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ABSTRACT
Variational methods are used to determine the optimal cur-

rents that elicit spikes in various phase reductions of neural os-
cillator models. We show that, for a given reduced neuron model
and target spike time, there is a unique current that minimizes
a square-integral measure of its amplitude. For intrinsically os-
cillatory models, we further demonstrate that the form and scal-
ing of this current is determined by the model’s phase response
curve. These results reflect the role of intrinsic neural dynam-
ics in determining the time course of synaptic inputs to which a
neuron is optimally tuned to respond, and are illustrated using
phase reductions of neural models valid near typical bifurcations
to periodic firing, as well as the Hodgkin-Huxley equations.

1 Introduction
Phase-reduced models of neurons have traditionally been

used to investigate either the patterns of synchrony that result
from the type and architecture of coupling [2,3,7,12–14,17,21],
or the response of large groups of oscillators to external stim-
uli [4, 5, 20]. In all of these cases, the inputs to the model cells
were fixed by model definition at the outset, and the dynamics of
phase models of networks or populations were analyzed in de-
tail. The present article takes a complementary, control-theoretic
approach that is related to probabilistic ‘spike-triggered’ meth-
ods [18]: we fix at the outset a feature of the dynamical trajecto-
ries of interest – spiking at a precise timet1 – and study the neural
inputs that lead to this outcome. By computing the optimal such
input, according to a measure of the input strength requiredto
elicit the spike, we identify the signal to which the neuron is op-

timally ‘tuned’ to respond. We view the present work as part of
the first attempts [11,22] to understand the dynamical response of
neurons using control theory, and, as we expect that insights from
this general perspective will be combined with the ‘forward’ dy-
namics results that Phil Holmes and many others have derivedto
ultimately enhance our understanding of neural processing, we
hope that it will serve as a fitting tribute to his work.

2 Optimal Current for Specified Time of Firing
2.1 Problem formulation

Consider the phase model for a spiking (i.e., firing) neuron

dθ
dt

= f (θ)+Z(θ)I(t), (2.1)

where f (θ) gives the neuron’s baseline dynamics,Z(θ) is its
phase sensitivity function, andI(t) is a current stimulus (e.g., [4,
23]). We assume thatZ(θ) vanishes only at isolated points, and
that f (θ) > 0 at these points, so orbits of full revolution are pos-
sible. Hereθ is 2π-periodic on[0,2π), and by conventionθ = 0
corresponds to the spiking of the neuron.

Suppose that, for a specified timet1, for all stimuli I(t)
which evolveθ(t) via (2.1) fromθ(0) = 0 to θ(t1) = 2π (that
is, which cause the cell to spike at timet1, following a spike at
time 0), we want to find the one which minimizes the cost func-
tion G[I(t)] =

∫ t1
0 [I(t)]2dt, the square-integral cost on the current.

(For a system obeying Ohm’s law and with resistanceR, this cor-
responds to minimizing the powerP ∼ I2R.) Other choices, in-
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cluding costs on the time derivative of the current, lead to alter-
nate equations below, but can be handled similarly (cf. [6]).

We apply calculus of variations to minimize [11]

C[I(t)] =
∫ t1

0

{

[I(t)]2 +λ
(

dθ
dt

− f (θ)−Z(θ)I(t)

)}

︸ ︷︷ ︸

P[I(t)]

dt, (2.2)

with λ being the Lagrange multiplier which forces the dynamics
to satisfy (2.1). The associated Euler-Lagrange equationsare

∂P
∂I

=
d
dt

(
∂P

∂İ

)

,
∂P
∂λ

=
d
dt

(
∂P

∂λ̇

)

,
∂P
∂θ

=
d
dt

(
∂P

∂θ̇

)

,

⇒ I(t) =
λ(t)Z(θ(t))

2
, (2.3)

dθ
dt

= f (θ)+Z(θ)I(t) = f (θ)+
λ[Z(θ)]2

2
, (2.4)

dλ
dt

= −λ f ′(θ)−λZ′(θ)I(t) = −λ f ′(θ)− λ2Z(θ)Z′(θ)

