Ib + Ii(t) − ḡNam∞(V)3(−3(q − Bb∞(V))

+ 0.85)(V − VNa) − ḡKq(V − VK)

− ḡL(V − VL)
]
/C,

q̇ = (q∞(V) − q)/τq(V),

q∞(V) = n∞(V)4 + Bb∞(V),

b∞(V) = (1/(1 + exp(γb (V + 53.3))))4,

m∞(V) = αm(V)/(αm(V) + βm(V)),

n∞(V) = αn(V)/(αn(V) + βn(V)),

τq(V) = (τb (V) + τn(V))/2,

τn(V) = Tn/(αn(V) + βn(V)),

τb (V) = Tb (1.24 + 2.678/

(1 + exp((V + 50)/16.027))),

αn(V) = 0.01(V + 45.7)/(1 − exp(−(V + 45.7)/10)),

αm(V) = 0.1(V + 29.7)/(1 − exp(−(V + 29.7)/10)),

βn(V) = 0.125 exp(−(V + 55.7)/80),

βm(V) = 4 exp(−(V + 54.7)/18).

VNa = 55 mV, VK = −72 mV,

VL = −17 mV, ḡNa = 120 mS/cm2,

ḡK = 20 mS/cm2, ḡL = 0.3 mS/cm2,

gA = 47.7 mS/cm2,

C = 1 μF/cm2, γb = 0.069 mV−1,

Tb = 1 ms, Tn = 0.52 ms, B = 1.26.

As a Type II neuron model, we consider the Hodgkin–
Huxley equations, which model the squid Loligo giant
axon (Hodgkin and Huxley 1952):

dV/dt = (Ib + Ii(t) − ḡNah(V − VNa)m3

− ḡK(V − VK)n4 − ḡL(V − VL))/C,

dm/dt = am(V)(1 − m) − b m(V)m,

dh/dt = ah(V)(1 − h) − b h(V)h,

dn/dt = an(V)(1 − n) − b n(V)n,

αm(V) = 0.1(V + 40)/(1 − exp(−(V + 40)/10)),

βm(V) = 4 exp(−(V + 65)/18),

αh(V) = 0.07 exp(−(V + 65)/20),

βh(V) = 1/(1 + exp(−(V + 35)/10)),

αn(V) = 0.01(V + 55)/(1 − exp(−(V + 55)/10)),

βn(V) = 0.125 exp(−(V + 65)/80).

VNa = 50 mV, VK = −77 mV, VL = −54.4 mV,

ḡNa = 120 mS/cm2, ḡK = 36 mS/cm2

ḡL = 0.3 mS/cm2, C = 1 μF/cm2.

We hope the use of these prototypical models will
provide the reader with some familiarity and intuition.

2.1.2 Phase models

We choose baseline current, Ib , values such that each
neuron’s only attractor is a stable periodic orbit: Ib = 5
mA for the Hindmarsh–Rose model, and Ib = 10 mA
for the Hodgkin–Huxley model. Since each system has
a stable periodic orbit at the prescribed Ib value, it is
useful to map the system to phase coordinates (Brown
et al. 2004a; Guckenheimer 1975; Kuramoto 1984;
Winfree 1974, 2001). Following Guckenheimer (1975),
there exists a homeomorphism h: R × R

m → S
1 map-

ping any point on the periodic orbit γ to a unique point
the unit circle θ ∈ [0,2π). Furthermore, in a neighbor-
hood of the periodic orbit, the phases are determined
by isochrons, whose level-sets are the sets of all initial
conditions for which the distance between trajectories
starting on the same isochron goes to zero as t → ∞
(Josić et al. 2006). By convention, when θi = 0 the ith
neuron fires. In the limit of small perturbations, the
stimulus spikes serve to nudge the state slightly off the
periodic orbit. In this way, the state may be moved
onto a different isochron resulting in a difference in
phase, with a magnitude and direction determined by
the phase response curve (PRC). This reduction en-
ables the dynamics of an (m + 1)-dimensional ordinary
differential equation (ODE) neuron model to be rep-
resented by the evolution of a scalar phase variable. A
recent discussion of this framework was communicated
in Gutkin et al. (2005).

We can therefore model our neural population by
a set of one-dimensional phase models - one for each
neuron. In the presence of stimuli Ii(t), this phase re-
duction yields the following uncoupled N-dimensional
system of equations for the phases θi of a population of
N identical neurons (Brown et al. 2004a; Gutkin et al.
2005):

dθi

dt
= ω + ZV(θi)

C
Ii(t), i = 1, · · · N. (3)

Here θi ∈ [0, 2π), ω = 2π/T where T is the period of
the periodic orbit, and Z(θ) is the PRC. Of particular
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Fig. 1 Phase response curve approximations the for Hindmarsh–
Rose model with Ib = 5 mA (solid) and the Hodgkin–Huxley
model with Ib = 10 mA (dashed)

interest are perturbations in the voltage direction,
i.e. ZV(θ) = ∂θ

∂V . The software package XPPAUT
(Ermentrout 2002) was used to numerically calculate
PRCs for the Hindmarsh–Rose and Hodgkin–Huxley
models. For computational convenience, we use ap-
proximations to these PRCs shown in Fig. 1: the
Hindmarsh–Rose PRC is approximated by a curve-fit
of the form ZV(θ) ≈ K

ω
(1 − cos(θ)) where K ≈ 0.0036

(mV ms)−1 for Ib = 5 mA (Brown et al. 2004a, b),
cf. Ermentrout (1996); the Hodgkin–Huxley PRC is
approximated as a Fourier series with 21 terms.

