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Abstract

Schools of fish and flocks of birds are examples of self-organized animal groups that arise through social interactions among
individuals. We numerically study two individual-based models, which recent empirical studies have suggested to explain
self-organized group animal behavior: (i) a zone-based model where the group communication topology is determined by
finite interacting zones of repulsion, attraction, and orientation among individuals; and (ii) a model where the
communication topology is described by Delaunay triangulation, which is defined by each individual’s Voronoi neighbors.
The models include a tunable parameter that controls an individual’s relative weighting of attraction and alignment. We
perform computational experiments to investigate how effectively simulated groups transfer information in the form of
velocity when an individual is perturbed. A cross-correlation function is used to measure the sensitivity of groups to sudden
perturbations in the heading of individual members. The results show how relative weighting of attraction and alignment,
location of the perturbed individual, population size, and the communication topology affect group structure and response
to perturbation. We find that in the Delaunay-based model an individual who is perturbed is capable of triggering a cascade
of responses, ultimately leading to the group changing direction. This phenomenon has been seen in self-organized animal
groups in both experiments and nature.
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Introduction

Many animal groups are self-organized, such as schools of fish

[1,2], flocks of birds [3], herds of wildebeest [4], and swarms of

locusts [5]. These groups arise through social interactions among

individuals, without necessitating centralized control or response

to a template, or global cue [6]. Groups can be composed of many

individuals, with each individual constantly interacting with its

neighbors to maintain the collective motion. In this paper, we use

the term swarm as a metaphor for a self-organized animal collective

and develop generic models and theory which aim to have broad

applicability. Swarms are believed to be maintained through

simple positive and negative feedback mechanisms [6]. Individuals

tend to repel from neighbors that are too close, and may be

attracted to, or exhibit a tendency to align with, neighbors further

away [2,6–8]. Sensing and communication are critical to group

formation and maintenance. For fish schooling, it is believed that

vision and, for some species, the lateral line, an organ sensitive to

changes in water pressure, are the main sensory systems involved

[2,9]. For flocking birds, vision and vocal communication are key

[10]. Mathematical models have demonstrated that with a few

simple behavioral interactions, mediated by sensing and commu-

nication, a variety of robust patterns of motion can emerge [1].

Typical collective patterns of motion that have been validated

experimentally [11] include aggregates with cohesion but low

levels of polarization, highly polarized mobile motion, and milling

patterns in which the group rotates around an empty core [12].

Not only have models demonstrated the ability of swarms to switch

between various collective patterns of motion in response to both

changes in individual behaviors [12] and stochastic events [13],

but these changes in collective behavior have also been shown to

occur in real groups [11].

Group living may be advantageous to individuals, with benefits

including increased foraging efficiency [2,14], better ability to

follow migration routes [15,16], improved aerodynamic efficiency

[3,17], and a reduction in predation risk per group member

[18,19]. However, the costs and benefits of group membership are

typically not evenly distributed among members [20]. For

example, individuals located near the front of a fish school are

more likely to maximize their food uptake but may have a greater

risk of predation [21], while experimental data presented by

Handegard et al. suggests that individuals at the rear of schools
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may generally be more vulnerable [22]. For birds flying in a Vee

formation, it has been shown that the lead bird expends more

energy than those trailing behind [23]. However, recent results for

deformable bodies in flow suggest the opposite, namely that the

leader of a group may benefit from a significant drag reduction in

comparison to those trailing behind [24].

A primary advantage of living in groups is the ability to

dynamically respond to changes in the environment such as

migration routes, resources, or encounters with predators

[8,15,25]. Highly polarized groups, such as flocks of birds and

schools of fish, may benefit by acting as an array of sensors,

facilitating the transfer of information to uniformed group

members. Observations of natural fish schools as well as laboratory

experiments have demonstrated that if a small number of

individuals spot a predator or obstacle and abruptly change their

direction of travel, this information, in the form of a rapid change

in direction of travel (heading), can quickly propagate among

members, allowing all individuals to escape [22,26,27]. Groups

can tune their ability to respond to a stimulus by changing their

structure [1]. For example, a highly polarized group may be more

conducive to information transfer than a less polarized one [25].

