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ABSTRACT

Variational methods are used to determine the optimal cur-
rents that elicit spikes in various phase reductions of alews-
cillator models. We show that, for a given reduced neuronehod
and target spike time, there is a unique current that mirgmiz
a square-integral measure of its amplitude. For intriflyices-
cillatory models, we further demonstrate that the form atad-s
ing of this current is determined by the model’s phase respon
curve. These results reflect the role of intrinsic neuralagyn
ics in determining the time course of synaptic inputs to \kac
neuron is optimally tuned to respond, and are illustrateédgus
phase reductions of neural models valid near typical biftions
to periodic firing, as well as the Hodgkin-Huxley equations.

1 Introduction

Phase-reduced models of neurons have traditionally been

used to investigate either the patterns of synchrony thatltre
from the type and architecture of coupling [2, 3,7,12—-1421F,

or the response of large groups of oscillators to externil-st
uli [4,5, 20]. In all of these cases, the inputs to the modésce
were fixed by model definition at the outset, and the dynanfics o

phase models of networks or populations were analyzed in de-

tail. The present article takes a complementary, contrebitetic
approach that is related to probabilistic ‘spike-triggenmeth-
ods [18]: we fix at the outset a feature of the dynamical ttajec
ries of interest — spiking at a precise titae- and study the neural
inputs that lead to this outcome. By computing the optimahsu
input, according to a measure of the input strength requived
elicit the spike, we identify the signal to which the neursmp-

timally ‘tuned’ to respond. We view the present work as pért o
the first attempts [11,22] to understand the dynamical respof
neurons using control theory, and, as we expect that irsfghn
this general perspective will be combined with the ‘forwatg-
namics results that Phil Holmes and many others have detdved
ultimately enhance our understanding of neural processieg
hope that it will serve as a fitting tribute to his work.

2 Optimal Current for Specified Time of Firing
2.1 Problem formulation
Consider the phase model for a spiking (i.e., firing) neuron

de
G (2.1)
where f(0) gives the neuron’s baseline dynami&gp) is its
phase sensitivity function, ardt) is a current stimulus (e.qg., [4,
23]). We assume that(8) vanishes only at isolated points, and
that f (8) > O at these points, so orbits of full revolution are pos-
sible. Hered is 2r-periodic on[0, 2rm), and by conventio® = 0
corresponds to the spiking of the neuron.

Suppose that, for a specified tintg for all stimuli I(t)
which evolvef(t) via (2.1) from8(0) = 0 to 6(t;) = 2 (that
is, which cause the cell to spike at tiie following a spike at
time 0), we want to find the one which minimizes the cost func-
tion G[I (t)] = [3[1 (t)]2dt, the square-integral cost on the current.
(For a system obeying Ohm’s law and with resistaRgctnis cor-
responds to minimizing the pow& ~ I2R.) Other choices, in-
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cluding costs on the time derivative of the current, leadltera
nate equations below, but can be handled similarly (cf. [6])
We apply calculus of variations to minimize [11]

cll(t)] = ./Otl {[| O +A (? —£(8)—Z(0)l (t)) } dt, (2.2)

PI®)]

with A being the Lagrange multiplier which forces the dynamics
to satisfy (2.1). The associated Euler-Lagrange equations

i) aal(n) woalm)

= 1ty = 2OZOL) (2.3)
% = £(8)+Z(8)I(t) = f(8) + MZ(ZG)]Z» (2.4)
D AT AZO)11) = AT(6) - w, (2.5)

where’ = d/d6. To find the optimal (), (2.4) and (2.5) need to
be solved subject to the conditioB&) = 0,6(t1) = 2t This re-
quires finding the appropriate initial conditiarf0) = Ao, which
can be done with appropriate numerical methods. The salutio
(B(t),A(t)) using this initial condition can then be used in (2.3)
to give the optimal stimuluk(t). (For higher dimensional neural
models, such as the Hodgkin-Huxley equations considered be
low, gradient-based numerical models that iterativelyaiptt)
via the variational derivativ%% may be required; see [6].)
Applying the Legendre transformatiofl][ we observe that
the HamiltonianH (6,\) = Af(8) + A2[Z(8)]?/4 is conserved
on trajectories for the Euler-Lagrange equations (2.4)(ars).

