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A single animal group can display different types of collective

motion at different times. For a one-dimensional individual-based

model of self-organizing group formation, we show that repeated

switching between distinct ordered collective states can occur

entirely because of stochastic effects. We introduce a framework

for the coarse-grained, computer-assisted analysis of such stochas-

ticity-induced switching in animal groups. This involves the char-

acterization of the behavior of the system with a single dynami-

cally meaningful ‘‘coarse observable’’ whose dynamics are

described by an effective Fokker–Planck equation. A ‘‘lifting’’

procedure is presented, which enables efficient estimation of the

necessary macroscopic quantities for this description through short

bursts of appropriately initialized computations. This leads to the

construction of an effective potential, which is used to locate

metastable collective states, and their parametric dependence, as

well as estimate mean switching times.

coarse-graining � equation-free � individual-based model �

self-organization � schooling

F ish, birds, and honey bees, as well as many other animal
groups, display collective types of motion such as schooling,

f locking, and swarming (1, 2). A single animal group can display
different types of collective motion at different times, with �1
day of residence time in each state (3). Although such transitions
could be due to changing behavioral rules or environmental
factors, they also can occur entirely due to stochastic effects, as
will be demonstrated for the model considered in this paper.

One class of biologically motivated, individual-based models
for group formation, frequently used for schooling fish, abstracts
animal behavior by placing zones around individuals in which
they respond to others through repulsion, alignment, and/or
attraction (4–11). In the three-dimensional model of Couzin et

al. (10), long-time steady-state computations revealed four
different types of stable collective motion in different parameter
regions: swarm, torus, dynamic parallel, and highly parallel. It
was also shown that by changing the quantitative features of the
behavioral rules (increasing or decreasing the radius of align-
ment), the collective state of the school could be changed.

In ref. 10, stochasticity is incorporated by adding a small
deviation to the heading of each individual obtained from the
deterministic evolution algorithm. Our simulations show that if
one instead considers relatively rare but substantial variations,
namely that there is a small probability of each individual
changing its direction substantially from that obtained from the
deterministic algorithm, then for certain parameter regions
multiple successive transitions between the torus and the dy-
namic parallel state can occur. See supporting information (SI)
Fig. 7.

In this paper, we study a one-dimensional individual-based
model for group formation with stochasticity included along the
lines of the variation described above. This system exhibits
repeated stochasticity-induced switching between distinct or-
dered collective motion states. This switching appears similar in
nature but is, as we will show, different in detail, from results
obtained by using other models. In those cases, collective motion

transitions between ‘‘symmetry-related’’ states [e.g., between
clockwise and counterclockwise motions for marching locusts
constrained to a ring (12), or the ‘‘alternating flock’’ in refs. 13
and 14], stochastically driven transitions between ordered and
disordered states mediated by clustering (15), mixed-phase states
at phase transition boundaries (16), or transitions that do not
occur repeatedly (17) were observed.

Individual-based models are often used in the study of animal
groups because they can incorporate biologically realistic be-
havioral responses and social interactions that might be discon-
tinuous (e.g., characterized by thresholds or if/then rules) or
stochastic in nature; they also can support complex network
topologies, allow for individual variability, and enable the study
of the relationship between adaptive individual behavior and
emergent properties (18, 19). Most analysis of individual-based
models, however, relies on long-time simulations, which can be
extremely costly and difficult to interpret and analyze (2, 19). In
this paper, we introduce a framework for the coarse analysis of
stochasticity-induced switching between collective motion states
for individual-based models. We characterize the behavior of the
model with a single ‘‘coarse observable,’’ A(t), a scalar variable
that quantifies the global structure of the school. We show
computational evidence to support that A(t) parameterizes a
one-dimensional, attracting, invariant ‘‘slow manifold,’’ which
characterizes the long-term dynamics of the system. This sug-
gests that we can use an effective Fokker–Planck (FP) equation
to describe the dynamics of the probability distribution P(A),
whose drift and diffusion coefficients are determined by the
short-time evolution of the first two moments of A. We locally
estimate these coefficients by developing a ‘‘lifting’’ procedure,
which enables the initialization of brief bursts of simulations of
the individual-based model at a given value of A (20). This
framework allows us to construct an effective potential, thereby
enabling coarse bifurcation analysis and estimation of the mean
residence times in each state, without having to rely on compu-
tationally expensive ‘‘long-time’’ equilibrium simulations of the
individual-based model.