Although models of schooling have demonstrated how individ-

ual behaviors can lead to different collective patterns of motion,

very few have studied their emergent internal dynamics. In this

paper, we perform simulations to investigate the effect the

communication topology has on the ability of a group to transfer

information in the form of velocity information when perturbed.

We consider two models: (1) a zone-based model which has a

communication topology that relies on the intersecting regions of

attraction, repulsion, and orientation among neighboring individ-

uals, and (2) a Delaunay-based model where the communication

topology of the swarm is determined by Delaunay Triangulation

(see Figure 1). The models include a tunable parameter as in [15]

which controls an individual’s relative weighting of attraction and

alignment. This parameter has a substantial impact on the

geometric structure of the group and its ability to transfer

information.

The computational experiments performed involve rapidly

perturbing an individual’s heading and measuring its influence

by how much the swarm aligns with the disturbance. An

individual’s influence is directly related to its ability to transfer

information and may vary with spatial position within the group.

We compare the results of each model over different parameter

values and population sizes. Our results show how relative

weighting of attraction and alignment affect group structure and

information transfer. Furthermore, they introduce previously

unforseen benefits and drawbacks to adopting a particular spatial

position within the group, which may have important conse-

quences when considering real animal groups.

Individual-based models are a useful theoretical tool for

investigating the dynamics of self-organized groups. However,

the steady-state simulations required to accurately determine their

statistical properties can be quite costly. To address this,

simulations of individual-based models were parallelized both

within and across realizations. In typical swarm models, individ-

uals consider the relative positions and directions of neighbors,

before updating their own position at each time step. This

computation can be done more efficiently by parallelizing across

individuals in the group. In addition, the replicate simulations

needed to take statistics can be performed in parallel across

realizations. Parallel simulations of the individual-based models

studied were performed either on a multi-core computer or

optimized for efficiency on a CUDA-enabled NVIDIA GPU. See

Appendix S1 for more details on GPU computing.

The Model
We consider a two-dimensional individual-based model for

swarming in which interactions take place within two behavioral

zones. This type of model was considered in [15,28] with informed

leaders. Here we assume there are no leaders and explore the

effects of different weights of orientation and attraction response

on the swarming behavior, and the relationship between spatial

position and influence.

The zone-based model implicitly assumes that for small groups,

an individual can monitor the states of each other member in the

group. For larger groups, this assumption would become

untenable because crowding restricts perception of others that

are beyond immediate neighbors, and one should only consider

the closest neighbors as stimuli [29]. Work by Ballerini et al. [30]

suggests, from empirical evidence, that birds influence each other

according to a communication topology similar to one derived

from performing a Delaunay Triangulation of the flock. We will

also explore this communication rule for 2-dimensional swarms,

with emphasis on schools of fish.

Zone-based Formulation
Groups are composed of N individuals with positions pi(t)[R2

and unit directions v̂vi(t)[R2. Individuals travel at constant speed s

and have finite turning rate h. Every time step t, individuals

simultaneously determine a new direction of travel by considering

neighbors within two behavioral zones. The first zone, a ‘‘zone of

repulsion’’, is represented by a circle of radius rr centered about

the individual. Individuals repel away from others within their

zone of repulsion. The second zone, a ‘‘zone of orientation and

attraction’’, is represented by an annulus of inner radius rr and

outer radius rp~rrzDrp about the individual, excluding a blind

area behind the individual, defined as a circular sector with

interior angle (2p{g) for which neighbors are undetectable.