2.1.3 Stimulus model

To model the independent random stimuli, we suppose
that each neuron receives δ-function current inputs of
strength Ī at times determined by a Poisson process
with mean frequency α:

Ii(t) = Ī
∑

k

δ
(
t − tk

i

)
, (4)

where tk
i is the time of the kth input to the ith neuron.

The times of these inputs are determined by drawing
the interspike intervals from the distribution

p(τ ; α) = αe−ατ . (5)

We emphasize that the neurons in our models are not
coupled to each other, and that each one receives the
same baseline current Ib but a different current stimulus
Ii(t).

In our analysis, we are interested in determining
how the population-level behavior depends on α and Ī.
Softky and Koch (1993) found that the mean excitatory

spike frequency in certain brain neurons is about 83 Hz
or α = .083 ≈ 0.1 spikes/ms. This falls at the high end
of the gamma-rhythm range (Kopell 2000), and sets
the scale for biologically relevant α values. We base
our Ī scaling on a unit 1 mA, so that a spike gives
an instantaneous voltage change of order Ī/C = 1 mV.
Since the dynamic range of a periodically firing neuron
is approximately 100 mV, this corresponds to a small
perturbation in the depolarizing direction (Tass 2000).

2.2 Mechanism for partial phase synchronization

2.2.1 Intuitive description

We take partial phase synchronization to mean that
there is a higher probability of a neuron having a cer-
tain range of phases than another range of equal size.
The following illustrates qualitatively how partial phase
synchronization can occur for a population of neurons
subjected to the previously described stimuli. Take, for
example, the PRC ZV(θ) = 1 − cos(θ). Recall the time
evolution of a neuron is governed by Eq. (3). Now
imagine a set of four such neurons on the unit circle
with this PRC starting at {θ1, θ2, θ3, θ4} = {0, π

2 , π, 3π
2 }.

These are shown as black markers on Fig. 2(a) and are
labeled according to their ith indices. Figure 2(a) also
shows the phase of the four neurons in the absence
of stimuli after some time interval �t has elapsed:
each neuron has advanced in phase by �θ = ω�t to
positions indicated with open markers, labeled i′. This
behavior is termed drift and is simply due to the natural
frequency of the neurons. If each of the neurons was
exposed to a unit stimulus during this same time inter-
val �t, their phases advance additionally, as determined
by the PRC, by �θ = ZV(θ) Ī/C (if the PRC contains
negative values, the phase can also be retarded). The
position of each of the neurons after drift and stimulus
is indicated by striped markers labeled by i′′. Notice
that the position of neuron 1 (starting at θ1 = 0) with
stimulus (1′′) is the same as without stimulus (1′). This
is because ZV(0) = 0 for this example.

If all four neurons are subjected to stimulus, it is
apparent from the i′′ locations in Fig. 2(a) that the distri-
bution of neurons has changed. What began as uniform
has become asymmetric. The situation becomes more
apparent if many more neurons are displayed, as in
Fig. 2(b). Here we see a definite “bunching” around
θ = 0. Many neurons have similar phases, hence phase
synchronization.

The above description assumed each neuron re-
ceives the same input. Conceptually, one can envision
a similar argument if all neurons receive unidirectional
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(a) (b)
Fig. 2 Initial phases as black markers labeled i, phase after drift as open markers labeled i′, and phase after drift and stimulus as striped
markers labeled i′′ (a). Distribution of many neurons after exposure to stimulus (b)

independent Poisson-type stimuli with the same statis-
tics, i.e. mean interspike frequency α and magnitude Ī.

2.2.2 Theoretical development

Suppose that each neuron in a population received
the same non-random stimulus I(t). For example, I(t)
might be a step function stimulus (Brown et al. 2004a)
or a sinusoidal stimulus. We are interested in the prob-
ability that a neuron will have a phase between θ and
θ + dθ at time t, given by ρ(θ, t)dθ , where ρ(θ, t) is the
probability distribution function for the population of
neurons. The phase synchronization can be represented
by the shape of ρ(θ, t) over θ ∈ [0, 2π) at time t. The fol-
lowing partial differential equation can be derived for
N → ∞ for such a population of neurons (e.g., Brown
et al. 2004a):

∂ρ

∂t
= − ∂

∂θ

[
(ω + Z (θ)I(t)/C)ρ(θ, t)

]
. (6)

For the present problem with independent random
inputs Ii(t), the situation is more complicated. We pro-
ceed by deriving an expansion of the density evolution
that is conducive to perturbation methods consistent
with the neuron models and random inputs under con-
sideration. For the values of mean spike frequency, α,
and neuron natural firing frequency, ω, used in this
paper, it is reasonable to consider the ratio ω/α as
O(1) = O(ε0) for the Hodgkin–Huxley model and O(ε)

for the Hindmarsh–Rose model, where ε is a small
parameter.