Taking initial conditiong(8,A) = (0,Ag) with Ho = H(0,Ao), the
trajectories thus satisfy
N2[Z(8)]?/4+Af(B) —Ho = 0. (2.6)

2.2 Existence and uniqueness of optimal inputs I(t)

As mentioned above, the trajectories of interest are orbits
which go from8 = 0 to 8 = 2mover the timespaf0,t;]. We now
show that there is a unique such orbit, and hence ihfpltthat
is optimal in the sense introduced above. We refer to thig asb
theoptimal trajectory. First, we make two assumptions

2.7)

That is, we assume that the phase sensitivity funcipn van-
ishes at the spike pha8e= 0 and that the intrinsic phase dynam-
ics are increasing at this point. These conditions are redui

for well-defined phase reductions of spiking neurons [4thay
ensure that the spike phase is not crossed ‘backwards.’

Lemma 2.1 Assume that (2.7) holds. Then
jectory of (2.4,2.5) with 6(0) = 0and 6(t1) =

9 > 0 for any tra-
2T[.

Proof. Consider a trajectory{(6(t),A(t))}, 0 <t < 1 which
solves (2.4)-(2.5). From (2.7), we ha@@|i—o > 0. Assume in
point of contradiction that there exists a time<d < T such that

gﬂ_e li—t < 0. Sinced(1) = 2, in this case there also exists a phase
6 < 2rtsuch thaB(t) = 6 for three distinct times between 0 and
T. A quick sketch in thgB,A) plane shows that, since any tra-
jectory{(6(t),A(t))} is not self-intersecting, the trajectory under
our assumption contains three distinct poif@s\;), j = 1,2,3.
However, the trajectory must also be a level set of the Hamil-
tonian; from (2.6), which is quadratic i(6), such a level set
contains at most two poin{®,A(0)) for any value of8. There-
fore, a contradiction has been reached, and the lemma filow

Lemma 2.2 Assumethat (2.7)holds. For a solution to (2.4,2.5)

0)+/[f(8)]2+ [Z(

Proof. Multiplying (2.6) by [Z(8)]?> and solving the resulting
quadratic equation iN(8)[Z(8)]? gives

8)+/[f(8)]2+ [2(

However, (2.4) shows thﬂTe < 0 whenever\(0)[Z(8)]2/2 <
—f(0). Therefore, from Lemma 2.1, we see that optimal so-
lutions only follow the %+’ branch. ]

AB)Z(O)2 =2 [— 6)]2H0} 28

AO)Z(B) =2 [ e>]2Ho] .

Now, we give the main result of this section:

Proposition 2.3 Assume that (2.7) holds. Then for any t; > 0,
an optimal trajectory exists and is unique.

Proof. Using Lemma 2.2 to rewrite Eqn. (2.4), we see that there
exist optimal solutions with spike timeégsgiven by

= /tl gt — /211 /271 \/

2H0 ’
(2.9)
Differentiating, we have
oty 1 f2m [Z(8)]%d6
—= == <0, 2.10
Mo~ 2Jo ([1(8)+[2(8)H0)" (210
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provided [f(6)]? + [Z(8)]?Ho > 0, which is necessary for (2.8)
to give a valid trajectory. Thug; decreases monotonically as
Ho increases. Noting thaf varies monotonically withdy under
our assumptions (2.7) (in fadtlo = f(0)Ag), we conclude that
there is at most one value af which gives a trajectory with
a particulart;. Examining (2.9) and recalling our assumption
from the outset thaZ(8) vanishes only at isolated points, and
that f(8) > O at these points, we see that (i) by chooskhg
(and hence\p) to be arbitrarily large, an optimal trajectory with
arbitrarily smallt; may be found; (ii) by choosinijg to approach
sup (—[f(8)]2/[2(6)]?) from above, an optimal trajectory with
arbitrarily larget; may be found. m|