2
, (2.5)

where′ = d/dθ. To find the optimalI(t), (2.4) and (2.5) need to
be solved subject to the conditionsθ(0) = 0,θ(t1) = 2π. This re-
quires finding the appropriate initial conditionλ(0) ≡ λ0, which
can be done with appropriate numerical methods. The solution
(θ(t),λ(t)) using this initial condition can then be used in (2.3)
to give the optimal stimulusI(t). (For higher dimensional neural
models, such as the Hodgkin-Huxley equations considered be-
low, gradient-based numerical models that iteratively updateI(t)
via the variational derivativeδP

δI(t) may be required; see [6].)
Applying the Legendre transformation [?], we observe that

the HamiltonianH(θ,λ) = λ f (θ) + λ2[Z(θ)]2/4 is conserved
on trajectories for the Euler-Lagrange equations (2.4) and(2.5).
Taking initial conditions(θ,λ) = (0,λ0) with H0 ≡ H(0,λ0), the
trajectories thus satisfy

λ2[Z(θ)]2/4+λ f (θ)−H0 = 0. (2.6)

2.2 Existence and uniqueness of optimal inputs I(t)
As mentioned above, the trajectories of interest are orbits

which go fromθ = 0 toθ = 2π over the timespan[0, t1]. We now
show that there is a unique such orbit, and hence inputI(t), that
is optimal in the sense introduced above. We refer to this orbit as
theoptimal trajectory. First, we make two assumptions

Z(0) = 0, f (0) > 0. (2.7)

That is, we assume that the phase sensitivity functionZ(·) van-
ishes at the spike phaseθ = 0 and that the intrinsic phase dynam-
ics are increasing at this point. These conditions are required

for well-defined phase reductions of spiking neurons [4], asthey
ensure that the spike phase is not crossed ‘backwards.’

Lemma 2.1 Assume that (2.7) holds. Then dθ
dt > 0 for any tra-

jectory of (2.4,2.5) with θ(0) = 0 and θ(τ) = 2π.

Proof. Consider a trajectory{(θ(t),λ(t))}, 0 ≤ t ≤ τ which
solves (2.4)-(2.5). From (2.7), we havedθ

dt |t=0 > 0. Assume in
point of contradiction that there exists a time 0< t̂ < τ such that
dθ
dt |t=t̂ < 0. Sinceθ(τ) = 2π, in this case there also exists a phase
θ̄ < 2π such thatθ(t) = θ̄ for three distinct times between 0 and
τ. A quick sketch in the(θ,λ) plane shows that, since any tra-
jectory{(θ(t),λ(t))} is not self-intersecting, the trajectory under
our assumption contains three distinct points(θ̄,λ j), j = 1,2,3.
However, the trajectory must also be a level set of the Hamil-
tonian; from (2.6), which is quadratic inλ(θ), such a level set
contains at most two points(θ,λ(θ)) for any value ofθ. There-
fore, a contradiction has been reached, and the lemma follows.2

Lemma 2.2 Assume that (2.7)holds. For a solution to (2.4,2.5)

λ(θ)[Z(θ)]2 = 2

[

− f (θ)+
√

[ f (θ)]2 +[Z(θ)]2H0

]

. (2.8)

Proof. Multiplying (2.6) by [Z(θ)]2 and solving the resulting
quadratic equation inλ(θ)[Z(θ)]2 gives

λ(θ)[Z(θ)]2 = 2

[

− f (θ)±
√

[ f (θ)]2 +[Z(θ)]2H0

]

.

However, (2.4) shows thatdθ
dt < 0 wheneverλ(θ)[Z(θ)]2/2 <

− f (θ). Therefore, from Lemma 2.1, we see that optimal so-
lutions only follow the ‘+’ branch. 2

Now, we give the main result of this section:

Proposition 2.3 Assume that (2.7) holds. Then for any t1 > 0,
an optimal trajectory exists and is unique.

Proof. Using Lemma 2.2 to rewrite Eqn. (2.4), we see that there
exist optimal solutions with spike timest1 given by

t1 =
∫ t1

0
dt =

∫ 2π

0

dθ

f (θ)+ λ[Z(θ)]2

2

=
∫ 2π

0

dθ
√

[ f (θ)]2 +[Z(θ)]2H0
.