Figure 1. Relationship between a Voronoi Cell and its Delaunay
Triangulation. The Voronoi cell associated with an individual in the
swarm is the region of space which contains points that are closer to
that individual than any other individual, where the boundary of a
Voronoi cell (dashed lines) specifies two neighboring individuals. Black
dots show the locations of the individuals. A Delaunay Triangulation
defines triangular regions that are formed by drawing edges (solid lines)
to connect nearest Voronoi neighbors. Therefore, the collection of
edges given by the Delaunay Triangulation defines the swarm
communication network topology when individuals within a swarm
are constrained to communicate only with their nearest neighbors, as
defined by Voronoi partitioning.
doi:10.1371/journal.pone.0058525.g001
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Individuals align with and are attracted towards neighbors within

their zone of orientation and attraction. For a given individual i,

let us denote the set of neighbors contained in the zone of

repulsion as ZR
i , and the set of neighbors contained in the zone of

orientation and attraction as ZP
i . These zones are used to define

the following behavioral rules of motion. If individual i finds other

individuals within its zone of repulsion, then it orients its direction

away from the average relative directions of those individuals. Its

desired direction of travel in the next time step is given by the sum

vi(tzt)~{
X

j[ZR
i

pj(t){pi(t)

pj(t){pi(t)
�� �� : ð1Þ

If individual i does not find other individuals within its zone of

repulsion, then it aligns with (by averaging the directions of travel

of itself and its neighbors) and feels an attraction towards (by

orienting itself towards the average relative directions of)

individuals within its zone of orientation and attraction. Its desired

direction of travel is given by the weighted sum of two terms:

vi(tzt)~va
ai(t)

Dai(t)D
zvo

oi(t)

Doi(t)D
, ð2Þ

where va and vo are the weightings of the attraction and

orientation terms respectively, and

ai(t)~
X

j[ZP
i

pj(t){pi(t)

pj(t){pi(t)
�� �� , oi(t)~

X

j[ZP
i

v̂vj(t): ð3Þ

The desired direction of travel of individual i is normalized as

v̂vi(tzt)~
vi(tzt)

vi(tzt)j j, assuming vi(tzt)=0. As before, if

vi(tzt)~0, then individual i maintains its previous direction of

travel as its desired direction of travel. We denote r~vo=va as the

ratio of orientation and attraction tendencies.

To simulate movement errors, noise is added by rotating

individual i’s desired direction v̂vi(tzt) by an angle drawn from a

circularly wrapped normal distribution with mean m~0 and

standard deviation s. Also, since individuals can only turn ht
radians in one timestep, if the angle between v̂vi(t) and v̂vi(tzt) is

greater than ht, individuals do not achieve their desired direction,

and instead rotate ht towards it. Finally, each individual’s position

is updated simultaneously as

pi(tzt)~pi(t)zsv̂vi(tzt)t i~1, . . . N, ð4Þ

where S is taken to be the constant speed of travel.

Delaunay-based Formulation
In contrast to the zone-based model, local influence in animal

swarms can be described by Voronoi partitions to define a nearest

neighbor communication topology [30]. The communication

topology determined by this framework is defined by the dual

representation of the Voronoi partitioning of a space, otherwise

known as a Delaunay Triangulation of that space [31] (see

Figure 1). The rules of attraction and repulsion between

neighboring individuals, in this case, are essentially the same as

that of the zone-based formulation section, except that the the region

of attraction is now unbounded.

For a finite collection of N individuals pi(t)f gN
i~1[R2, the

Voronoi cell associated with the ith individual is Vi(t)~

x[R2 D pi(t){xj jƒ pj(t){x
�� ��,for j~1 . . . N, j=i

� �
, where D:D is

the Euclidean norm [32]. Thus, by definition, two individuals, say

pi(t) and pj(t), are said to be neighbors if and only if Vi(t)\Vj(t)=60;

the points of intersection lie on the boundaries of the Voronoi cells.

The Delaunay Triangulation of fpi(t)g is then obtained by

connecting each neighboring individual by a Delaunay Edge.

Computing the state of the system for each time step is essentially

the same as the zone-based model, except now for each individual,

only neighbors who share a Delaunay Edge are included in each

individual’s local computation.

Methods of Analysis

Two observables are used to measure the structure of the

simulated swarms: elongation and polarization. Group elongation

is computed by forming the minimal bounding box containing the

group and taking the ratio of the length of the axis of the bounding

box aligned with group motion to the axis perpendicular to group

motion [15]. When a swarm is equally wide as it is long, E(t)~1.

