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Abstract

We model turbulent plane Couette flow by expanding the velocity field as a sum of optimal modes calculated
from a proper orthogonal decomposition of numerical data. Ordinary differential equations are obtained
by performing a Galerkin projection of the Navier-Stokes equations onto these modes. For a truncation
including only modes with no streamwise variation, we show under quite general conditions that the model
has a linearly stable nontrivial fixed point; this corresponds physically to a state in which the mean flow is
coupled to streamwise vortices and their associated streaks.

Introduction

Plane Couette flow (PCF) has many interest-
ing properties, including (i) the linear stability of
the laminar state for all Reynolds numbers Re [1],
(ii) the experimental observation of turbulence for
sufficiently high Re and/or perturbation ampli-
tudes [2], and (iii) the existence of unstable finite
amplitude solutions consisting of streamwise vor-
tices and streaks which do not bifurcate from the
laminar state [3, 4, 5]. Various ODE models have
provided insight into these and other properties of
PCF. For example, the models reviewed in [6] em-
phasize the non-normality of the linearized Navier-
Stokes operator; this can give transient growth of
perturbations even though the laminar state is lin-
early stable, and it is argued that if the growth
is large enough then nonlinearities in the system
may trigger a transition to turbulence. The model
considered in [7, 8] views the turbulent state in
terms of a nonlinear “self-sustaining process” in-
volving streamwise rolls, streaks and their insta-
bilities, and the mean flow. Stable fixed points or
periodic orbits for the model are associated with
the turbulent state. A related higher-dimensional
model is considered in [9, 5], which suggest that
the transition to turbulence is characterized by a
chaotic repeller (cf. [10]).

In this paper, we present preliminary results
from a different approach to modeling turbulent
PCF. We start with data for the turbulent state
obtained from numerical simulations. By perform-
ing a proper orthogonal decomposition (POD), we
identify an energetically dominant set of empir-

ical eigenmodes (“POD modes”) from the data.
We then construct a model by Galerkin projec-
tion of the Navier-Stokes equations onto this basis;
this gives a set of coupled ODEs for the evolution
of amplitudes of the POD modes. Because these
modes optimally represent the energy of the sys-
tem, it is hoped that low-dimensional models will
capture important aspects of the turbulence. This
method of deriving models has previously been
applied, for example, to the turbulent boundary
layer problem [11, 12]. Our model is also similar
in some respects to those considered in [5, 7, 8, 9]
except that instead of PCF, those consider sinu-
soidal shear flow which allows the use of simple
trigonometric functions as a basis for the Galerkin
expansion.

We begin by giving the governing equations
for PCF. Next, we discuss the POD modes de-
rived from turbulent PCF data. Finally, we de-
scribe preliminary results on a model obtained by
projecting the governing equations onto the POD
modes.

Governing Equations for PCF

In PCF, a fluid is sheared between two infi-
nite parallel plates moving at speed Uy, in oppo-
site directions +e,. The x, y, z-directions are de-
fined to be the streamwise, spanwise, and wall nor-
mal directions, respectively. We nondimension-
alize lengths in units of d/2 where d is the gap
between the plates, and velocities in units of Uj.
The laminar flow is then given by Uy, = =ze,,
z € [-1,1]. The evolution equation for the per-



turbation u(x,t) to the laminar flow is

%u =—(u-V)u- z(,%u —we; —Vp+ évzu,

(1)
where Re = Upd/(2v). The fluid is assumed to be
incompressible, i.e., V -u = 0, and there are no-
slip boundary conditions at the plates. Finally, the
flow is assumed to be periodic in the streamwise
and spanwise directions, with lengths L, = 47 and
L, = 2x, respectively, following [5].

The POD modes for PCF

Details of the POD procedure are described
in [12]; here we summarize key aspects. The POD
modes ® = (P, Py, $3) are chosen to maximize
the average projection of the perturbation u =
(u1,u2,u3) onto each mode. This leads to the
eigenvalue problem
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where (-) is an (ensemble or time) averaging op-
eration, * denotes complex conjugation, and the
“quantum numbers” n € Z%t, n,,n, € Z dis-
tinguish different POD modes. The domain 2 is
takentobe 0 <z < L,,0<y<L,, -1<2< 1

The eigenvalue )\( )ny is twice the average kinetic

energy in the POD mode Q%Z)ny. The POD modes
are orthogonal and will be normalized so that
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Each POD mode will individually satisfy incom-
pressibility and the appropriate boundary condi-
tions. Also, the POD modes are optimal in the
sense of capturing, on average, the most kinetic
energy possible for a projection onto a given num-
ber of modes. We expand the perturbation veloc-
ity field u in terms of POD modes as
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where the amplitudes ag;)ny are complex unlgsg
ngy = ny = 0, in which case they are real. The
translation symmetry in the z and y-directions
gives the (Fourier) decomposition [12]
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Table 1: Eigenvalues for the POD modes.