(2.9)
Differentiating, we have

∂t1
∂H0

= −1
2

∫ 2π

0

[Z(θ)]2dθ
([ f (θ)]2 +[Z(θ)]2H0)3/2

< 0, (2.10)

2 Copyright c© by ASME



provided[ f (θ)]2 + [Z(θ)]2H0 > 0, which is necessary for (2.8)
to give a valid trajectory. Thus,t1 decreases monotonically as
H0 increases. Noting thatλ0 varies monotonically withH0 under
our assumptions (2.7) (in fact,H0 = f (0)λ0), we conclude that
there is at most one value ofλ0 which gives a trajectory with
a particulart1. Examining (2.9) and recalling our assumption
from the outset thatZ(θ) vanishes only at isolated points, and
that f (θ) > 0 at these points, we see that (i) by choosingH0

(and henceλ0) to be arbitrarily large, an optimal trajectory with
arbitrarily smallt1 may be found; (ii) by choosingH0 to approach
supθ

(
−[ f (θ)]2/[Z(θ)]2

)
from above, an optimal trajectory with

arbitrarily larget1 may be found. 2

2.3 Intrinsically oscillatory neurons
For the special case thatf (θ) = ω = constant, so that the

neuron fires periodically with periodT = 2π/ω in the absence
of input I(t), Z(θ) is called the phase response curve (PRC).
Then (2.4)-(2.5) have fixed points(θ f ,λ f ) that satisfyZ′(θ f ) =
0,λ f = −2ω/[Z(θ f )]

2. The eigenvalues of the Jacobian evalu-
ated at these fixed points are±ω

√
−Z′′(θ f )/Z(θ f ). If Z′′(θ f )

and Z(θ f ) have opposite signs, such a fixed point is a saddle
point. The associated stable and unstable manifolds are found to
be trajectories withH0 = H(θ f ,λ f ) = −ω2/[Z(θ f )]

2.

Form of optimal current for small |t1−T |
Supposef (θ) = ω > 0, Z(0) = 0, and that the desired spike

time t1 is close to the natural periodT . We can then solve (2.4)-
(2.5) to lowest order in|t1−T | explicitly, demonstrating that in
this case the optimal current is proportional to the PRC. Thus,
the PRC determines the inputs that neurons are naturally tuned
to, in the sense of the optimization problem at hand.

First notice that the lineλ = 0 is invariant for (2.4)-(2.5),
and corresponds todθ

dt = ω, and hence tot1 = T . From (2.3), we
see thatI(t) = 0 in this case; this is expected, as no control is
required for an intrinsically oscillatory neuron to fire a spike at
its natural period. Fort1 ≈ T , we Taylor expandt1 with respect

to the initial conditionλ(0) to give t1 = T +
(

∂t1
∂λ(0) |λ(0)=0

)

λ(0)

to lowest order in(t1 − T ). Thus the initialλ value needed to
give a trajectory which reachesθ = 2π at timet1 is λ(0) ≈ (t1−
T )/ ∂t1

∂λ(0)

∣
∣
∣
λ(0)=0

, to lowest order int1−T . From (2.10), noting

for Z(0) = 0 thatλ(0) = H0/ω, we then have

λ(0) =
t1−T

ω ∂t1
∂H0

∣
∣
∣
H0=0

= − (t1−T )2ω2

∫ 2π
0 [Z(θ)]2dθ

. (2.11)

Letting t1−T = O(ε), and expanding

λ(t) = λ(0)(t)+ ελ(1)(t)+ ε2λ(2)(t)+ · · · (2.12)

θ(t) = θ(0)(t)+ εθ(1)(t)+ ε2θ(2)(t)+ · · · , (2.13)

we find from Eqns. (2.4-2.5) thatλ(0) = 0 andλ(1)(t) = λ(0)/ε+
O(ε). Furthermore,θ(0) = ωt. Therefore, from (2.3), the optimal
current is given by

I(t) =
1
2

λ(0)Z(θ(0))+O((t1−T )2) (2.14)

= − (t1−T )ω2Z(ωt)
∫ 2π

0 [Z(θ)]2dθ
+O((t1−T )2). (2.15)

Finally, we note that it is expected that sinceZ(0) = Z(2π) = 0,
the optimal current should vanish forθ = 0 (att = 0) andθ = 2π
(at t = t1). This is not the case for (2.15). However, let-
ting Z(ωt) → Z(ωt − 2πt(t1 − T )/(t1T )) = Z(ωtT/t1), which
changes only theO((t1−T )2) terms in (2.15), we obtain an ap-
proximation which satisfies these conditions. With this in mind,
to lowest order int1−T , we approximate the optimal current that
causes the neuron to spike att1 ≈ T as

I(t) = − (t1−T )ω2Z(ωt −2πt(t1−T )/(t1T ))
∫ 2π

0 [Z(θ)]2dθ
+O((t1−T )2).