For our simulations, typically E(t)§1. Polarization,

P(t)~
1

N

XN

i~1

v̂vi(t)

�����

�����, ð5Þ

measures the degree of group alignment. If all individuals within a

swarm adopt the same heading, P(t)~1, while if their headings

balance out, P(t)~0. Thus, P(t)[½0,1�. To obtain statistics

regarding the group structure for a given set of parameters, one

thousand steady-state simulations (with different initial conditions)

were performed. At the beginning of each simulation, individuals

are placed in a bounded region with randomized positions and

directions of travel. The zone-based simulations were run in

parallel on a graphics processing unit (GPU), while the Delaunay-

based simulations were run in parallel on a multi-core computer.

See [33] and Appendix S1 for more details on GPU computing.

Simulations were run for 3000 timesteps to ensure the group had

reached a steady collective pattern of motion, and the average

group elongation and polarization were recorded as well as the

probability of group fragmentation at steady-state. Furthermore,

we use a timestep duration of t~s{1 so that the dynamics are

normalized with respect to the constant rate of speed of the

individuals. A group is defined to be fragmented when it is

composed of two or more non-interacting subgroups. In practice,

an algorithm based on equivalence classes is used to determine the

number of non-interacting subgroups.

The center of the group is defined as pav~
1

N

XN

i~1
pi and the

average group heading is defined as vav~
1

N

XN

i~1
vi. To

investigate the relationship between spatial position and individual

influence we perform the following numerical experiments. We

rotate the heading of a single individual by 90 degrees

counterclockwise (with respect to their initial heading) and

measure the correlation of the average heading of the group with

the perturbed heading of the individual as a function of time.

More specifically, define the cross-correlation function C(t) as

C(t)~v̂vav(t):v̂vi
p(0)~cos(w), ð6Þ

where v̂vi
p(0) is the perturbed heading of individual i and w is the

angle between v̂vav(t) and v̂vi
p(0). Thus, C(t) is a measure of the

Spatial Position and Influence in Swarms
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sensitivity of a group to a perturbation in the heading of an

individual, and takes values in the range ½{1,1�. When C(t)w0,

the group’s heading has adjusted to be closer to the heading of the

perturbed individual (positive correlation), while when C(t)v0,

the group’s heading has adjusted to be further away from the

heading of the perturbed individual (negative correlation). This

correlation function can be easily generalized to include the

perturbation of multiple individuals (at a single time) by replacing

the single perturbed heading in expression (6) with an average of

the perturbed headings. To get statistics for C(t), we average the

results of these numerical experiments across the 1000 different

initial conditions. First, we translate and rotate swarms so that they

have the same center of mass pav and average heading v̂vav. We

then divide the plane into a lattice of spatial extent Dx and average

the results over each lattice point, discarding points with

insufficient statistics (less than 5 individuals).

Results

Zone-based Results
Swarming Patterns. As the ratio r of an individual’s

orientation to attraction tendencies is varied, different swarming

patterns emerge. For r near zero, groups are cohesive with low

levels of polarization. As r is increased, groups become more

polarized, forming dynamically parallel and then highly parallel

patterns of motion, using the terminology of [12]. For intermediate

values of r, groups become elongated along their principle axis of

motion. The probability of group fragmentation is correlated with

both group polarization and elongation and does not simply

increase with r; see Figure 2. In particular, we find that highly

elongated groups with low levels of polarization are more likely to

fragment than groups with higher levels of polarization. In [34]

simulations were performed in the parameter regime of the local

maxima of fragmentation and indicate that fragmentation arises in

elongated groups as a pinching process from a narrow point in the

group. When such an instability exists, fragmentation of the group

Figure 2. Average group polarization, elongation, and probability of fragmentation. Polarization, elongation, and probability of
fragmentation are given as functions of r, the ratio of orientation to attraction weightings, for schools of size N~25,50,100,150 for the local zone-
based schooling model. For schools of size N~25,50, the probability of fragmentation is zero for all values of r. The standard deviation s of
polarization values is bounded by 0.20 for all values of N, while the standard deviation of elongation values are bounded by: sN~25v0:06,
sN~50v0:06, sN~100v1:5, sN~150v2:6.
doi:10.1371/journal.pone.0058525.g002
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PLOS ONE | www.plosone.org 4 March 2013 | Volume 8 | Issue 3 | e58525