2.3 Intrinsically oscillatory neurons

For the special case thd{6) = w = constant, so that the
neuron fires periodically with periodl = 2m/w in the absence

of input 1(t), Z(8) is called the phase response curve (PRC).
Then (2.4)-(2.5) have fixed poin{f¢,A¢) that satisfyZ'(6¢) =

0,At = —2w/[Z(8¢)]2. The eigenvalues of the Jacobian evalu-
ated at these fixed points at&o,/—2"(0¢)/Z(0s). If Z"(6¢)

and Z(8¢) have opposite signs, such a fixed point is a saddle
point. The associated stable and unstable manifolds arel ftau

be trajectories wittHo = H(0¢,A ) = —w?/[Z(8¢)]%.

Form of optimal current for small |t; — T

Supposef (8) = w> 0,Z(0) = 0, and that the desired spike
timet; is close to the natural period. We can then solve (2.4)-
(2.5) to lowest order ity — T| explicitly, demonstrating that in
this case the optimal current is proportional to the PRC.sThu
the PRC determines the inputs that neurons are naturalgdtun
to, in the sense of the optimization problem at hand.

First notice that the liné = O is invariant for (2.4)-(2.5),
and corresponds t%? = w, and hence tty = T. From (2.3), we
see that (t) = 0 in this case; this is expected, as no control is
required for an intrinsically oscillatory neuron to fire akspat
its natural period. For, ~ T, we Taylor expand; with respect

to the initial condition\(0) to givet; = T + (6;’—‘(10) |M0)=0) A(0)
to lowest order in(ty — T). Thus the initialA value needed to
give a trajectory which reach@s= 2mat timet; isA(0) = (t1 —

at H .
) r(l()) N0 to lowest order irt; — T. From (2.10), noting

for Z(0) = 0 thatA(0) = Ho/w, we then have

Moy = 2T (;i_T)Z;”z L (1)
omtl, o JozE)rde
Lettingt; — T = O(¢), and expanding
A =AM +eA®(t) +2AP (1) + - . (2.12)
o(t) =00(t) +e8M(t) +26@(t) +---,  (2.13)

we find from Eqgns. (2.4-2.5) that® =0 andA (M (t) = A(0) /e +
O(g). Furthermore8(© = wt. Therefore, from (2.3), the optimal
current is given by

I(t) (2.14)

AOZ(0) +0((t~T)?)

(tn—T)wPZ(ct)

2
J§"(z(8)]2de e

+

o((ty — (2.15)

Finally, we note that it is expected that singg) = Z(2m) =0,
the optimal current should vanish fé= O (att = 0) and® = 2t
(att =t;). This is not the case for (2.15). However, let-
ting Z(wt) — Z(wt — 21t (ty — T)/(t1T)) = Z(t T /t1), which
changes only th&((t; — T)?) terms in (2.15), we obtain an ap-
proximation which satisfies these conditions. With this iimaip

to lowest order iri; — T, we approximate the optimal current that
causes the neuron to spiketat: T as

(t1— T)wPZ(wt — 2mt(ts — T) /(. T))
J§"(z(8)]2d®

+0((tp —T)?).
(2.16)

0=~

Scaling of optimal current for small |ty — T}

In [4], it is shown how PRCs for phase reductions of neu-
ral oscillators near common bifurcations to periodic firswale
with the baseline firing frequencg. These reductions have
the form Z(8) = Zy(w)Z(8), where the coefficienZq(w) cap-
tures the scaling wittw. For example, for neurons near a
saddle node on a periodic orbit (SNIPER) bifurcati@tp) =
£(1—cog®)) [cf. [8]], wherec is a model-dependent constant,
s0Z4(w) = 1/w; for neurons near a supercritical Hopf transition,

Z(0)= JwiW sin(8) [cf. [10]], wherewy is the frequency at the

bifurcation, saZy(w) = 1//w— wy.