(2.16)
Scaling of optimal current for small |t1−T |

In [4], it is shown how PRCs for phase reductions of neu-
ral oscillators near common bifurcations to periodic firingscale
with the baseline firing frequencyω. These reductions have
the form Z(θ) = Zd(ω)Z̃(θ), where the coefficientZd(ω) cap-
tures the scaling withω. For example, for neurons near a
saddle node on a periodic orbit (SNIPER) bifurcation,Z(θ) =
c
ω (1− cos(θ)) [cf. [8]], wherec is a model-dependent constant,
soZd(ω) = 1/ω; for neurons near a supercritical Hopf transition,
Z(θ) = c√

ω−ωH
sin(θ) [cf. [10]], whereωH is the frequency at the

bifurcation, soZd(ω) = 1/
√

ω−ωH .
Using these results and (2.16), it is readily determined how

the optimalI(t) scales withω when the desired spike timet1 is
a (fixed) small perturbation from the natural periodT = 2π/ω.
Denoting byImax1 the maximum of|I(t)| in this case, we get

Imax1 = c1ω2/Zd(ω) (2.17)

for a fixed neuron model and time shiftt1 − T , to lowest order
in t1 − T . Here,c1 is a model-dependent constant. In words,
Eqn (2.17) shows how the amplitude of the optimal current re-
quired to perturb spike times by a fixed amount scales with the
baseline frequency of the neuron. A complementary relationship
is obtained by asking how this amplitude scales with baseline
frequency when the optimal current perturbs the spike time by
a fixed fraction of the (varying) baseline period. In this case,
settingt1−T in (2.16) topT , wherep is the fixed fraction, gives

Imax2 = c2ω/Zd(ω). (2.18)
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Figure 1. Phase space for (2.4) and (2.5) with the sinusoidal PRC (3.19)

and ω = Zd = 1, showing fixed points at (θ,λ) = (π/2,−2) and

(3π/2,−2), stable and unstable manifolds of the fixed points, and tra-

jectories with t1 = 5 and t1 = 9.

For phase reductions near the SNIPER bifurcation, and for
other cases in whichZd(ω) decreases asω increases, both ex-
pressions (2.17) and (2.18) demonstrate that the optimal currents
required to perturb spike times diminish rapidly in amplitude at
lower baseline frequencies. We will return to this point below.

3 Examples
3.1 Sinusoidal PRC

Considerf (θ) = ω = constant and the PRC

Z(θ) = Zd sin(θ), (3.19)

whereZd is a constant. This might arise due to proximity to
a supercritical Hopf or a Bautin bifurcation [4, 10]. There are
fixed points of the Euler-Lagrange equations (2.4) and (2.5)at
(θ f ,λ f ) = (π/2,−2ω/Z2

d),(3π/2,−2ω/Z2
d), each with eigenval-

uesω and−ω. The phase space for (2.4) and (2.5) is shown in
Figure 1 forω = Zd = 1. We integrate (2.9) to give

t1 =
4
ω

K

(

−H0Z2
d

ω2

)

=
4
ω

K

(

−λ0Z2
d

ω

)

. (3.20)

Here K(x) is the complete elliptic function of the first kind, a
monotonically increasing function with properties that

K(0) = π/2, lim
x→−∞

K(x) = 0, lim
x→1

K(x) = ∞. (3.21)

Figure 2 shows howt1 depends onλ0; as expected from (2.10),
it decreases monotonically asλ0 increases. Furthermore, as
expected from Section 2.3, the initial conditionλ0 = 0 gives
t1 = 2π/ω. Finally, from (3.20) and (3.21), we see thatt1 blows
up to infinity asH0 → −ω2/Z2

d ; this is expected from (2.9), as

−1 −0.5 0 0.5 1 1.5 2
0

5

10

15

20

�0Z2d=!
!t1

Figure 2. Dependence of t1 on λ0 for the sinusoidal PRC (3.19), as

obtained from (3.20).
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Figure 3. Optimal currents for the sinusoidal PRC (3.19) with ω = Zd =
1 for different values of t1, with scaled time axis for ease of comparison.