2.2.3 Kramers–Moyal expansion

The probability distribution ρ(θ, t) obeys the Kramers–
Moyal expansion (Coffey et al. 2004)

∂ρ(θ, t)
∂t

=
∞∑

n=1

(
− ∂

∂θ

)n

[D(n)(θ)ρ(θ, t)], (7)

where

D(n)(θ0) = 1

n! lim
�t→0

E[(θ(�t) − θ0)
n]

�t
. (8)

Here E denotes the expected value, and θ(0) = θ0 for
the realizations used to calculate D(n)(θ0). Now

θ(�t) = θ0 + ω�t + �θ,

where �θ is the total jump in θ due to the random
Poisson inputs in [0, �t). For sufficiently small �t,
we expect that either no inputs occur, in which case
�θ = 0, or one input occurs, giving

�θ ≈ Ī Z (θ0)/C ≡ (�θ)jump. (9)

For n = 1 and sufficiently small �t, we have

E[θ(�t) − θ0] = ω�t + E[�θ |input]
×p(input) + E[�θ |no input]
×p(no input). (10)

Using

E[�θ |input] = (�θ)jump, E[�θ |no input] = 0,

p(input) = α�t, p(no input) = 1 − α�t
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gives

E[θ(�t) − θ0] = ω�t + α�t
Z (θ0) Ī

C
, (11)

so that

D(1)(θ0) = ω + α
Z (θ0) Ī

C
. (12)

Similarly for n > 1,

E[(θ(�t) − θ0)
n] = E[(ω�t + �θ)n]

= α�t

(
Ī Z (θ0)

C

)n

+ O((�t)2), (13)

so that

D(n)(θ0) = α

n!

(
Ī Z (θ0)

C

)n

n > 1. (14)

Finally, letting

Z (θ) = Zdψ(θ), ε = Zd Ī
C

, (15)

where Zd and ε are nondimensional, we obtain the
following equation for the steady (∂/∂t = 0) density
ρs(θ):

0 = −ω

α

dρs

dθ
+

∞∑

n=1

εn (−1)n

n!
(

d
dθ

)n

[(ψ(θ))nρs(θ)]. (16)

We now consider the small ε limit, corresponding to
random inputs with small amplitude. We substitute

ρs(θ) = ρ0(θ) + ερ1(θ) + ε2ρ2(θ) + · · · (17)

into Eq. (16), and to solve at successive orders of ε.
We divide this into two cases based on the relative size
of ω/α.

2.2.4 Hodgkin–Huxley: ω
α

= O(1)

This case applies when the ratio of natural frequency to
mean spike frequency is of order 1, which corresponds
to the Hodgkin–Huxley model in our analysis.

At O(ε0), we find that

dρ0

dθ
= 0 ⇒ ρ0 = constant = 1

2π
, (18)

where the value of the constant follows from the
normalization

1 =
∫ 2π

0
ρ0dθ. (19)

At O(ε), we obtain

−ω

α

dρ1

dθ
− dψ

dθ
ρ0 = 0, (20)

which has solution

ρ1(θ) = − α

2πω
ψ(θ) + k1. (21)

The value of the constant k1 is determined by the
normalization condition

∫ 2π

0
ρ1(θ)dθ = 0 ⇒ k1 = α

(2π)2ω

∫ 2π

0
ψ(θ)dθ.

(22)

Thus, to O(ε),

ρs(θ) ≈ 1

2π
+ α Ī

2πωC

(
−Z (θ) + 1

2π

∫ 2π

0
Z (θ)dθ

)
.

(23)

At O(ε2), we obtain

−ω

α

dρ2

dθ
− d

dθ
[ψ(θ)ρ1(θ)] + ρ0

2

d2

dθ2
[(ψ(θ))2] = 0. (24)

This has solution

ρ2(θ) = −α

ω
ψ(θ)ρ1(θ) + α

4πω

d
dθ

[(ψ(θ))2] + k2. (25)

Using the normalization condition
∫ 2π

0
ρ2(θ)dθ = 0, (26)

we obtain the following approximation for ρs(θ) accu-
rate to O(ε2):

ρs(θ) ≈ 1

2π
+ α Ī

2πωC

(
−Z (θ) + 1

2π

∫ 2π

0
Z (θ)dθ

)

+ α2 Ī2

2πω2C2

{
[Z (θ)]2 − 1

2π
Z (θ)

∫ 2π

0
Z (θ)dθ

}

+ α Ī2

4πωC2

d
dθ

[(Z (θ))2] + k′
2, (27)

where

k′
2 = 1

2π

∫ 2π

0

{
α Ī
ωC

Z (θ)

×
[

α Ī
2πωC

(
−Z (θ)+ 1

2π

∫ 2π

0
Z (θ)dθ

)]

− α

4πω

(
Ī
C

)2
d

dθ
[(Z (θ))2]

}
dθ. (28)

The truncation at O(ε2) is equivalent to formulating the
problem in terms of a Fokker–Plank equation, the same
form of which is known as the diffusion equation.
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2.2.5 Hindmarsh–Rose: ω
α

= O(ε)

This case applies when the natural frequncy is much
smaller than the mean spike frequency, which corre-
sponds to the Hindmarsh–Rose model in the regime
studied in this paper.