Using these results and (2.16), it is readily determined how
the optimall (t) scales withw when the desired spike tintg is
a (fixed) small perturbation from the natural peribd= 21/ .
Denoting bylmax1 the maximum ofl (t)] in this case, we get

Imaxt = C160°/Zq(w) (2.17)

for a fixed neuron model and time shift— T, to lowest order
inty — T. Here,c; is a model-dependent constant. In words,
Egn (2.17) shows how the amplitude of the optimal current re-
quired to perturb spike times by a fixed amount scales with the
baseline frequency of the neuron. A complementary relakigm

is obtained by asking how this amplitude scales with baselin
frequency when the optimal current perturbs the spike timme b
a fixed fraction of the (varying) baseline period. In thisesas
settingt; — T in (2.16) topT, wherep is the fixed fraction, gives

lmaxe = Cz(x)/zd((x)). (2.18)
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0 1 2 3 4 5 s 0 Figure 2. Dependence of t; on Ag for the sinusoidal PRC (3.19), as
obtained from (3.20).

Figure 1. Phase space for (2.4) and (2.5) with the sinusoidal PRC (3.19)
and W = Zg = 1, showing fixed points at (8,A) = (T1/2,—2) and
(311/2,—2), stable and unstable manifolds of the fixed points, and tra-
jectories withty = 5andt; = 9.

For phase reductions near the SNIPER bifurcation, and for
other cases in whicly(w) decreases a® increases, both ex-
pressions (2.17) and (2.18) demonstrate that the optimedais
required to perturb spike times diminish rapidly in ampliuat
lower baseline frequencies. We will return to this pointivel

- . . . . , . %t

3 Examples i ) . ) .
31 Sinusoidal PRC Figure 3. Optimal currents for the sinusoidal PRC (3.19) with W= Z4 =

Considerf (9) — o= constant and the PRC 1 for different values of t1, with scaled time axis for ease of comparison.

Z(8) = Z4sin(6), (3.19) —w?/Z3 = supy (—[f(0)]?/[2(8)]?). This corresponds to ap-
proach toward the stable and unstable manifolds of the fixed
) o ) o points. This forces the trajectory to spend asymptoticiaihg
whereZy is a constant. This might arise due to proximity {0 times near the fixed points (with corresponding current appr

a supergritical Hopf or a Bautin bifurcati(_)n [4,10]. Theme a imately given by (2.3) evaluated at the fixed point), delgyiits
fixed points of the Euler-Lagrange equations (2.4) and (2t5)  g/yival to8 = 21

(01,A1) = (T/2,—2w/Z3), (3M/2, — 2w/ Z3), each with eigenval-
uesw and—w. The phase space for (2.4) and (2.5) is shown in t
Figure 1 forw= Z4 = 1. We integrate (2.9) to give i

To obtain the initial conditior\g for a particular value of
one can in principle invert the functiok(x) in (3.20). In
practice, it is easier to solve (2.4), (2.5) subject to theditions
8(0) = 0,6(t1) = 2m numerically using a shooting method. We

4 Hozg 4 >\OZ§ used such a method to generate the optimal currentsfoZy =
t1=—K (—7> = (——) : (3.20) 1 for various values df, shown in Figure 3, where the time axis
has been scaled for ease of comparison. Not surprisinghye if
want the neuron to fire more quickly than it would in the absenc
Here K(x) is the complete elliptic function of the first kind, a  of the stimulus (i.e., ity < T), the optimal current is positive
monotonically increasing function with properties that (resp., negative) fob values for whichZ(6) is positive (resp.,
negative). Furthermore, it is clear that the approxima(ihi5)
K(0) = T/2, lim K(x) =0, ImK(x) =o. (3.21) cha}racterizes optimal currents ter= T .(Fig. 4 (a)), and that the
X——c0 x—1 optimal current scales as expected witliFigure 5 (a)).