Results

Model. N agents with positions ci(t) and unit directions vi(t)��1,
i � 1, . . . , N, move on the line with constant speed s. Time is
partitioned into steps of size � units, corresponding to finite
response time of the agents. At the beginning of every time step,
each agent instantly updates its direction by considering the
positions and directions of agents surrounding it in three non-
overlapping zones (see Fig. 1): the zone of repulsion Zr

i
(t) �
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(ci(t) � rr, ci(t) � rr), the zone of orientation Zo
i
(t) � (ci(t) � ro,

ci(t)� ro)�Zr
i
(t), and the zone of attraction Za

i
(t)� (ci(t)� ra, ci(t)

� ra)�(Zri
(t) � Zo

i
(t)), where rr is the radius of repulsion, ro is the

radius of orientation, and ra is the radius of attraction. We define
�ro � ro � rr and �ra � ra � ro. These zones are used to define
rules that are abstractions of the behavioral tendencies seen in
animal groups in nature, the first being that animals tend to repel
away from those that are too close, and the second that if they
are not so repelled, they tend to align with and feel an attraction
toward their neighbors (21, 22). Specifically, if agents can be
found within an individual i’s zone of repulsion, then it orients
its direction away from the average relative directions of those
within its zone of repulsion. The desired direction of agent i is
then given by

vi�t � ��� � �
cj�t��Zri�t�

i	j

cj�t�� ci�t�

�cj�t�� ci�t��
. [1]

If individual i does not find agents within its zone of repulsion,
it orients its direction toward an equally weighted combination
of the average orientations of itself and those within its zone of
orientation, oi(t), and the average relative directions of those
within its zone of attraction, ai(t). The desired direction of agent
i is then given by

vi�t � ��� oi�t�� ai�t�, [2]

oi�t�� �vi�t�� �
cj�t��Zoi�t�

vj�t����vi�t�� �
cj�t��Zoi�t�

vj�t��,

ai�t�� �
cj�t��Zai�t�

cj�t�� ci�t�

�cj�t�� ci�t���� �
cj�t��Zai�t�

cj�t�� ci�t�

�cj�t�� ci�t���.
If vi(t � �) � 0, the agent maintains its direction from the
previous time step, so that vi(t � �) � vi(t). Otherwise, the
desired direction vi(t � �) of agent i is normalized as

vi�t � ��3
vi�t � ��

�vi�t � ���
, vi�t � ��� 0. [3]

Stochasticity is added so that each agent changes the sign of its
desired direction with probability p. Each agent’s position is
updated according to

ci�t � ��� ci�t�� svi�t � ���. [4]

To begin a simulation, N individuals are placed randomly on the
interval [�N/4, N/4] with random directions, chosen so that each
agent initially interacts with at least one other agent.

We observe that the model can display two metastable
cohesive collective states, which we call ‘‘stationary’’ and ‘‘mo-
bile.’’ In the stationary state, the individual dynamics are driven
by repulsion. The school remains approximately stationary in
time, with neighboring agents typically having opposite direc-
tions, and each agent typically changing its direction at each time
step to avoid neighbors to its right or left. We interpret this
ordered stationary state as a one-dimensional analog of circular
milling behavior. In the mobile state, the individual dynamics are
driven by orientation and attraction, and the school coherently

travels in the positive or negative direction. This is (one-
dimensional) parallel motion. For certain values of the param-
eters we find ‘‘stick/slip behavior,’’ in which the school alternates
at apparently random times between the stationary and mobile
states; such transitions arise from random fluctuations in the
directions of individuals because of the stochasticity of the model
(see Fig. 2). In what follows, we focus primarily on parameters
for which both the stationary and mobile states are metastable.