We let
ω

α
= εω̃, (29)

where ω̃ = O(1). At O(ε) we obtain

ω̃
dρ0

dθ
= − d

dθ
[ψ(θ)ρ0(θ)]. (30)

This has solution

ρ0(θ) = c0

ω + α Ī
C Z (θ)

, (31)

where

1 =
∫ 2π

0
ρ0(θ)dθ ⇒ c0 =

(∫ 2π

0

dθ

ω + α Ī
C Z (θ)

)−1

.

(32)

A useful interpretation for this result is that, on aver-
age, the current α Ī enters each neuron during every
time unit. If such current came in uniformly, so that
I(t) = α Ī, Eq. (6) would have a steady distribution
given by Eq. (31).

At O(ε2) we obtain

ω̃
dρ1

dθ
= − d

dθ
[ψ(θ)ρ1(θ)] + 1

2

d2

dθ2
[(ψ(θ))2ρ0(θ)]. (33)

This has solution

ρ1(θ) = α Ī Zd

2C

d
dθ

[
(ψ(θ))2ρ0(θ)

] + c1

ω + α Ī
C Z (θ)

. (34)

Using the normalization condition

0 =
∫ 2π

0
ρ1dθ, (35)

we obtain the following approximation for ρs(θ) accu-
rate to O(ε):

ρs(θ) ≈ c0

ω + α Ī
C Z (θ)

+ α Ī2

2C2

d
dθ

[
(Z (θ))2ρ0(θ)

] + c′
1

ω + α Ī
C Z (θ)

,

(36)

where

c′
1 = −c0

∫ 2π

0

d
dθ

[
(Z (θ))2ρ0(θ)

]

ω + α Ī
C Z (θ)

dθ. (37)

A different approach for the derivation of the steady
probability distribution for a related problem is given
in Nakao et al. (2005), which is primarily concerned
with showing phase synchronization in the case in which
all Ii(t) in Eq. (3) are identical. Here the dynamics are
reduced to a random phase map, and the evolution of
the density associated with this map is described by
a generalized Frobenius–Perron equation. The steady
distribution can be found numerically, or analytically in
certain limits. We find that our theory described above
gives good agreement with our numerical results, and
provides a straightforward alternative to the approach
of Nakao et al. (2005).

2.3 Simulation methods

2.3.1 Conductance-based models

A numerical routine was constructed to simulate
large populations of neurons described by (m + 1)-
dimensional conductance-based models. Since the neu-
rons are not coupled, the simulations can be conducted
on a neuron-by-neuron basis. A second-order Runge–
Kutta method with small fixed time step �t was used for
O((�t)2) accuracy and compatibility with the Poisson-
distributed stimuli. In our numerical models, we ap-
proximate the δ-function by a rectangular spike of
duration �t and magnitude 1/�t.

To obtain a uniform initial phase distribution across
the population, the (m + 1)-dimensional periodic orbit
is calculated at run-time as a set of (m + 2)-tuples of
the states and time. The time is then scaled to [0, 2π),
and initial states are assigned by drawing a scalar θ0

from a uniform random number generator and using
the periodic orbit to interpolate the initial data. Once
the initial condition has been set, the system is inte-
grated. Periodically throughout the time evolution of
each neuron, the program computes its phase using a
routine which will presently be described, yielding a
sampled time-series of the neuron’s phase even though
the equations are not in phase-reduced form.

Intuitively, the phase should be related to the time it
would take the neuron to fire, beginning at its present
state, in the absence of stimuli. Computationally, some
additional care is required. We use the Hodgkin–
Huxley equations as an example to illustrate some of
the computational complexities. For the Ib values con-
sidered, the vector field of this system contains a spiral
source near the periodic orbit (Rinzel and Miller 1980),
an example of a phase singularity (Winfree 2001).
Therefore, it is possible for a trajectory on the periodic
orbit passing near this source to be pushed arbitrarily
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close to it by stimulus. A neuron with a state very
near the spiral source may take a significant amount
of time to evolve back to a neighborhood close to the
periodic orbit, especially if the (positive) real parts of
the unstable eigenvalues are small. This situation is
extremely rare for the models and parameter ranges
we consider. In fact, it did not occur for any of the
simulations which generated the data presented in this
paper. However, to be useful in a general setting, the
phase calculation scheme must be able to identify this
case and alert the program that a phase singularity has
been reached. In most settings dealing with behavior of
large populations, these cases can be dismissed without
loss of statistical significance, since they appear to occur
on a set of extremely small measure.

To compute phase, we use the current state vector
as the initial (t = 0) data for a new simulation which is
run in absence of stimulus. This simulation is integrated
until two spikes are observed. Let the time it takes
for a spike (above a set voltage threshold) to occur be
T1 (a large upper bound on the allowable T1 is used
to identify possible phase singularities). Let the time
at which the next spike occurs be T2. The interspike
interval between the two is then Tint = T2 − T1. Then
phase can be computed as

θ = 2π

(
1 − T1modTint

Tint

)
. (38)

An important component of this algorithm is its
ability to correctly identify a spike. We use a selection
of logical checks which test the voltage time series
for maxima above a set threshold, and have a pre-
scribed minimum interspike time interval. Obviously,
some knowledge of the spike magnitude and period is
essential, but this is readily available since the com-
putation of the periodic orbit at run-time provides all
the necessary information. Using this method, one can
simulate N neurons for P sample steps and receive, as
output, an N × P matrix containing the discrete time
evolution of θi as the values in row i.