W W W

Figure 2 shows how, depends oidg; as expected from (2.10), 3.2 SNIPER PRC

it decreases monotonically &g increases. Furthermore, as Considerf (8) — w— constant, and the PRC
expected from Section 2.3, the initial conditidg = 0 gives '
ty = 21/w. Finally, from (3.20) and (3.21), we see thablows
up to infinity asHg — —w?/Z3; this is expected from (2.9), as Z(8) = Z4(1—cos9). (3.22)
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Figure 4. Exact (solid lines) and approximate (dashed lines) optimal cur-
rents for t1 as labeled with (a) the sinusoidal PRC (3.19) with =24 =1,
(b) the SNIPER PRC (3.22) with W = Zq = 1, and (c) the PRC corre-
sponding to the Hodgkin-Huxley equations with |, = 10.

Figure 5. Scaling of the amplitude of optimal currents with baseline

o 1 .
frequency W, for (a) the sinusoidal PRC Z(0) = = sin(8), with
wH = 0.5 and (b) the SNIPER PRC Z(6) = (1 — cog8)). For
t1 — T = —0.5, the amplitude |max1 from the lowest-order expression

(2.17) is given by solid lines; stars give the analogous numerically com-
puted values (i.e. to all orders). For the fraction p = 0.9, the ampli-
tude lmax2 from the lowest-order expression (2.18) is given by dot-dashed
lines; triangles give the analogous numerical values. Insets give the same
data on log-log axes.

This could arise for neurons near a SNIPER bifurcation, (ae.
saddle-node bifurcation on a periodic orbit) [4, 8]. Hehere is
one fixed point of the Euler-Lagrange equations (2.4) arfs) .
(8,A1) = (T, —w/(2Z3)), with eigenvalues-w/v/2. The phase
space for (2.4) and (2.5) for this PRC is shown in Figure 6 for
w=1andZy = 1. We again used a shooting method to find the

5

Figure 6. Phase space for (2.4) and (2.5) for the SNIPER PRC (3.22)
with @ = 1 and Zg = 1, showing the fixed point at (8,A) = (1T, —1/2),
stable and unstable manifolds of the fixed point, and trajectories for peri-
odic orbits with periodt; = 5andt; = 9.

27
t1 t

Figure 7. Optimal currents for the SNIPER PRC (3.22) with =24 =1
for different values of t1, with scaled time axis for ease of comparison.

optimal currents — a comparison for various valueg @ given
in Figure 7. Again, (2.15) is a good approximation for T
(see Figure 4(b)), and the expected scaling of optimal otsre
with wis seen (Figure 5 (b)).

3.3 Theta Neuron

The ‘theta neuron’ model describes both superthreshold and
subthreshold dynamics near a SNIPER bifurcation [8]. With o
control current (t), this model is

@ =1+cosB+

pn (1—cosB) (I(t) +1yp),

(3.23)

i.e., equation (2.1) witH (8) = 1+ cosB+ Ip(1—cosh),Z(6) =
1—cosB. As above 9 is 2reperiodic and spikes fire & = 0.

If the baseline current, > 0O, the cell fires periodically in the
absence of input(t), with angular frequencyo = 2y/T,. |If

Ip < 0, the model is excitable: no spikes occur without in-
put I (t), as there are two fixed points (one of which is stable)
for 1(t) = O; however, for appropriate inputgt) spikes can

Copyright © by ASME



°2r (a) th=5 ] @

Figure 9. Optimal currents for the theta neuron model, (a) with lp =
0.25 and (b) with I, = —0.25, with time axis scaled as above. Target

Figure 8. Phase space for (2.4) and (2.5) for the theta neuron model time values are, from top, t1 = 3,4,5,6,10,25.