−ω2/Z2
d = supθ

(
−[ f (θ)]2/[Z(θ)]2

)
. This corresponds to ap-

proach toward the stable and unstable manifolds of the fixed
points. This forces the trajectory to spend asymptoticallylong
times near the fixed points (with corresponding current approx-
imately given by (2.3) evaluated at the fixed point), delaying its
arrival toθ = 2π,

To obtain the initial conditionλ0 for a particular value of
t1, one can in principle invert the functionK(x) in (3.20). In
practice, it is easier to solve (2.4), (2.5) subject to the conditions
θ(0) = 0,θ(t1) = 2π numerically using a shooting method. We
used such a method to generate the optimal currents forω = Zd =
1 for various values oft1 shown in Figure 3, where the time axis
has been scaled for ease of comparison. Not surprisingly, ifwe
want the neuron to fire more quickly than it would in the absence
of the stimulus (i.e., ift1 < T ), the optimal current is positive
(resp., negative) forθ values for whichZ(θ) is positive (resp.,
negative). Furthermore, it is clear that the approximation(2.15)
characterizes optimal currents fort1 ≈ T (Fig. 4 (a)), and that the
optimal current scales as expected withω (Figure 5 (a)).

3.2 SNIPER PRC
Considerf (θ) = ω = constant, and the PRC

Z(θ) = Zd(1−cosθ). (3.22)
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Figure 4. Exact (solid lines) and approximate (dashed lines) optimal cur-

rents for t1 as labeled with (a) the sinusoidal PRC (3.19) with ω = Zd = 1,

(b) the SNIPER PRC (3.22) with ω = Zd = 1, and (c) the PRC corre-

sponding to the Hodgkin-Huxley equations with Ib = 10.
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Figure 5. Scaling of the amplitude of optimal currents with baseline

frequency ω, for (a) the sinusoidal PRC Z(θ) = 1√
ω−ωH

sin(θ), with

ωH = 0.5 and (b) the SNIPER PRC Z(θ) = 1
ω (1− cos(θ)). For

t1 − T = −0.5, the amplitude Imax1 from the lowest-order expression

(2.17) is given by solid lines; stars give the analogous numerically com-

puted values (i.e. to all orders). For the fraction p = 0.9, the ampli-

tude Imax2 from the lowest-order expression (2.18) is given by dot-dashed

lines; triangles give the analogous numerical values. Insets give the same

data on log-log axes.

This could arise for neurons near a SNIPER bifurcation (i.e., a
saddle-node bifurcation on a periodic orbit) [4, 8]. Here, there is
one fixed point of the Euler-Lagrange equations (2.4) and (2.5) at
(θ f ,λ f ) = (π,−ω/(2Z2

d)), with eigenvalues±ω/
√

2. The phase
space for (2.4) and (2.5) for this PRC is shown in Figure 6 for
ω = 1 andZd = 1. We again used a shooting method to find the

-1

 0

 1

 0  1  2  3  4  5  6 �
� t1 = 9t1 = 5

Figure 6. Phase space for (2.4) and (2.5) for the SNIPER PRC (3.22)

with ω = 1 and Zd = 1, showing the fixed point at (θ,λ) = (π,−1/2),

stable and unstable manifolds of the fixed point, and trajectories for peri-

odic orbits with period t1 = 5 and t1 = 9.
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t1 = 4
t1 = 5t1 = 6

t1 = 9t1 = 8 t1 = 7
Figure 7. Optimal currents for the SNIPER PRC (3.22) with ω = Zd = 1
for different values of t1, with scaled time axis for ease of comparison.

optimal currents – a comparison for various values oft1 is given
in Figure 7. Again, (2.15) is a good approximation fort1 ≈ T
(see Figure 4(b)), and the expected scaling of optimal currents
with ω is seen (Figure 5 (b)).