The above method provides an accurate and robust
way of simulating and determining phase information
for large populations of uncoupled neurons of arbi-
trary dimension with a wide range of forcing functions
and environmental parameters. Not limited to small
perturbations, the utility of this method is constrained
only by the relative stiffness of the neuron model and
the geometry of the basin of attraction of the periodic
orbit. However, such flexibility comes at the price of
computational speed, which is strongly dependent on

the dimension of the neuron model and the type of
solver used.

2.3.2 Phase-reduced models

We are interested in the population dynamics over
as wide a (α, Ī) range as possible. In order to more
efficiently map the parameter space, we use the phase-
reduced form of the neuron equations. We have imple-
mented an algorithm which very efficiently simulates
Eq. (3) for large N and for long times. It exploits the
fact that Eq. (3) can be solved exactly for the time inter-
vals for which no inputs are present. One gets times at
which inputs occur by recognizing that the time interval
τ between subsequent inputs for an individual neu-
ron can be obtained by sampling the distribution (5).
When an input comes for the ith neuron, we instanta-
neously let

θi → θi + ZV(θi) Ī/C.

Again, the uncoupled assumption of the population
allows each θi to be simulated independently, and the
program creates an N × P output matrix of the discrete
time evolution of θi.

3 Results

We simulate populations of uncoupled neurons each
subjected to independent spike trains of set magnitude,
Ī, with interspike intervals drawn from a Poisson distri-
bution parameterized by mean spike frequency α. Our
results include grayscale plots of ρ(θ, t) showing the
time evolution of the phase distribution of the popula-
tion, time-averaged distribution curves, and mappings
of the distribution peak value and location as a function
of Ī and α. Comparisons are made between simulations
of the full conductance-based models, simulations of
the phase models, and theoretical estimates.

For notational convenience, we will refer to the
N × P output matrix as �. We remind the reader that
the ith row of � represents the time-series values of
θi, the phase of neuron i, as it evolves from initial
time t0 to final time t f . While the differential equa-
tions are solved using a small time step �t, we report
phase using a larger time step �p. This ensures the
displayed data will not have spurious characteristics
due to limitations of graphics resolution, and results in
a dramatic performance increase in the simulations of
the full conductance-based models. Therefore, the P
columns of � represent the (t f − t0)/�p sample points,
plus a left-concatenated column of the initial phases, i.e.
P = 1 + (t f − t0)/�p.
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Table 1 Simulation parameters for Figs. 3 and 4.

Parameter Hindmarsh–Rose Hodgkin–Huxley

Ib (mA) 5 10
α (spikes/ms) 0.1 1
t f (ms) 1,000 100
�p (ms) 1 0.1

3.1 Phase distribution dynamics

The phase density of the population at each sample
point, ρ(θ, t) is computed from � by taking an appro-
priately scaled histogram of the corresponding column
of �. For example, ρ(θ) at the kth sample point is
calculated by

ρ(θ, t = k�p) = hist(�ek, nbins)
nbins

2π N
, (39)

where hist(., .) is the standard histogram binning func-
tion, nbins is the number of bins dividing the interval
[0, 2π), and ek is an P × 1 vector of zeros with a 1 in the
kth entry. The argument �ek is simply the kth column

of �, representing the phase of all the neurons at time
t = (k + 1)�p, where k = 1 implies t = t0. The scaling
used in Eq. (39) gives the normalizing condition

nbins∑

j=1

ρ

(
θ = j

nbins2π
, t

)
�θ = 1, ∀t. (40)

where �θ is the bin size 2π/nbins. Equation (39) returns
a nbins × 1 vector discretization of ρ(θ, t).

Populations of 1,000 neurons were simulated, begin-
ning with a uniform phase distribution at t0 = 0, and
subjected to random sequences of spikes with magni-
tude Ī = 1 mA. An integration time step of �t = 0.01
ms was used. Since the time scales of the Hindmarsh–
Rose and Hodgkin–Huxley equations are significantly
different, separate simulation parameters are neces-
sary, as given in Table 1.

Figure 3(a, b) shows our results for the simulations
of the full conductance-based models, to be compared
with Fig. 3(c, d), which is the results from the phase-
reduced model simulations. It is apparent that the
phase reduction yields both qualitatively and quantita-
tively similar results. Since the phase response curve

(a)

(c) (d)

(b)

Fig. 3 Simulation results, ρ(θ, t), for Hindmarsh–Rose (a), (c) and Hodgkin–Huxley (b), (d) (resp., conductance-based model, phase-
reduced model)
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(a) (b)
Fig. 4 Comparison of theoretical distribution estimate with
averaged simulation data for both conductance-based and phase-
reduced models for Hindmarsh–Rose (a) and Hodgkin–Huxley

(b). Solid lines represent full conductance-based model simula-
tion data, dashed lines represent phase-reduced model simulation
data, and dotted lines represent the theoretical estimates

for the Hodgkin–Huxley system is of relatively small
magnitude, we have used an α value of 1, rather than
0.1, to more clearly illustrate the dynamic behavior of
the phase distribution.