(3.23) with (a) Iy = 0.25, (b) I = —0.25, showing fixed points, stable
and unstable manifolds of the fixed points, and trajectories for periodic
orbits with period t1 = 5and t; = 9. The dot in (b) is a center fixed point.

occur. Whenl, > 0, applying the coordinate transformation

8(¢p) = 2tarr* (\/Iptan(@/2—T11/2)) + T to (3.23) gives‘é—f’ = o ' ’ ’ ) ’ ’

W+ c—20(1— cosp)l (1), i.e., the governing equation for the SNIPER

PRC withZy = 2/00. This transformation preservésrp: 0) -0 Figure 10. Phase response curve for the Hodgkin-Huxley equations with
andB((p: 21.[) = 2m, i.e., the property of spiking at 0 andt2 standard parameters and injected baseline current Iyy = 10.

The Euler-Lagrange equations (2.4) and (2.5) for the theta
neuron model have a fixed point é;,A¢) = (1, —lp), with _ _ _
eigenvaluest+/2l,. For I, < 0, they also have fixed points with periodT = 14.63 ms, corresponding to:_ 0.4315_ ragms.
at (8,A1) = (cosY((lp + 1)/(Ip — 1)),0), with eigenvalues The PRC for this system, computed numerically with XPP [9],

+2,/—Tp. The phase space for the Euler-Lagrange equations for is shoyvn in Figure 10._To numerically study Fhe Euler-Lagean
this model withl, = 0.25 andl, = —0.25 is shown in Figure 8, ~ €guations, we approximated the PRC obtained from XPP as a
For larget; when |, < 0, the solution spends most of its time Fourier series with 21' terms. It is found numencally tha t.h
near one of the two saddle points, with an increasingly ptect ~ Eulér-Lagrange equations (2.4) and (2.5) for this PRC hareel i

current pulse peaked halfway through its transit frém O to points at(8,A) = (3.53 ~75.16) and (4.89, ~18.22), both sad-
0 = 2m, as Figure 9 shows. dles with eigenvalues approximately equatif.92. The phase

space for (2.4) and (2.5) for this PRC is shown in Figure 11. We
used a shooting method to find the optimal currents shown in
3.4 Hodgkin-Huxley PRC Figure 12 for various values o¢f.

The Hodgkin-Huxley equations [16] are a system of four It is natural to ask to what extent the optimal current found
ODEs that model the generation of action potentials (ipkes) using the phase model with this Hodgkin-Huxley PRC causes
in the squid giant axon, based on the dynamical interplay be- a neuron described by tHall equations to fire at the specified
tween ionic conductances and intracellular voltage. Thayeh time. To answer this, we take initial conditions for the Hkitlg
been highly influential, with most mathematical neuron niede  Huxley equations following a spike, apply the optirhél) found
being based on them in one way or another. Here we consider thefrom the phase model until the specified tithethen allow the
Hodgkin-Huxley equations with standard parameters antliexpp  full equations to evolve under their natural dynamics withio-
baseline current;y = 10, for which the neuron fires periodically  jected current. We measure the firing time as the time of tke fir

6 Copyright © by ASME



20 4

-60 |- 4

80 |- 4 n (b)
0 1 2 3 4 5 6 0 0.7 \ 4
0.6 q
Figure 11. Phase space for (2.4) and (2.5) for the PRC corresponding
to the Hodgkin-Huxley equations with |y = 10, showing the stable and osr 1
unstable manifolds of the two fixed points, and trajectories for periodic 0al ]
orbits with period t; = 14andt; = 18 : ‘ : ‘ ‘ v
-80 -60 -40 -20 0 20 40
4 ‘ ‘ ‘ ‘ ‘ ‘ Figure 13. Dynamics of the full Hodgkin-Huxley equations with | (t) cho-
7

sen to be the optimal current stimulus for t1 = 14 for the phase model
with the Hodgkin-Huxley PRC for Iy = 10. (a) shows the time series of
the transmembrane voltage V, and (b) shows the phase space projection
onto the (V, n) plane, where V is the voltage and N is a gating variable
(using the standard Hodgkin-Huxley notation). The thin line shows the
dynamics while | (t) is being applied up to time t1. The thick line shows
the dynamics after | (t) is turned off until the neuron first fires.