(mg,ny) A, ALY %ED,,

(1,0,0) 89246  1.0000 57.22
(1,0,£2) 0.5804  0.0650 3.72
(1,0,+1) 02807  0.0315 1.80

(1,£1,42) 0.0846  0.0095 0.54
(1,0,£3) 0.0639  0.0072 0.41
(1,+1,+1) 00522  0.0058 0.33
(2,0,+£2)  0.0499  0.0056 0.32
(2,0,+£1)  0.0489  0.0055 0.31
(1,+1,43) 0.0479  0.0054 0.31
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Figure 1: The z-component of the POD mode
é(()t). The y and z-components are equal to zero.

Following the method of snapshots [13], {-) is
taken to be an average over snapshots from a sin-
gle numerical run. In order to get a POD ba-
sis which retains the symmetries of the govern-
ing equations (in addition to translation symme-
tries, (1) is equivariant under spanwise reflections
and rotation by 7 about the spanwise axis passing
through the center of the domain), we also average
over snapshots obtained by applying appropriate
symmetry operations to the original snapshots (see
e.g. [14]). Our results are obtained using data pro-
vided by Holger Faisst and Bruno Eckhardt from
numerical simulations of fully developed turbulent
flow in the plane Couette system at Re = 400. We
use 1000 snapshots.

Table 1 shows the eigenvalues associated with
the POD modes in decreasing order of magnitude.
Here

%EM, =AM,/ Y A, ] x 100
MM, My

is the percentage of average total energy contained
in the (n,ng,ny) POD mode. Over half of the en-
ergy (57.22%) is contained in the (1,0,0) POD
mode, which is shown in Figure 1. The next most
energetic (1,0,1) and (1,0,2) POD modes, shown
in Figure 2, consist of one and two pairs of stream-
wise rolls and associated streaks, respectively.



Figure 2: Flow fields u associated with the (a)
(1,0,1) and (b) (1,0,2) POD modes. The vectors
show the spanwise and wall normal components of
the velocity, while the dark (light) shading denotes
positive (negative) streamwise velocity.

A Model for Turbulent PCF
Inserting (2) into (1) and performing a Galer-
kin projection, we obtain ODEs of the form

ag:)ky = Z“igcklz,) U‘;c:)ky +[N(a,a)|kk,k,, (3)
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where
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The A’s and B’s are calculated from integrals of
products of components of POD modes and their
derivatives. Restrictions on the A’s and B’s fol-
low from symmetry considerations. There are also
conditions on the B’s arising from the fact that
nonlinear interactions redistribute energy without
changing its total value. Finite dimensional mod-
els for turbulent PCF are obtained by truncat-
ing (3); here we consider truncations with k¥ = 1,
k; =0,and —N, < ky < N,. Letting a(();) = r;etli
for j = 0,---,N, where 19 € R, r; > 0 for
j=1,---,Ny, we obtain

Ny
ro = —Aoro + ZZBQTZ, 4)
q=1
7:]' = (Aj_BjTO)'rja j:]-a"'aNya (5)
6o=0, 6;=0, j=1,---,N,. (6)

Here Ay, the A;’s, and the B,’s are real, and nu-
merically Ay and the B,’s are found to be pos-
itive. The coeflicients A; for j = 0,---, N, de-
pend on Re, and may be positive or negative for

j=1,---,N,. However, at fixed Re we only need
to consider modes with A; > 0. This is because (4)
and the positivity of the B,’s imply that rqg < 0
gives 79 > 0. Thus, eventually the system evolves
to a state with 7o > 0. From (5), modes with
A; < 0 therefore eventually decay to zero.
Equations (4,5) have a fixed point Py defined
by ro = r1 = --- = rn, = 0, corresponding
physically to the laminar state. Its eigenvalues
—Ao, A1, -+, An, show that it is linearly unstable
if any A; is positive for j > 1. Equations (4,5) also
have nontrivial fixed points P, defined by r; = 7,
ro = Ai/B;, and r; = 0 for j # 0,1, where
7 = (AoAi/(2B2))12 and [ = 1,---,N,. (Note
from (6) that each P, corresponds to a circle of
fixed points in terms of the original amplitudes