One notices in these figures a behavior that can
be described as “breathing”, i.e. there is an oscilla-
tion (with period of approximately 200 ms for the
Hindmarsh–Rose model and approximately 15 ms for
the Hodgkin–Huxley model) about a mean distribu-
tion. We found numerically that such oscillations persist
for long times of the order of 106 ms. It is worth noting
that this oscillatory behavior is exhibited in both the
phase-reduced and conductance-based model simula-
tions, suggesting that it may not be an artifact of the
numerics, but rather something inherent in the dynam-
ics which is not predicted by the theoretical framework.
For the purposes of our subsequent analysis, we view
these oscillations as a secondary effect, to be pursued
in future work. To illustrate the average shape of the
ρ(θ, t) distribution curves, we average each simulation
over the last 25% of the integration time interval,
which filters the oscillatory effects of the “breathing”
behavior.

Figure 4(a) shows that theoretical predictions match
the numerical data very closely for the Hindmarsh–
Rose system. The results for the Hodgkin–Huxley sys-
tem are qualitatively similar, as illustrated in Fig. 4(b),
but display a slight mismatch of the θ location of the
distribution peak.

3.2 Parametric study

The computationally efficient phase-reduced model
allows for a more complete mapping of the population
response in parameter space. As a characteriza-
tion of the population response, we consider the mag-
nitude, ρmax, and location, θmax, of the peak of
the t → ∞ averaged probability distribution. As in
Section 3.1, we consider populations of 1,000 neurons.
The Hindmarsh–Rose neurons are simulated for 1,000
ms (natural period ≈ 312 ms). The Hodgkin–Huxley
neurons are simulated for 100 ms (natural period ≈
14.6 ms).

Figure 5 compares the phase model results to the the-
oretical prediction using Eq. (36) for the Hindmarsh–
Rose system over 0 < α ≤ 3 spikes/ms and 0 < Ī ≤ 5
mA, for the ρmax characteristic. We find qualitative and
reasonable quantitative agreement. For simulations of
the full conductance-based model, simulations of the
phase model, and theoretical predictions, the location
θmax of the probability distribution function peak ρmax

stays at θmax = 0.
The plots in Fig. 6 show our results over the same

ranges of α and Ī for the Hodgkin–Huxley system.
Figure 6(a) illustrates the more complex parameter
dependence of ρmax. While the theory predicts that
θmax will be independent of α and Ī, Fig. 6(b) shows
that it is weakly dependent on them. Since our the-
ory is based on the ratio ω/α being order ε, we have
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(a) (b)
Fig. 5 Numerical (a) and theoretical (b) ρmax over (α, Ī) parameter space for Hindmarsh–Rose model

(a) (b)

(c) (d)
Fig. 6 Hodgkin–Huxley population-level response characteris-
tics. Numerical ρmax over (α, Ī) parameter space (a). Numerical
θmax over (α, Ī) parameter space (b). Comparison of numerical

results (c) to theoretical predictions (d) over the range of (α, Ī)
for which the assumption ω/α = O(1) is reasonable



152 J Comput Neurosci (2008) 25:141–157

plotted the theoretical results over a reduced region
of α and Ī parameter space, as shown in Fig. 6(d) to
be compared with the simulation results reproduced
over this reduced range in Fig. 6(c). We see that the
theoretical results qualitatively capture the trend of
the data, but start to differ quantitatively as α and Ī
increase. Importantly, for both the Hindmarsh–Rose
and Hodgkin–Huxley models, we have shown that the
degree of synchronization, as measured by the peak of
the probability distribution function of the phase, in-
creases with both the size and frequency of the stimuli,
and can become quite substantial.

4 Discussion

4.1 Relationship between partial phase synchrony
and spike synchrony

The importance of studying partial phase synchroniza-
tion lies not in its relationship to spike synchrony, but
in its characterization of the dynamical state of the
population, which governs the response of the popula-
tion to future stimulus. Before addressing the practical
implications of partial phase synchrony, we will illus-
trate some important points regarding the relationship
of phase synchrony and spike synchrony by discussing
several simple examples. We will show that, in the
general case of a population of stimulated neurons, the
degree of partial phase synchronization is only weakly
related to spike synchrony.

In the following scenarios, we consider a population
of N identical uncoupled phase oscillators each obeying
the following ODE:

θ̇i = ω + Z (θ)

C
Ii(t).

In the absence of input, i.e. Ii(t) ≡ 0, there is a strong
relationship between phase synchrony and spike syn-
chrony for populations of uncoupled identical oscilla-
tors. If all oscillators have identical phase, it is obvious
that they will cross the 0/2π spiking threshold at identi-
cal time. At the opposite extreme, if the distribution of
the population is uniform, it follows that the spike times
will be uniform in time (and thus desynchronized).

In the presence of input, coupling, or large distri-
butions of natural frequency, this strong relationship
no longer holds. Since we have restricted our attention
to populations of identical uncoupled neurons in this
paper, we will develop several simple examples that
illustrate the how this relationship breaks down in the
presence of input stimulus.

Our primary concern is showing the mathemati-
cal relationship between phase synchrony and spike

synchrony, so we will assume that there are no con-
straints on the inputs we can use, and the oscillators
themselves are governed by phase response curves that
allow them to be controlled to achieve any prescribed
dynamics:

θ̇i = f (θi).

This assumption is not true in general for real neurons
(since the phase response curves are often nonlinear
and non-invertible). The question of whether popula-
tion of neurons with a given phase response curve can
be driven to achieve specific dynamics when stimulated
by inputs from a restricted set is a control theoretic
problem and an aim of our future research. For the time
being, we will follow our controllability assumption,
which will allow us to develop examples that are simple
and easy to verify.