Coarse Observable. Through simulations we are led to hypothesize
that the dynamics of this model can be suitably characterized by
a single coarse observable

A�t��
1

N
�
i�1

N

min
j

j	i

�c j� t� � c i� t� � , [5]

the average nearest neighbor distance. This variable has been
used in fish schooling models as a measure of the global structure
of the school (6). A(t) can distinguish between the stationary and
mobile states as long as the school is not fragmented into
subgroups displaying different collective dynamics. When the
system is in the stationary state, typically A(t) � rr (repulsion
driven), and when the system is in the mobile state, typically
A(t) 
 rr (orientation and attraction driven; see Fig. 2).

Computational Observations. For our simulations, we fix N � 100,
s� 0.75, �� 0.1, rr� 1, �ra� 1, and p� 0.001, and let �ro vary.
(For these parameters, when fragmentation into smaller, non-
interacting subschools occurs, typically one subschool is com-
posed of only a few agents, so that A(t) remains a good measure
of the collective state.) For each value of �ro studied, data were
taken from 100 runs lasting 104 steps. For �ro sufficiently small,
the school remains in the stationary state for the duration of our
simulation. As �ro is increased to �0.14, the school exhibits
stick/slip behavior in which it transitions at apparently random
times between the stationary and mobile states. Transitions
between these states typically begin with a stochastic change in
direction of an agent at the edge of the school, which then
‘‘propagates’’ through the rest of the school (cf. refs. 13 and 14).
As an example, for �ro � 0.6, the mean residence time for the
stationary state is 994 steps, and for the mobile state, 509 steps.
For �ro 
 1.08, the school remains in the mobile state for the
entire duration of our simulations.

Observing the steady-state probability distributions for vari-
ous values of the parameter �ro, shown in Fig. 3, one can see the
signature of the transitions between the stationary and mobile

Fig. 1. Nonoverlappingbehavioral zones for themodel: zoneof repulsionZr,

zone of orientation Zo, and zone of attraction Za.

Fig. 2. Positions of N � 100 agents for a 104 step run, with parameters s �

0.75, � � 0.1, rr � 1, �ro � 0.6, �ra � 1, p � 0.001, blue (resp., red) indicates

motion of an agent in the positive (resp., negative) direction. The black line

shows the corresponding time series plot of the coarse observable A(t).
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states. The probability distribution peaks at approximately A �
w1 � rr � s�, corresponding to the stationary state, and at
approximately A � w2 � rr � s�, corresponding to the mobile
state, a distance �2s� from the stationary state. This may be
rationalized by considering the dynamics of the stationary state,
which is characterized by each agent typically changing its
direction at every single time step to avoid its neighbor to the
right or left, with A remaining nearly constant. Thus, one expects
the individuals to be spaced approximately at alternating dis-
tances of d1 and d2 where d1 � rr and d2 � d1 � 2s� 
 rr. When
the group exhibits a transition from the stationary to the mobile
state, the distance d2 ‘‘propagates’’ throughout the school so that
A � d2 in the mobile state.

In our simulations we found that the locations of the peaks of
the stationary probability distribution depend somewhat on the
details of the initial positions of the agents. This is a straight-
forward consequence of an important property of the model: in
determining the desired direction of a given agent at the next
time step, the only positional information used is which (if any)
zone the other agents are in. Thus, agents can be moved slightly
without changing their zones and hence with no change to the
dynamics, but with a change to the value of A. These ‘‘neutrally
stable’’ states have consequences for our lifting procedure
described in Methods.

Probabilistic Description. We assume that the system dynamics at
the macroscopic level may be suitably characterized by our single
coarse variable A(t). We therefore consider describing the
evolution of the probability distribution function P(A) with an
effective FP equation (cf. refs. 23–25):

�P�A, t�

�t
� �

�

�A
V�A�P�A, t���

�
2

�A2 D�A�P�A, t��, [6]

where V(A) is the drift coefficient, and D(A)
 0 is the diffusion
coefficient (26–28). These terms are related to the short-time
evolution of the first two moments of A as

V�A0��

��A�t; A0��

�t
�t�0 , D�A0��

1

2

��
2�t; A0�

�t
�
t�0

, [7]

where A(t; A0) denotes a trajectory initialized at A0 at t � 0,
angular brackets denote ensemble averaging over different
realizations of the trajectory, and �

2 denotes the variance of A
for such an ensemble. See SI Appendix for a detailed derivation.
The FP equation is equivalent to the Itô stochastic differential
equation

dA � V�A�dt � �2D�A�dW, [8]

with W(t) a Wiener process (26). In the limit D(A) � 0, Eq. 8
describes the deterministic motion of A subject to the ‘‘effective
potential’’ U(A) � ����

A V(A�)dA� � const. In general, an
effective potential �(A) can be obtained from the stationary
probability distribution function Ps(A), which satisfies the steady
state (�/�t � 0) FP equation. Defining

Ps�A�	 exp����A�� , [9]

it follows that �(A) satisfies (23)

��A�� log�D�A�� � 

��

A V�A��

D�A��
dA� � const . [10]

When D(A) � const., this corresponds to Brownian motion of A
subject to an effective potential proportional to U(A).

Effective Potential from Long-Time Simulations. We first construct
the effective potential by obtaining a stationary probability
distribution function directly from an ensemble of long-time
simulations and by using Eq. 9 to compute the effective potential
as�(A)��log(Ps(A))� const. An ensemble of 100 simulations
of 104 steps each was performed for a wide range of values of the
parameter �ro. The probability distributions and corresponding
effective potentials for three characteristic values of �ro are
shown in Fig. 3. To study the dependence of the behavior of the
system on parameters, the critical points of the effective poten-
tial were followed as �ro was varied. This is a useful practical
analog of deterministic bifurcation diagrams for this stochastic
case. The minima of the effective potential correspond to points
on the stable branch of the bifurcation diagram and the maxima
correspond to points on the unstable branch. (In determining the
maxima, we perform a quadratic fit of the effective potential
between the two prominent wells. This filters out spurious small
minima and maxima, which can arise because of fragmentation
of the school.) The bifurcation diagram is shown in Fig. 4. Two
saddle node bifurcations are found at approximately �ro � 0.14
and �ro� 1.09, and the system appears bistable for values of �ro
between these values.

We also construct the effective potential by using ensembles
of long-time simulations as a database. Here A is discretized over
a grid of values that appear in the database: A0� 0.88�mk, m�
0.005 (mesh size), k � 0,1, . . ., 42 for �ro � 0.6. Then, for each
A0 over the grid, V(A0) and D(A0) are approximated by using Eq.
7 as follows. Every appearance of A0 (within a certain error
tolerance) as well as its subsequent values over a short fixed time
interval of length t � 10 steps are saved. The ensemble mean
�A(t; A0)� and variance �

2(t; A0) are then computed by averaging
over these short trajectories. V(A0) (resp., D(A0)) are then
estimated by taking the slope of the linear regression of �A(t; A0)�
(resp., �

2(t;A0)). Finally, �(A) is estimated by numerically
approximating the integral in Eq. 10.

Results are shown for both methods for �ro� 0.6 in Fig. 5. The
effective potential obtained by using the second approach agrees
quite well with that obtained by using the first approach, which
confirms that A is a good dynamic observable. These methods,
however, do not offer any computational savings because we had
to compile data from sufficiently extensive temporal simulations

a

b

Fig. 3. Probability distribution functions (a) and effective potentials (b) for

100 trials with 104 steps per trial:N� 100, rr� 1, �ra� 1, s� 0.75, �� 0.1, p�

0.001, �ro � 0.6 (blue), �ro � 1 (red), and �ro � 1.1 (green).
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(an ‘‘equilibrium run’’), which take �10 h for 100 trials of 104

steps each running with Matlab (MathWorks, Natick, MA) on a
standard workstation.

Effective Potential from Short-Time Simulations. Recently, Kevreki-
dis et al. (20) developed an ‘‘equation-free’’ computational
framework for extracting population-level information from
individual-based models; the term ‘‘equation-free’’ arises be-
cause the population-level equations are not explicitly known
(20). The approach relies on the assumption that the system state
variables can be separated into a subset of fast variables and a
low-dimensional subset of slow or coarse variables (in our case
A), which parameterize an attracting invariant slow manifold. If
a simulation is appropriately initialized at a prescribed value A0,
then after a short time, once all of the fast variables have
equilibriated, one will in effect sample the slow manifold at A0.
This framework can be used to estimate on demand (without
long-time simulation) the drift and diffusion terms in the
effective FP equation (24, 25).