2m
ot

Figure 12. Optimal currents for the PRC for the Hodgkin-Huxley equa-
tions with standard parameters and with |y = 10 for different values of

11, with scaled time axis for ease of comparison.

Figure 14. Comparison of the specified time of firing t; and the actual

peak in the voltage above an appropriate threshold. time of firing t'l"H for the full Hodgkin-Huxley equations for the current

For t; close to the intrinsic period, the Hodgkin-Huxley found from optimizing the phase model. The dashed line corresponds to
equations with these inputs fire at approximately the sgetifi  exact agreement.
timest; (in ms): see Figure 13 fag = 14. In this casell (t)| re-
mains relatively small, which is necessary for the phaseahod
to accurately characterize the full Hodgkin-Huxley ecoiasi 4 Optimal Current for Minimizing the Time of Firing
(e.g. [4]). Ast; moves away from the natural period, the opti- The previous sections were concerned with determining the
mal current from the phase model causes the full equations to optimal current to cause a neuron described by a phase model
spike later than the target time, é)| becomes relatively large  to fire at a specified time. Here, we consider optimizing the
and the phase reduction loses validity. In fact, simulatisimow current, subject to the constraint tHatt)| < | for all t, which
that thisl(t) pushes the trajectory near an unstable fixed point causes the neuron described by a phase model to fire as quickly
(not captured by the phase model) having complex eigenvalue as possible. This constraint could represent the maxirnsaiple
with small, positive real parts. The time required for thejdc- synaptic input that upstream neurons can provide to theoneur
tory to spiral away from this fixed point accounts for some of at hand. Here, we do not constrain the rate with whigh can
the discrepancy with the phase model. Figure 14 compares thevary; in practice, the timescale of the synaptic currentsictv

specified time of firing; and the actual time of firingf™™ for varies among synapse types but can be very rapid, determines
the full Hodgkin-Huxley equations, using the current fodiran the viability of this assumption of unconstrained rate.
optimizing the phase model. The following argument suggests using ‘bang-bang control,

7 Copyright © by ASME



in which the injected current takes the extreme valueslof6].
From (2.1), in a time stegt the phase advances by

d6 = [(8) +Z(8)I(t)]dt. (4.24)

To get the neuron to fire as quickly as possible, we maximdé&ze
at each timestep. Clearly, to do this we should take

| for Z(B(t)) >0

_ifor Z(B(t)) < 0 (4.25)

|m=NWmm={

More completely, suppose that the neuron starts with Initia
phase;. It will fire at time ts given by

tf 21T
dt = /
JO J 6

where we assume thdt(8) + Z(0)I(t) is always positive (if
not, then from (4.24) the phase does not advance). Now, if
—|Z(®)|l < Z(8)I(t) < |Z(8)]I, that is, the currenk(t) satifies

the amplitude constraint and is not given by (4.25),

de

0) 120 (1) (4.26)

ts =

1 1

ez ferzen > @2
o de om 40
=t :./Gi f(8)+Z(0)I(t) >-/0i 01 2(0)1%(0) =1tbb,
(4.28)

wheretﬁJb is the time the neuron fires for the current given by
(4.25). Note that for bang-bang control to work, it is neeegs
that f(8) +|Z(8)|l > 0 for all 8. Figure 15 shows for 6; =0

for the PRCs considered in the previous section. For allgxce
the theta neuron model with negatilig for which one needs

| > —Ilp in order for bang-bang control to produce a spike, we
see that?b approaches the natural periodlas: 0, as expected.