In order to quantify partial phase synchroniza-
tion, we introduce the Kuramoto order parameter
(Kuramoto 1984):

r(t)e
√−1ψ(t) = 1

N

N∑

i=0

e
√−1θi(t). (41)

In particular, we consider the magnitude of the order
parameter, |r(t)|, which ranges from zero for a uniform
phase distribution to one for a completely synchronized
phase distribution (a Dirac delta function).

4.1.1 Example 1: phase synchrony without
spike synchrony

Consider a population of N (uncoupled) phase oscil-
lators, labeled θ1, . . . , θN , evolving according to the
following ODE:

θ̇i = f (θi)

=
{

(π−�)ωN
2π

if θi ∈ {[0, π − �)
⋃ [π + �, 2π)

}

�ωN
π(N−2)

otherwise

(42)

with the following initial conditions:

θi(0) =
{

0 for i = 1
π − � + 2�(i−2)

N−2 for i �= 1
(43)

This population will have uniform interspike intervals,
i.e. no spike synchrony whatsoever, while possessing
an order parameter |r| → 1 as � → 0 and N → ∞,
which indicates an arbitrarily high degree of phase
synchronization.

What has been done here is to define a neighbor-
hood around θ = π , with interval measure equal to
2�, where the neurons move very slowly. Outside this
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neighborhood the neurons advance very quickly. We
have set up the initial conditions such that most of the
oscillators (all but two) are in the small region where
they move slowly. The one that starts at zero quickly
moves to the starting edge of the π -neighborhood
phase interval. During the same time interval, the last
oscillator, θN , advances quickly from the end of the
π -neighborhood phase interval around the circle to the
0/2π spiking threshold. Also during this time interval,
all the other neurons slowly advance in order along the
π -neighborhood phase interval. After the interspike
time interval, the neurons have rotated positions, but
the overall population distribution is identical to where
it started from, so after relabeling the oscillators, we are
back to the starting configuration. Now if we make �

small, we increase the level of phase synchronization,
but the firing continues to be completely uniform (de-
synchronized). In fact, as � approaches zero, all the
neurons except one will be arbitrarily close to π , so
|r| → N−1

N = 1 − 1
N . Furthermore, as we increase the

number of neurons, |r| → 1 asymptotically. The value
of |r| will, of course, never reach 1, but it can made
arbitrarily close.

We illustrate this with a numerical example consist-
ing of a set of N = 6 phase oscillators with natural
frequency ω = 1. We set � = 0.5 so that the trajectories

will not be overly crowded in the π -neighborhood and
the plotted results can be easily understood. Figure 7(a)
shows the trajectories generated by Eq. (42) along
with the magnitude of the order parameter |r(t)|. The
interspike time intervals here are uniformly equal to
ratio of the natural period T to the number of neurons
N, so there is no spike synchrony whatsoever. Yet the
magnitude of the order parameter is at all times above
0.5. This value can be driven arbitrarily close to one
by increasing the number of neurons and decreasing �.
We note that all the phase trajectories are in solid black,
because it is not important to be able to differentiate
between them. Any set of trajectories following such
paths, regardless of which neuron is on which trajectory
at a given time, will generate the same population-
level results. This convention will be used in the next
example, as well.

4.1.2 Example 2: spike synchrony with minimal
phase synchrony

To further simplify the following example, we will as-
sume that we can prescribe the phase trajectory for
the ith oscillator directly, rather than via an ODE,
according to the following equation:

θi(t) =

⎧
⎪⎪⎨

⎪⎪⎩

π+2π(i−1)

nε
tmodT if tmodT ∈ [0, ε)

π+2π(i−1)

n if tmodT ∈ [ε, T − ε)

π+2π(i−1)

n + π+2π(n−i)
nε

(tmodT − (T − ε)) if tmodT ∈ [T − ε, T)

(44)

The population of oscillators evolving according to Eq.
(44) has complete spike synchrony, but the trajectories
have been configured such that the distribution will be
nearly uniform except near the spike times, where the
distribution will collapse toward a Dirac delta distribu-
tion, then expand again to be nearly uniform after the
spike. Thus we have shown that, even in the presence
of complete spike synchrony, the phase synchrony can
be confined to intervals of arbitrarily small measure.
To quantify this, we note that the integral of the order
parameter magnitude

R(t) ≡
∫ t

0
|r(t̃)|dt̃

can be made arbitrarily small by letting ε → 0. This
means that the phase synchrony of this population
is zero except on a set of arbitrarily small (but still
positive) measure. We conclude that, although spike

synchrony must be accompanied by phase synchrony at
the instants of the spikes, we cannot say more about
their relationship without considering controllability of
the oscillators with respect to possible trajectories.

We illustrate this point with a small population of 6
oscillators with natural period T = 1. Figure 7(b) shows
the trajectories generated by Eq. (44) as well as the
associated |r(t)|. For clarity, we choose ε = 0.1. The
magnitude of the order parameter is zero everywhere
except in an ε-neighborhood of the spike times. All of
the oscillators spike together, which means that there is
complete spiking synchrony. By reducing ε, we can con-
fine the periodic phase synchrony to arbitrarily small
time intervals centered at the spike time.