into subgroups is likely. After this local maximum, fragmentation

probability quickly decreases and eventually begins to slowly

increase again, as a function of r. This is not surprising since highly

polarized groups, where individuals weight alignment more

heavily than attraction, splinter more frequently. This suggests

that the trade-off between polarization and cohesion may not be as

Figure 3. Average relative response of groups to a single perturbation for the zone-based model. (A) N = 10, r = 4, (B) N = 10, r = 16, (C)
N = 10, r = 64, (D) N = 25, r = 4, (E) N = 25, r = 16, (F) N = 25, r = 64, (G) N = 50, r = 4, (H) N = 50, r = 16, (I) N = 50, r = 64, (J) N = 100, r = 4, (K) N = 100, Ì,, r = 16,
(L) N = 100, r = 64. Results are colored according to C(t), averaged over each point on a lattice of width Dx = 1 at time step t~10t. Groups are
oriented so their center of mass is at the origin, and rotated such that the average direction of orientation aligns with the vertical axis. The
perturbation was performed by rotating an individual counterclockwise by 90 degrees from the swarm’s average direction of orientation. Boxes are
only given a color if at least 5 individuals were averaged to compute that box’s value. Standard deviation values s are bounded over all values of N,
for each value of r: sr~4v0:60, sr~16v0:44, sr~4v0:29.
doi:10.1371/journal.pone.0058525.g003
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simple as previously expected [35]. In summary, our analysis

demonstrates how by changing the relative weighting of orienta-

tion to attraction influences,individuals can influence the collective

patterns of motion of a zone-based group.

Response to a Perturbation. The results of the perturbation

analysis on the zone-based model depend on group size,

polarization, and elongation; see Figure 3. As r is increased, small

groups (N~10,25) respond more strongly to internal perturba-

tions, as measured by the cross-correlation function C(t). Thus, by

changing local behavioral tendencies (adjusting r), individuals in

small swarms can tune their collective sensitivity to fluctuations.

For larger size schools (N~50,100) there is no substantial change

in the level of response to a perturbation. The cross-correlation

function is nearly zero for all positions so all individuals have

negligible influence. This is not surprising since in the zone-based

model, interactions are averaged over many individuals (see

Table 1) so any fluctuation is quickly dampened for large enough

groups.

Our analysis also reveals some distinct spatial differences in the

level of influence of individuals when perturbed. For very

elongated groups with low levels of polarization (r~4, N~100),

individuals turning away from the center of mass of the swarm

have a slightly positive influence on the orientation of the swarm,

while individuals who turn towards the swarm tend to have a

slightly negative influence on the orientation of the swarm. In

contrast, for small polarized groups (N~10,25, r~16,64),

individuals turning toward the center of mass of the swarm have

a large positive influence on its orientation, whereas individuals

who turn away have a positive influence of lesser magnitude if any

at all. There are no apparent trends in spatial differences in

influence for all other parameters studied. It is noted that our

results are completely symmetric about the turning angle. When

individuals are perturbed clockwise (as opposed to counterclock-

wise), the spatial patterns of influence may be obtained by

reflecting the results about the principal axis of motion of the

group.

Delaunay-based Results
Swarming Patterns. When Delaunay Triangulation is used,

communicating neighbors can be an arbitrary distance from each

other. A consequence of this fact is that fragmentation is not

allowed to occur without asserting additional constraints on how

close individuals have to be to communicate, so we observed no

Table 1. Average number of neighbors for each individual, as
a percentage of total population in zone-based model.