3.3 Theta Neuron
The ‘theta neuron’ model describes both superthreshold and

subthreshold dynamics near a SNIPER bifurcation [8]. With our
control currentI(t), this model is

dθ
dt

= 1+cosθ+(1−cosθ)(I(t)+ Ib) , (3.23)

i.e., equation (2.1) withf (θ) = 1+cosθ + Ib(1−cosθ),Z(θ) =
1− cosθ. As above,θ is 2π-periodic and spikes fire atθ = 0.
If the baseline currentIb > 0, the cell fires periodically in the
absence of inputI(t), with angular frequencyω = 2

√
Ib. If

Ib < 0, the model is excitable: no spikes occur without in-
put I(t), as there are two fixed points (one of which is stable)
for I(t) = 0; however, for appropriate inputsI(t) spikes can

5 Copyright c© by ASME
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Figure 8. Phase space for (2.4) and (2.5) for the theta neuron model

(3.23) with (a) Ib = 0.25, (b) Ib = −0.25, showing fixed points, stable

and unstable manifolds of the fixed points, and trajectories for periodic

orbits with period t1 = 5 and t1 = 9. The dot in (b) is a center fixed point.

occur. WhenIb > 0, applying the coordinate transformation
θ(φ) = 2tan−1

(√
Ib tan(φ/2−π/2)

)
+ π to (3.23) givesdφ

dt =

ω+ 2
ω (1−cosφ)I(t), i.e., the governing equation for the SNIPER

PRC withZd = 2/ω. This transformation preservesθ(φ = 0) = 0
andθ(φ = 2π) = 2π, i.e., the property of spiking at 0 and 2π.

The Euler-Lagrange equations (2.4) and (2.5) for the theta
neuron model have a fixed point at(θ f ,λ f ) = (π,−Ib), with
eigenvalues±

√
2Ib. For Ib < 0, they also have fixed points

at (θ f ,λ f ) = (cos−1((Ib + 1)/(Ib − 1)),0), with eigenvalues
±2

√−Ib. The phase space for the Euler-Lagrange equations for
this model withIb = 0.25 andIb = −0.25 is shown in Figure 8.
For larget1 when Ib < 0, the solution spends most of its time
near one of the two saddle points, with an increasingly punctate
current pulse peaked halfway through its transit fromθ = 0 to
θ = 2π, as Figure 9 shows.

3.4 Hodgkin-Huxley PRC
The Hodgkin-Huxley equations [16] are a system of four

ODEs that model the generation of action potentials (i.e., spikes)
in the squid giant axon, based on the dynamical interplay be-
tween ionic conductances and intracellular voltage. They have
been highly influential, with most mathematical neuron models
being based on them in one way or another. Here we consider the
Hodgkin-Huxley equations with standard parameters and applied
baseline currentIHH = 10, for which the neuron fires periodically
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Figure 9. Optimal currents for the theta neuron model, (a) with Ib =
0.25 and (b) with Ib = −0.25, with time axis scaled as above. Target

time values are, from top, t1 = 3,4,5,6,10,25.
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Figure 10. Phase response curve for the Hodgkin-Huxley equations with

standard parameters and injected baseline current IHH = 10.

with periodT = 14.63 ms, corresponding toω = 0.4315 rad/ms.
The PRC for this system, computed numerically with XPP [9],
is shown in Figure 10. To numerically study the Euler-Lagrange
equations, we approximated the PRC obtained from XPP as a
Fourier series with 21 terms. It is found numerically that the
Euler-Lagrange equations (2.4) and (2.5) for this PRC have fixed
points at(θ,λ) = (3.53,−75.16) and(4.89,−18.22), both sad-
dles with eigenvalues approximately equal to±0.92. The phase
space for (2.4) and (2.5) for this PRC is shown in Figure 11. We
used a shooting method to find the optimal currents shown in
Figure 12 for various values oft1.

It is natural to ask to what extent the optimal current found
using the phase model with this Hodgkin-Huxley PRC causes
a neuron described by thefull equations to fire at the specified
time. To answer this, we take initial conditions for the Hodgkin-
Huxley equations following a spike, apply the optimalI(t) found
from the phase model until the specified timet1, then allow the
full equations to evolve under their natural dynamics without in-
jected current. We measure the firing time as the time of the first
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Figure 11. Phase space for (2.4) and (2.5) for the PRC corresponding

to the Hodgkin-Huxley equations with IHH = 10, showing the stable and

unstable manifolds of the two fixed points, and trajectories for periodic

orbits with period t1 = 14and t1 = 18.
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Figure 12. Optimal currents for the PRC for the Hodgkin-Huxley equa-

tions with standard parameters and with IHH = 10 for different values of

t1, with scaled time axis for ease of comparison.

peak in the voltage above an appropriate threshold.