The drift and diffusion coefficients were estimated by per-
forming an ensemble of 103 simulations for each A0 initialized by
using the lifting procedure described in Methods. A linear fit of
the data was performed after waiting a short ‘‘healing’’ time of

15 steps. The local drift and diffusion terms and the resulting
effective potential, obtained by using the designed initializations,
are in good agreement with those obtained by averaging multiple
long-time simulations (see Figs. 4 and 5) and require approxi-
mately a factor of 5 less computation.

The construction of an effective potential from short-time
simulations using the lifting procedure also allows one to predict
mean residence times using the Kramers formula (26) without
having to observe the average time spent in each collective state
from ensembles of long-time simulations. We find that such
predictions are reasonably accurate: for example, for �ro � 0.6
the mean residence time predictions are 1,537 steps for the
stationary state and 424 steps for the mobile state.

Discussion

The individual-based model of self-organizing group formation
analyzed in this paper shows that animal groups can repeatedly
switch between qualitatively different ordered collective motion
states entirely due to stochastic effects. In particular, changes to
behavioral rules or the environment are not necessary for such
transitions to occur. Instead, such switching relies on the pres-
ence of at least two metastable collective motion states, and
stochasticity of appropriate type and strength to allow transitions
to occur. The use of effective potentials constructed from long-
as well as short-time simulations allows a powerful character-
ization of such switching.

Because the stochasticity that leads to switching is imposed at
the level of individuals, this analysis suggests that random
decisions by a small number of individuals can change an entire
population’s collective behavior, in particular when these indi-
viduals are near the edge of the school. The stochasticity-induced
switching discussed in this paper complements recent simula-
tions for a related model, which indicate that a small number of
informed individuals can influence group dynamics (29). One
can imagine that a combination of these effects might also be
important: for example, a small number of individuals might spot
a predator and quickly, randomly change their directions, an
‘‘informed stochasticity,’’ which leads to a change in the entire
group’s motion, which could allow all individuals to escape (cf.
ref. 30).

Fig. 6. Sample trajectories initialized using the lifting procedure approach-

ing an apparent slowmanifold parameterized byA. Trajectories (gray) evolve

for 15 steps with arrows showing the direction of increasing time. Black dots

represent a numerical approximation of the slowmanifold in the (A, S) plane.

Data were taken from an ensemble of five 104-step simulations after steady

state was reached (�103 steps) for �ro
� 0.6.
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A

Fig. 4. Coarse bifurcation diagram showing the critical points of the effec-

tive potential as �ro is varied. The minima of the effective potential corre-

spond to the stable branch (black) and themaxima correspond to the unstable

branch (gray). Dots (resp., �) show critical points of the long-time (resp.,

short-time) simulation estimate of the effective potential. In both cases, the

unstable solutions were located by performing a quadratic fit of the data

between the two wells and then locating the maxima of the fit.

Fig. 5. Comparison of effective potentials forN� 100, rr� 1,�ro� 0.6,�ra�

1, s � 0.75, � � 0.1, and p � 0.001. Black line, �(A) � �log(Ps(A)) where Ps(A)

was obtained from 100 trials with 104 steps per trial. Red line, Eq. 10with drift

and diffusion terms estimated from the same database. Blue line, Eq. 10with

drift and diffusion terms estimated by using the lifting procedure to initialize

ensembles of short trajectories with the same A0.
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The framework developed in this paper provides a useful,
‘‘equation-free’’ computer-assisted approach to the analysis of
emergent phenomena in individual-based aggregation models.
Most analysis of individual-based models in the field of group
formation has relied on costly long-time simulations, which has
limited the number of individuals that can be simulated as well
as the types of analysis that can be realistically performed (11).
Our approach allows one to achieve a new level of understanding
and quantification of biological self-organization by bridging
individual-based modeling with coarse population-level analysis.

Methods

The most challenging step of equation-free computation is
‘‘lifting’’: the construction of one or more states ‘‘consistent
with’’ the prescribed value of the coarse observable A0. Because
of the neutrally stable states mentioned in Computational Ob-
servations, to equilibrate to the desired slow manifold we must
take care when placing agents at a given value of A0. From these
computations, we found that the distribution of distances be-
tween individuals in the stick/slip state is bimodal, with peaks at
w1 and w2. We use this information in our lifting algorithm to
place individuals at a given A0 as follows.