4.1.3 Poisson inputs

For a population of neurons subjected to indepen-
dent Poisson inputs as described in Section 2.1.3, the
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(a) (b)
Fig. 7 Illustrations showing that partial phase synchrony and
spike synchrony need not be strongly related. (a) shows the
scenario from Example 1 where there is a high degree of phase
synchronization but no spike synchronization. (b) shows the
scenario from Example 2 where there is complete spike synchro-

nization but only small time intervals of phase synchronization.
The bottom figures show a quantification of phase synchrony, as
represented by the magnitude of the Kuramoto order parameter.
The results can be sharpened by increasing the number of neu-
rons, and reducing the parameters � and ε

independence of the inputs implies that the spike times
will be uncorrelated. It is intuitively clear from Eq. (41)
and Fig. 4, the magnitude of the order parameter r can
be non-zero when there are such inputs.

From a mathematical standpoint, we can illustrate
this by considering the continuum limit as N → ∞ and
asymptotically as t → ∞,

|r(t)| →
∣
∣∣
∣

∫ 2π

0
ρs(θ)e

√−1θdθ

∣
∣∣
∣ ∼ π

2
(ρmax − ρmin). (45)

The last relation follows from the fact that the absolute
value of the integral is equal to the magnitude of the
first Fourier component: when ρs is unimodal and not
too sharply peaked, we expect that

ρs(θ) ∼ 1

2π
+ 1

2
(ρmax − ρmin) sin(θ − θ0)

for some θ0, from which the relation follows. The values
of ρmax are precisely the results computed in Section 3.2
and displayed in Figs. 5 and 6. We note in this case
that ρmin ≈ 1

π
− ρmax ≤ 1

2π
. The neurons subjected to

Poisson inputs thus have partial phase synchroniza-
tion, with an order parameter increasing with both
the magnitude of the stimulus and the mean spike
frequency, although there is no spike synchronization.
In the next section, we will discuss how a population
that is partially phase-synchronized reacts differently to

stimulus than if its phases were uniformly distributed.
This will illustrate the importance of considering phase
synchronization in addition to spike synchronization
when studying the dynamical properties of populations
of oscillatory neurons.

4.2 Effects of partial phase synchronization

The degree of partial phase synchronization affects the
manner in which the population responds to stimulus,
as can most clearly be seen by constructing a histogram
of the first spike times of each neuron after receiving
a step stimulus of 1 mA. For both the Hindmarsh–
Rose and Hodgkin–Huxley systems, populations of
1,000 phase models are initialized with uniform phase
distribution. We expose the population to the step input
and track when the next zero-crossing (firing) occurs.
Figure 8(a) shows the first spike time histogram (FSTH)
for Hindmarsh–Rose and Fig. 8(b) shows the FSTH
for Hodgkin–Huxley. To illustrate the effect of partial
phase synchronization, we repeat the above simulations
starting from the partially synchronized distribution
shown in Fig. 4(a) and (b). The results are shown below
the FSTH plots for the uniform cases, in Fig. 8(c) and
(d). We see that for the Hindmarsh–Rose system, the
partial phase synchronization tends to flatten the FSTH
somewhat. For the Hodgkin–Huxley system, using the
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(a) (b)

(c) (d)
Fig. 8 First spike time histograms for Hindmarsh–Rose (a), (c)
and Hodgkin–Huxley (b), (d). (a) and (b) begin from a uniform
distribution. (c) and (d) begin from the partially synchronized

distributions shown in Fig. 4. This analysis tracks the time of the
first spike after the unit step-function stimulus is turned on. 1,000
realizations are used

curve from the α = 1 case for consistency, we see a
very pronounced change in shape of the FSTH. All
four FSTH plots are tabulated over 1,000 realizations,
in order to show the character of the distributions inde-
pendent of the randomness inherent in any individual
realization. These results show that while partial phase
synchrony does not imply firing synchrony, it can play

an important role in determining how the population
responds to a common stimulus.

4.3 Conclusion

We have shown that populations of identical uncou-
pled neurons exhibit partial phase synchronization
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when stimulated with independent unidirectional cur-
rent spikes with interspike time intervals drawn from
a Poisson distribution. We characterized this partial
synchronization by the phase distribution for the pop-
ulation, using analytical approximations and numerical
simulations of phase-reduced models and conductance-
based models of typical Type I (Hindmarsh–Rose) and
Type II (Hodgkin–Huxley) neurons. The results from
the different approaches agree well with each other. We
found that the degree of partial phase synchronization,
as measured by the peak of the phase distribution, in-
creases with both the size and frequency of the stimuli,
and can become quite substantial.

We have shown that partial phase synchronization,
a distinct phenomenon from spike synchronization, is
an important consideration when using phase reduced
models to infer dynamical characteristics of spiking
neurons. Our results show that neural populations sub-
jected to background activity from other neurons do
not have a uniform distribution of phases, as is some-
times assumed in simulation studies. We show that
such non-uniformity leads to different population-level
response to other stimuli, suggesting that noisy inputs
must be carefully incorporated into simulation studies
in order to obtain biologically realistic results.

The present study isolated the effect of random
stimuli by considering populations of identical uncou-
pled neurons. It would be interesting to explore phase
synchronization due to noisy inputs for heterogeneous
and/or coupled neural populations.
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