5 Discussion and conclusion

In this paper, we first show that there is a unique optimal
currentl (t) that will elicit a spike at a specified timgfor phase-
reduced neural models satisfying a general set of conditidre
then derive results about this curréit) for intrinsically oscil-
latory models, using the formalism of PRCs. In particular, f
these models we show that the time course of the optimalmurre
will be proportional to the PRC itself for small perturbatsoin
spike times. This fact, coupled with earlier results abbattyp-

bb
ty

Figure 15. Minimal time of firing t?b as a function of |, obtained using
bang-bang control, for phase models starting at 8; = O for (a) solid line:
f(0) =w=1,7Z(8) =sinb; dashed line: f(0) =w=1,Z(0) =1—
COSD; dot-dashed line: the theta neuron model with |, = 0.25; dotted
line: the theta neuron model with |, = —0.25, and (b) the PRC for the
Hodgkin-Huxley equations with standard parameters and lp = 10.

computing the earliest spike times that can be elicited fiedi
ent neural models by currents of fixed maximal amplitude. All
of these results are illustrated with phase-reduced newrdkls
valid near the SNIPER and Hopf bifurcations, and with a numer
ically derived phase model for the Hodgkin-Huxley equagion

Our results on the form and scaling of optimal currdrits
address the question of how the dynamics of individual nesiro
determine the processing of synaptic inputs to produceespik
Specifically, they imply that the standard classificatiom ofeu-
ron’s PRC as Type | vs Type Il [8] depending, respectively, on
whether it is nonnegative (as for the SNIPER PRC) or takes bot
positive and negative values (as for the sinusoidal PRE), cd¢-
termines, respectively, whether purely excitatory syraps a
mixture of excitatory and inhibitory synapses are requicedp-
timally adjust its spike times. As previous work [4, 8, 10psls
that PRCs remain invariant in form but typically increaseain-
plitude as baseline oscillation frequencies decrease|seecan-
clude that the optimal inputs for a given neuron operatingjfat
ferent frequencies are determined by rescaling in both &k
amplitude asingle curve of a given form. For the standard neu-
ral models studied here, the amplitude of the current th&t op
mally causes a fixed perturbation in spike times decreapatiya
with the model's baseline frequency, indicating increaseuksi-
tivity at low firing rates. This type of increased sensitjyior
gain, at lower firing rates has been emphasized in the context of
population-averaged firing rates in [4, 15], and is extentlee
to the spike times of individual neurons.

In the context of many of the neural inputs that occur in vivo,

ical scaling of PRCs, enables us to study how the amplitude of the present results may nonetheless be viewed as rathégdimi

this current scales with the baseline (i.e., unperturbegjuency
of the oscillatory model. Finally, we discuss bang-bangti@n

as many neurons receive inputs from up to thousands of affer-
ent synapses and the combined currents contain compongnts d

Copyright © by ASME



tinct from the optimal inputs considered here. One appraach
this more general problem is to compute time-dependent cemp
nents, or ‘features, of neural inputs whose combined gtien
determine whether or not a given input will elicit a spike(§£8]
and references therein). In particular, [1] shows that @nfgw
such components are required to make this determinatiomt® g
high accuracy for the Hudgkin-Huxley (HH) equations. Itlwil
be interesting to investigate the relationship betweesfédture-
based approach and that taken in the present paper, egpbeial
cause the dominant such feature identified for the HH egustio
in [1] resembles in form the optimal currents for these eiguat
computed here.

We close by mentioning an alternative approach to the prob-

lem of complex neural inputs to the probabilistic approadten
in [1, 18]: exploring the entire family of inputit) that elicit
a spike at time;. The complement to this ‘level set’ of inputs

would then correspond to the (span of the) dominant features

identified in [1,18]. This level set based approach was dpes
to answer related questions for other physical models i firfl
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