For t1 close to the intrinsic period, the Hodgkin-Huxley
equations with these inputs fire at approximately the specified
timest1 (in ms): see Figure 13 fort1 = 14. In this case,|I(t)| re-
mains relatively small, which is necessary for the phase model
to accurately characterize the full Hodgkin-Huxley equations
(e.g. [4]). Ast1 moves away from the natural period, the opti-
mal current from the phase model causes the full equations to
spike later than the target time, as|I(t)| becomes relatively large
and the phase reduction loses validity. In fact, simulations show
that thisI(t) pushes the trajectory near an unstable fixed point
(not captured by the phase model) having complex eigenvalues
with small, positive real parts. The time required for the trajec-
tory to spiral away from this fixed point accounts for some of
the discrepancy with the phase model. Figure 14 compares the
specified time of firingt1 and the actual time of firingtHH

1 for
the full Hodgkin-Huxley equations, using the current foundfrom
optimizing the phase model.
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Figure 13. Dynamics of the full Hodgkin-Huxley equations with I(t) cho-

sen to be the optimal current stimulus for t1 = 14 for the phase model

with the Hodgkin-Huxley PRC for IHH = 10. (a) shows the time series of

the transmembrane voltage V , and (b) shows the phase space projection

onto the (V,n) plane, where V is the voltage and n is a gating variable

(using the standard Hodgkin-Huxley notation). The thin line shows the

dynamics while I(t) is being applied up to time t1. The thick line shows

the dynamics after I(t) is turned off until the neuron first fires.
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Figure 14. Comparison of the specified time of firing t1 and the actual

time of firing tHH
1 for the full Hodgkin-Huxley equations for the current

found from optimizing the phase model. The dashed line corresponds to

exact agreement.

4 Optimal Current for Minimizing the Time of Firing
The previous sections were concerned with determining the

optimal current to cause a neuron described by a phase model
to fire at a specified time. Here, we consider optimizing the
current, subject to the constraint that|I(t)| ≤ Ī for all t, which
causes the neuron described by a phase model to fire as quickly
as possible. This constraint could represent the maximal possible
synaptic input that upstream neurons can provide to the neuron
at hand. Here, we do not constrain the rate with whichI(t) can
vary; in practice, the timescale of the synaptic currents, which
varies among synapse types but can be very rapid, determines
the viability of this assumption of unconstrained rate.

The following argument suggests using ‘bang-bang control,’

7 Copyright c© by ASME



in which the injected current takes the extreme values of±Ī [6].
From (2.1), in a time stepdt the phase advances by

dθ = [ f (θ)+Z(θ)I(t)]dt. (4.24)

To get the neuron to fire as quickly as possible, we maximizedθ
at each timestep. Clearly, to do this we should take

I(t) = Ibb(θ(t)) =

{
Ī for Z(θ(t)) > 0
−Ī for Z(θ(t)) < 0

. (4.25)

More completely, suppose that the neuron starts with initial
phaseθi. It will fire at time t f given by

t f =
∫ t f

0
dt =

∫ 2π

θi

dθ
f (θ)+Z(θ)I(t)

, (4.26)

where we assume thatf (θ) + Z(θ)I(t) is always positive (if
not, then from (4.24) the phase does not advance). Now, if
−|Z(θ)|Ī < Z(θ)I(t) < |Z(θ)|Ī, that is, the currentI(t) satifies
the amplitude constraint and is not given by (4.25),

1
f (θ)+Z(θ)I(t)

>
1

f (θ)+ |Z(θ)|Ī > 0. (4.27)

⇒ t f =
∫ 2π

θi

dθ
f (θ)+Z(θ)I(t)

>
∫ 2π

θi

dθ
f (θ)+Z(θ)Ibb(θ)

≡ tbb
f ,

(4.28)
wheretbb

f is the time the neuron fires for the current given by
(4.25). Note that for bang-bang control to work, it is necessary
that f (θ)+ |Z(θ)|Ī > 0 for all θ. Figure 15 showstbb

f for θi = 0
for the PRCs considered in the previous section. For all except
the theta neuron model with negativeIb, for which one needs
Ī > −Ib in order for bang-bang control to produce a spike, we
see thattbb

f approaches the natural period asĪ → 0, as expected.