1. Calculate proportions p1 and p2 of distances w1 and w2 so that
p1w1 � p2w2 � A0. If A0 � w1, set w1 � A0 and if A0 
 w2, set
w2 � A0.

2. Draw the appropriate proportion p1 and p2 of distances to first
nearest neighbors from tight Gaussian distributions centered
at w1 and w2. Place them randomly in the vector d1.

3. Draw distances to second nearest neighbors from a tight
Gaussian distribution centered at w2. Place them randomly in
the vector d2.

4. Start the first agent at some position c1. Place the second
agent at position c2 � c1 � d1(1). Place the third agent at
position c3 � c2 � d2(1). Place the fourth agent at position c4

� c3 � d1(2). Continue this process until N agents have been
positioned.

5. Let vi � 1, @ i.

To validate this lifting procedure, we consider another coarse
variable

S�t��
1

N
��
i�1

N

vi�t��, [11]

the group polarization, which has also been used in many fish
schooling models as a measure of school structure (6, 10). When
S� 1 (resp., S� 0) the school is in the mobile (resp., stationary)
state. Our lifting procedure initializes the population with S �
1, and the time scale of approach to the slow manifold is
comparable whether A0 
 rr or A0 � rr (see Fig. 6). The quick
relaxation to the slow manifold for A0 � rr occurs because rule
1 causes the agents to try to immediately move away from each
other.
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Figure 7: Repeated transitions between the torus state and the dynamic parallel state for a modified
version of the three-dimensional schooling model of Couzin et al. (12) with rr = 1, ∆ro = 2, and
∆ra = 9. We modify (12) by considering rare but substantial variations in the headings of individuals
obtained from the deterministic algorithm. Specifically, each agent changes the sign of its desired direction
with probability p = 0.005, with the new direction chosen according to a spherically wrapped Gaussian
distribution with standard deviation σ = 5. (This differs from (12) for which p = 1 and σ = .05, so that
all agents modify their direction at each timestep with small variation.) Two coarse variables measure
the collective behavior (12): (dashed) R(t) = angular momentum, (solid) S(t) = group polarization; both
are normalized so that they reach their maximum value at 1 and minimum at 0.



Appendix: Derivation of the Fokker-Planck Equation

Let {X(t) : t ≥ 0} be a one-dimensional stochastic process with t1 > t2 > t3. We use P (X1, t1;X2, t2)
to denote the joint probability distribution, i.e., the probability that X(t1) = X1 and X(t2) = X2, and
P (X1, t1 | X2, t2) to denote the conditional (or transition) probability distribution, i.e., the probability that
X(t1) = X1 given that X(t2) = X2, defined as P (X1, t1;X2, t2) = P (X1, t1 | X2, t2)P (X2, t2). We will
assume X(t) is a Markov process, namely,

P (X1, t1 | X2, t2;X3, t3) = P (X1, t1 | X2, t2). [1]

For any continuous state Markov process, the following Chapman-Kolmogorov equation is satisfied (1,2):

P (X1, t1 | X3, t3) =

∫

P (X1, t1 | X2, t2)P (X2, t2 | X3, t3)dX2. [2]

In the following, we will also assume X(t) is time homogeneous:

P (X1, t1 + s;X2, t2 + s) = P (X1, t1, X2, t2), [3]

so that X is invariant with respect to a shift in time. For simplicity of notation, we use P (X1, t1 − t2 | X2) ≡
P (X1, t1 | X2, t2).

We will now outline the derivation of the Fokker-Planck equation, a partial differential equation for the
time evolution of the transition probability density function. This closely follows the derivation in ref. 3.
Consider

∫

∞

−∞

h(Y )
∂P (Y, t | X)

∂t
dY, [4]

where h(Y ) is any smooth function with compact support. Writing

∂P (Y, t | X)

∂t
= lim

∆t→0

P (Y, t + ∆t | X) − P (Y, t | X)

∆t
, [5]

and interchanging the limit with the integral, it follows that
∫

∞

−∞

h(Y )
∂P (Y, t | X)

∂t
dY = lim

∆t→0

∫

∞

−∞

h(Y )