N r = 4 r = 16 r = 64

10 100 100 100

25 97.8 98.3 97.8

50 80.8 85.5 84.7

100 51.8 58.5 57.1

doi:10.1371/journal.pone.0058525.t001

Figure 4. Average group polarization and elongation. Polarization and elongation are given as functions of r, the ratio of orientation to
attraction weightings, for schools of size N = 25, 50, 100, 150 for the local Delaunay-based schooling model. The probability of fragmentation is zero
for all values of N and r. For large values of N, a distinct phase transition occurs at r&2, where the swarm becomes elongated and polarized. The
standard deviation s of polarization values is bounded by 0.16 for all values of N, while the standard deviation of elongation values are bounded by:
sN~25v2:66, sN~50v3:33, sN~100v4:09, sN~150v4:29.
doi:10.1371/journal.pone.0058525.g004
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fragmentation. Another consequence of this fact is that the

instability of elongated schools in the zone-based model is not

present in the Delaunay-based model. For r near zero, generally,

groups are cohesive with low levels of polarization, and

monotonically become more polarized as r is increased. Unlike

the zone-based model, for large r, groups do not fragment but tend

to be disperse. Although elongation of Delaunay-based swarms

increases along with r, Figure 4 shows that elongation becomes

Figure 5. Average relative response of groups to a single perturbation for the Delaunay-based model. (A) N = 10, r = 4, (B) N = 10, r = 16,
(C) N = 10, r = 64, (D) N = 25, r = 4, (E) N = 25, r = 16, (F) N = 25, r = 64, (G) N = 50, r = 4, (H) N = 50, r = 16, (I) N = 50, r = 64, (J) N = 100, r = 4, (K) N = 100, Ì,,
r = 16, (L) N = 100, r = 64. Results are colored according to C(t), averaged over each point on a lattice of width Dx = 1 at time step t~10t. Groups are
oriented so their center of mass is at the origin, and rotated such that the average direction of orientation aligns with the vertical axis. The
perturbation was performed by rotating an individual counterclockwise by 90 degrees from the swarm’s average direction of orientation. Boxes are
only given a color if at least 5 individuals were averaged to compute that box’s value. Standard deviation values s are bounded over all values of N,
for each value of r: sr~4v0:90, sr~16v0:59, sr~4v0:47.
doi:10.1371/journal.pone.0058525.g005
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more pronounced as the size of the swarm increases. It is noted

that many of the swarm realizations for the Delaunay-based

simulations tended to be aligned diagonally with respect to their

heading. Here the individuals are not only elongated in their

direction of travel, but also following at an angle of about 60

degrees from the individuals in front of them in many realizations,

similar to the empirical findings of Katz et al. [36]. When

averaging over all realizations, the skewed elongation of many

realizations produces the hourglass formations observed in Figure 5

and Figure 6. As swarm size increases, for values of r that keep the

swarm cohesive, the swarm continues to elongate along the

diagonal of its elongation bounding box and leaves the aspect ratio

of that bounding box relatively unchanged. Hence, we see in

Figure 4 that the elongation values reach a certain point and then

fluctuate slightly about that point.

Response to Perturbation. Both swarming patterns and

response to perturbations are sensitive to parameter values when

individuals are constrained to communicate only with their nearest

neighbors. Figure 5 shows a general trend across most r values,

where individuals turning away from the swarm have a positive

influence on the orientation of the swarm, while individuals who

turn towards the swarm tend to have a negative influence on the

orientation of the swarm. For high values of r, we find that the

swarm is spread out enough that no individual significantly

influences the orientation of the swarm. Low values of r show a

pronounced effect on the group that is biased towards the front of

the swarm, and becomes more pronounced as N increases and the

swarm becomes more elongated, as depicted in Figure 5(J).

As shown in Figure 5(L), we find that swarms with a relatively

weak aggregate attractive force are able to slowly expand to sizes

that would otherwise lead to fragmentation under the zone-based

model. Hence, perturbation effects are more pronounced in

Delaunay-based systems of lower r-value, where attractive forces

are greatest. It is also noted that the elongated and skewed

swarming patterns are more pronounced in the perturbation plots

for low influence ratio, as seen in Figure 5. In this attraction-to-

orientation regime, many of the swarm realizations tend to be

aligned diagonally with respect to their heading. In this case, the

influence of an individual turning either toward or away from the

center of the swarm is observed more clearly in Figure 6, which

shows that an individual’s direction of perturbation with respect to

the swarm center appears to have more of an influence on the

swarm than its spatial location. It is noted that our results, again,

are completely symmetric about the turning angle. When

individuals are perturbed clockwise (as opposed to counterclock-

wise), the spatial patterns of influence may be obtained by

reflecting the results about the principal axis of motion of the

group.