5 Discussion and conclusion
In this paper, we first show that there is a unique optimal

currentI(t) that will elicit a spike at a specified timet1 for phase-
reduced neural models satisfying a general set of conditions. We
then derive results about this currentI(t) for intrinsically oscil-
latory models, using the formalism of PRCs. In particular, for
these models we show that the time course of the optimal current
will be proportional to the PRC itself for small perturbations in
spike times. This fact, coupled with earlier results about the typ-
ical scaling of PRCs, enables us to study how the amplitude of
this current scales with the baseline (i.e., unperturbed) frequency
of the oscillatory model. Finally, we discuss bang-bang control,
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Figure 15. Minimal time of firing tbb

f as a function of Ī, obtained using

bang-bang control, for phase models starting at θi = 0 for (a) solid line:

f (θ) = ω = 1, Z(θ) = sinθ; dashed line: f (θ) = ω = 1, Z(θ) = 1−
cosθ; dot-dashed line: the theta neuron model with Ib = 0.25; dotted

line: the theta neuron model with Ib = −0.25, and (b) the PRC for the

Hodgkin-Huxley equations with standard parameters and Ib = 10.

computing the earliest spike times that can be elicited in differ-
ent neural models by currents of fixed maximal amplitude. All
of these results are illustrated with phase-reduced neuralmodels
valid near the SNIPER and Hopf bifurcations, and with a numer-
ically derived phase model for the Hodgkin-Huxley equations.

Our results on the form and scaling of optimal currentsI(t)
address the question of how the dynamics of individual neurons
determine the processing of synaptic inputs to produce spikes.
Specifically, they imply that the standard classification ofa neu-
ron’s PRC as Type I vs Type II [8] depending, respectively, on
whether it is nonnegative (as for the SNIPER PRC) or takes both
positive and negative values (as for the sinusoidal PRC), also de-
termines, respectively, whether purely excitatory synapses or a
mixture of excitatory and inhibitory synapses are requiredto op-
timally adjust its spike times. As previous work [4, 8, 10] shows
that PRCs remain invariant in form but typically increase inam-
plitude as baseline oscillation frequencies decrease, we also con-
clude that the optimal inputs for a given neuron operating atdif-
ferent frequencies are determined by rescaling in both timeand
amplitude asingle curve of a given form. For the standard neu-
ral models studied here, the amplitude of the current that opti-
mally causes a fixed perturbation in spike times decreases rapidly
with the model’s baseline frequency, indicating increasedsensi-
tivity at low firing rates. This type of increased sensitivity, or
gain, at lower firing rates has been emphasized in the context of
population-averaged firing rates in [4, 15], and is extendedhere
to the spike times of individual neurons.

In the context of many of the neural inputs that occur in vivo,
the present results may nonetheless be viewed as rather limited,
as many neurons receive inputs from up to thousands of affer-
ent synapses and the combined currents contain components dis-
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tinct from the optimal inputs considered here. One approachto
this more general problem is to compute time-dependent compo-
nents, or ‘features,’ of neural inputs whose combined strengths
determine whether or not a given input will elicit a spike (see [18]
and references therein). In particular, [1] shows that onlya few
such components are required to make this determination to quite
high accuracy for the Hudgkin-Huxley (HH) equations. It will
be interesting to investigate the relationship between this feature-
based approach and that taken in the present paper, especially be-
cause the dominant such feature identified for the HH equations
in [1] resembles in form the optimal currents for these equations
computed here.

We close by mentioning an alternative approach to the prob-
lem of complex neural inputs to the probabilistic approach taken
in [1, 18]: exploring the entire family of inputsI(t) that elicit
a spike at timet1. The complement to this ‘level set’ of inputs
would then correspond to the (span of the) dominant features
identified in [1,18]. This level set based approach was developed
to answer related questions for other physical models in [19], and
we have checked that the formalism extends readily to phase-
reduced neuron models. As such, the optimal inputs studied in
this paper may be viewed as distinguished points on the levelset
from which to begin this future analysis.
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