[

P (Y, t + ∆t | X) − P (Y, t | X)

∆t

]

dY. [6]

Applying the Chapman-Kolmogorov identity (Eq. 2), the right hand side of Eq. 6 can be written as

lim
∆t→0

1

∆t

[
∫

∞

−∞

h(Y )

∫

∞

−∞

P (Y,∆t | Z)P (Z, t | X)dZdY −

∫

∞

−∞

h(Y )P (Y, t | X)dY

]

. [7]

Interchanging the limits of integration in the first term of Eq. 7, letting Y → Z in the second term, and
using the identity

∫

∞

−∞
P (Y,∆t | Z)dY = 1, we have

lim
∆t→0

1

∆t

[
∫

∞

−∞

P (Z, t | X)

∫

∞

−∞

P (Y,∆t | Z) (h(Y ) − h(Z)) dY dZ

]

. [8]

Taylor expanding h(Y ) about Z gives

lim
∆t→0

1

∆t

[

∫

∞

−∞

P (Z, t | X)

∫

∞

−∞

P (Y,∆t | Z)

∞
∑

n=1

h(n)(Z)
(Y − Z)n

n!
dY dZ

]

. [9]

Defining the jump moments as

D(n)(Z) =
1

n!
lim

∆t→0

1

∆t

∫

∞

−∞

(Y − Z)nP (Y,∆t | Z)dY, [10]

1



it follows that
∫

∞

−∞

h(Y )
∂P (Y, t | X)

∂t
dY =

∫

∞

−∞

P (Z, t | X)

∞
∑

n=1

D(n)(Z)h(n)(Z)dZ. [11]

Integrating each term on the right side of Eq. 11 by parts n times and using the assumptions on h, after
moving terms to the left hand side, it follows that

∫

∞

−∞

h(Z)

(

∂P (Z, t | X)

∂t
−

∞
∑

n=1

(

−
∂

∂Z

)n
[

D(n)(Z)P (Z, t | X)
]

)

dZ = 0. [12]

Now, because h is an arbitrary function, it is necessary that

∂P (Z, t | X)

∂t
=

∞
∑

n=1

(

−
∂

∂Z

)n
[

D(n)(Z)P (Z, t | X)
]

. [13]

We define the probability distribution function P (X, t) of X(t) as the solution of Eq. 13 with initial condition
given by a δ-distribution at X0 at t = 0. In this case, P (X, t) ≡ P (X, t | X0, 0) and we may write Eq. 13 as

∂P (X, t)

∂t
=

∞
∑

n=1

(

−
∂

∂X

)n
[

D(n)(X)P (X, t)
]

, [14]

with

D(n)(X0) =
1

n!
lim

∆t→0

1

∆t
〈[X(t + ∆t)−X(t)]n〉|

t=0 , [15]

which is commonly called the Kramers-Moyal expansion. Now, if we assume D(n)(X) = 0 for n > 2, then
we have the Fokker-Planck equation:

∂P (X, t)

∂t
= −

∂

∂X
[V (X)P (X, t)] +

∂2

∂X2
[D(X)P (X, t)] , [16]

where, V (X) ≡ D(1)(X) is the drift coefficient and D(X) ≡ D(2)(X) > 0 is the diffusion coefficient, which
can be written as

V (X0) =
∂〈X(t;X0)〉

∂t

∣

∣

∣

∣

t=0

, D(X0) =
1

2

∂σ2(t;X0)

∂t

∣

∣

∣

∣

t=0

, [17]

where angular brackets denote ensemble averaging, σ2 denotes the variance of X, and X(t;X0) denotes a
realization with X(0) = X0. Any stochastic process X(t) whose probability distribution function satisfies
the Fokker-Planck equation is known mathematically as a diffusion process (1).

References

1. Gardiner, C. W. (2004) Handbook of Stochastic Methods. (Springer, Berlin).

2. Risken, H. (1996) The Fokker-Planck Equation: Methods of Solution and Applications. (Springer, Berlin).

3. Coffey, W. T, Kalmykov, Y. P, & Waldron, J. T. (2004) The Langevin Equation: With Applications to

Stochastic Problems in Physics, Chemistry, and Electrical Engineering. (World Scientific, Singapore).

2