Discussion

By comparing Figure 3 and Figure 5, one sees that the effects of

restricting interactions to nearest neighbors are significant.

Whereas secondary and tertiary neighbors can be directly sensed

if they are within an individual’s region of attraction for the zone-

based model, the secondary and tertiary neighbors can only

influence an individual indirectly in the Delaunay-based model.

For swarms with fewer than ten individuals, the communication

topologies for the two models are very similar, and we would

expect the two systems to behave most similarly in this regime.

The swarm formation geometry of the Delaunay perturbation

plots for the N~10 regime most similarly resemble that of the

zone perturbation plots, even though the influence behavior is

quite opposite. Specifically, for N~10, the most influential

individuals of zone-based model turn towards the swarm center,

while the most influential individuals of the Delaunay-based model

turn away. When comparing Figure 2 to Figure 4, it seems that

Delaunay-based swarms become geometrically different from

zone-based swarms as r increases, according to their elongation

and polarization coarse descriptions. For all values of N, swarm

elongation is more pronounced for the Delaunay-based model and

appears to quickly plateau, while swarm elongation of the zone-

based model increases to a peak value near r~2:2 and then

proceeds to monotonically decrease. Swarm polarization seems to

monotonically increase for both models, but the increase seems to

occur at a faster rate for the zone-based model.

When comparing Figures 3 and 5, it is observed that the overall

influence of each individual is less for the zone-based model than

for the Delaunay-based model. Because fewer individuals are

included in the averaging algorithm for Delaunay-based swarms,

each individual neighbor has a greater proportion of influence.

Since the Delaunay-based swarms are more elongated, yet have

greater influence across the swarm when compared to the zone-

based results of similar parameter values, the effects of perturba-

tions on the larger Delaunay-based swarms tend to cascade

through the system. With the exception of ratio value r~4 and

population size N~100, an important difference between the

Figure 6. Symmetry of swarm influence. For the N~50 and R~4 parameter values of the Dealunay-based perturbation results depicted in
Figure 5(G), the collection of swarms are separated into (a) leftward aligned and (b) rightward aligned swarms. Averaging (a) and (b) produces
Figure 5(G). Results are colored according to C, averaged over each point on a lattice of width Dx = 1 at time step t~10t.
doi:10.1371/journal.pone.0058525.g006
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zone-based and Delaunay-based models is that the zone-based

model shows greatest influence on the swarm from individuals who

turn towards the swarm center, while the Delaunay-based model

shows the opposite behavior. It is only for the r~4 and N~100
regime where the two models appear to agree in terms of regions

of influence, and suggests that the strength of ‘‘turning away’’

leader behavior emerges as a result of cascading phenomena. As

more individuals are introduced to the zone-based swarm, the

average number of neighbors as a percentage of the total

population decreases in value (see Table 1), which indicates that

the information propagation mechanisms of the zone-based system

become more cascade-like, as in the Delaunay-based system. It is

also apparent that for elongated cohesive groups in the Delaunay-

based model (r~4 and Nw25), individuals at the front of the

swarm have a more dramatic impact than those located towards

the rear. This suggests that information propagates from the front

to the back.

Moreover, unlike the zone-based model where the communi-

cation topology is related to the density of the swarm (the average

number of neighbors in an arbitrary individual’s zone of

communication increases with swarm density) the average number

of neighbors for each individual under Delaunay Triangulation is

independent of swarm density since only nearest neighbors are

considered. This nearest neighbor versus density phenomenon is

summarized in Tables 1, 2, 3, and 4, which correspond with the

data of Figures 3 and 5. It is noted that the average number of

neighbors each individual can have under Delaunay Triangulation

is upper bounded by 6 [31].

We find that under the zone-based model, swarm density tends

to decrease more with respect to increases in swarm population

than it does for increases in the ratio r, as shown in Table 3. We

also find from Table 1 that the average number of neighbors

belonging to any individual increases with swarm population size,

and is irrespective of the ratio r. For the Delaunay-based model,

Table 4 shows that swarm density decreases as the ratio r

increases, and decreases as population size increases. Unlike what

we observed for the zone-based system, the Delaunay-based

system consistently produces between 4 and 6 neighbors per

individual on average, as inferred from Table 2.