a(%-).) The eigenvalues of these fixed points are

p) = (—Ag £ (A2 —8404))'/?)/2

corresponding to perturbations in the (rg,7;)
plane, and

p) = Ay = ByA/Bi, ¢ #0,1

corresponding to perturbations in the rg-direction.
The P, fixed points correspond physically to states
in which the mean flow is coupled to streamwise
vortices and their associated streaks. Such states
resemble the states associated with stable fixed
points for the model considered in [7, 8].

Theorem The system (4,5) with Ag > 0 and 4; >
0,B; > 0 for j = 1,---,N, generically has (at
least) one linearly stable nontrivial fixed point.

Proof The proof is by induction. Suppose N, = 1.
The fixed point P; has eigenvalues u$ ) which must
both have negative real part. Now suppose for the
truncation at N, that there is a linearly stable
nontrivial fixed point, say Pr. The eigenvalues of

Pr, are uf ), both with negative real part, and
H(gL) <07 q=1727"'7L_17L+17"'7Ny' (7)

For the truncation at N, 4+ 1, P, has an addi-
tional eigenvalue ,u%“y) 4+1- If this is negative then
Pr, is linearly stable and the theorem is proved, so
suppose instead that pg\ﬁ) +1 > 0. The fixed point
P, +1 has eigenvalues ,uiNyH), both with negative
real part, and u,(INyH)
computation

N+ Bro
= < 0.
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Finally, ug\j;y)
AL/‘BLJ S0
Aq — ByAN,+1/Bn,+1 < Ag — B4AL /By = MEL);

,qg=1,---,N,. By explicit

41 > 0 implies that AN,+1/Bn,+1 >



Table 2: Coefficients for equations (4,5) for N, =6.

Aj B,
11.4349/Re -
0.0688 — 5.5563/Re  0.0117
0.1738 — 10.8038/Re  0.0264
0.2218 — 15.3067/Re  0.0325
0.2414 — 22.0804/Re  0.0336
0.2324 — 30.2181/Re  0.0339

0.1968 — 41.0443/Re  0.0289

UL W N = O,

Table 3: Fixed point properties for IV, = 6.

Fixed Pt  Existence Stable Range
Py all Re Re < 62.16
P Re > 80.76 -
P, Re > 62.16 62.16 < Re < 255.89
Py Re > 69.01 255.89 < Re < 517.30
Py Re > 91.47 Re > 517.30

Ps Re > 130.03 -
Py Re > 208.56 -

using (7), we conclude that

Mt <0, ¢=1,2,---,L-1,L+1,---,N,.
Thus, Py, is linearly stable, and the theorem is
proved.

As an example, we consider equations (4,5)
with N, = 6; this captures 69.87% of the aver-
age total energy. The coefficients and fixed point
properties are given in Tables 2 and 3, respec-
tively. We note that this model incorrectly pre-
dicts that the laminar state Py becomes linearly
unstable for sufficiently high Re. As discussed
in [15, 7], models derived using the expansion (2)
and obtained from sustained turbulent data neces-
sarily couple streamwise and cross-stream distur-
bances, which leads to instability of the laminar
state. It is argued in [15] that models using an
expansion which “properly” uncouples streamwise
and cross-stream disturbances will correctly give
stability for the laminar state; furthermore, the re-
sults found for models derived using expansion (2)
will be strongly echoed in the results for models
derived using the uncoupled expansion. We there-
fore view our “coupled” model as a model for sus-
tained turbulence near Re = 400 and not for the
transition to turbulence from the laminar state.

Conclusion

We have modeled turbulent plane Couette
flow by expanding the velocity field in terms
of POD modes calculated from numerical data.

ODEs were obtained by Galerkin projection of the
Navier-Stokes equations onto these modes. For a
truncation involving only modes with no stream-
wise variation, the model has a linearly stable non-
trivial fixed point corresponding physically to a
state in which the mean flow is coupled to stream-
wise vortices and their associated streaks. We con-
tinue to study this model and are currently ex-
tending it to include modes with streamwise vari-
ation which may lead to more complicated (and
more realistic) dynamics.
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