Conclusions
The results demonstrate how increasing or decreasing the

relative strength of orientation to attraction between an individual

and its neighbors can affect an individual’s influence on the

group’s behavior. For both models, groups become more polarized

as individuals weight orientation more heavily. However, this

comes at a cost with higher levels of fragmentation in the zone-

based model and large spatial spread in the Delaunay-based

model.

Our perturbation analysis shows that an individual is most

influential when its effects are able to cascade from the front to the

back of the swarm. In the low orientation to attraction regime

(r~4) of the Delaunay-based model, groups are highly elongated

and have suffiently large levels of polarization so that they are able

to effectively propagate information in this manner. In the zone-

based model we did not see this phenomena but the results

indicate that this may be the case if groups are much larger than

those studied. However, we do find that for small group sizes

(N~10) in the zone-based model, individuals can have a relatively

large influence by ‘‘pushing’’ towards the swarm’s centroid in

contrast to the more typical influence by ‘‘pulling’’ away from the

swarm’s centroid seen in the Delaunay-based model.

The perturbation analysis also helps explain the diagonal

structure of the swarms in the Delaunay-based model for low

values of r where attractive forces are strong enough to keep

members close enough to have meaningful communication. As a

swarm continues to move forward, it elongates along its average

direction of travel. In addition, as seen from the perturbation

analysis, groups are most responsive to an individual’s motion in

the direction away from the swarm’s centroid which leads to

horizontal elongation. The combination of these two factors could

explain why equilibrium swarm formations become diagonally

elongated in the Delaunay-based model. In addition, the

arctangent of the Elongation from Figure 4 gives the average

following angle of the swarm for each population size, and the

trend indicates that following angle increases with population size.

Some empirical evidence has shown the zone-based model to be

an ample descriptor of swarm behavior for relatively small groups

(Nƒ100), while other empirical studies have suggested that a

Delaunay-based model may be more appropriate for swarms that

are greater in number (up to at least N&2600) and more spatially

spread out [30]. Our numerical study has shown distinct

differences between the emergent behavior of the two models

even for relatively small groups which may have not been

Table 4. Delaunay-based model swarm density (individuals/
area).

N r = 4 r = 16 r = 64

10 0.493 0.357 0.317

25 0.238 0.143 0.129

50 0.0457 0.0717 0.00864

100 0.0320 0.0633 0.00157

The density of a swarm can be determined by dividing the number of
individuals in the swarm by the area of the bounding box that encloses the
swarm, which is the same bounding box used to compute swarm elongation.
doi:10.1371/journal.pone.0058525.t004

Table 2. Average number of neighbors for each individual, as
a percentage of total population in Delaunay-based model.

N r = 4 r = 16 r = 64

10 47.2 48.1 48.3

25 21.5 21.7 21.4

50 11.4 11.4 10.4

100 5.81 5.81 5.19

doi:10.1371/journal.pone.0058525.t002

Table 3. Zone-based model swarm density (individuals/area).

N r = 4 r = 16 r = 64

10 0.981 0.848 0.884

25 0.647 0.646 0.639

50 0.526 0.559 0.576

100 0.144 0.0144 0.00525

The density of a swarm can be determined by dividing the number of
individuals in the swarm by the area of the bounding box that encloses the
swarm, which is the same bounding box used to compute swarm elongation.
doi:10.1371/journal.pone.0058525.t003
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identified if the swarm was solely classified using observables such

as polarization and elongation. Our analysis provides a finer

measure of the dynamics of a swarm by testing its response to

perturbations from individual members as a function of spatial

position. Such perturbations can occur frequently in swarms where

a few individuals respond to a nearby external stimulus such as a

predator or food source triggering a cascade of responses

ultimately leading to the group changing its direction of motion

[26,27].

Supporting Information

Appendix S1 Parallel Simulation on a GPU. Many of the

simulations of the model were run in parallel on a graphics

processing unit (GPU). A discussion of the implementation is

included in Appendix S1.

(PDF)
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