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Abstract—For a class of vector fields, we show that one
can selectively average terms which are of the same order
in a small parameter, giving an extension of standard aver-
aging results. Such selective averaging is illustrated for the
phase reduction of a system of oscillators with both cou-
pling and external input, for which the coupling can be av-
eraged to give a term which only depends on phase differ-
ences, while the external input term is not averaged.

1. Introduction

We will consider vector fields of the form
s=effn+ef' (0, x0) = x, (1)

where ' : R"XR — R"is continuous in x and ¢ fori = 0, 1.
We assume that

M; =sup sup |If(x, 0| < oo, i=0,1,

xeD 0<et<L
where D c R” and L is chosen so that x(f) € D for all
0 < t < L/e. Moreover, we assume that f* and f! satisfy

£ (e 0) = Foull < Agllx=yll,  i=0,1

for x,y € D; here Ay is called a Lipschitz constant for £l

In this paper, we will extend averaging theorems
from [7] to the case that we call selective averaging, in
which certain terms for a vector field are averaged while
others are not. In (1), this corresponds to averaging f° but
not f1. The use of selective averaging will be illustrated
for the phase reduction of a system of oscillators with both
coupling and external input.

2. The Selective Averaging Theorem

We first define the local average fr of a function f :
R" xR — R" to be

T
Sr(x, 1) = lf F(x,t+ s)ds.
T Jo

The following lemmas will allow us to prove the Selective
Averaging Theorem.

Lemma 2.1 (Lemma 4.2.3 from [7]) If the continuous
vector field f : R" Xx R — R" is T-periodic in t, then

_ 1 T
fren =700 = = f £, 5)ds,
0

Lemma 2.2 Consider the initial value problem (1). With t
on the time scale é the solution x(t) satisfies

xr(t) — xp — sf(; f?(x(o-), o)do

P T t+s

-= f f Fl(x(or), o)dods
T Jo Jo
1

< 36T((1+ ApL)Mo + A LMy).

Proof The proof is similar to [7, Lemma 4.2.7]. We ex-
press the solution to (1) as

x(t) = xo + sf fO(X(O'),O')dO' + 8f fl(X(O'), o)do.
0 0

Calculating the local average of the solution, we obtain

T 1+
xr(t) = xo + £ f f FO(x(o), o)dods
T Jo Jo

& T 1+
= f f Fl(x(o), o)dods.
T Jo Jo

Now, the term

& T 1+
= f f F(x(0r), o)dods
T Jo Jo

T ot
=2 f f Fo(x(o + 5), 0 + s)dods + &R,
T Jo Jo

t T
- f f Fo(x(0), o + s)dsdo + &R, + &R,
T Jo Jo

where

1 T Xy
IRl = H?f f F(x(o), o)dods
0o Jo

1 (T 1
< = Moydods = =M,yT,
and

1 t T
”RZ":HT f f o + 50+ 5)
0 0

—x(0), o + s)]dst'H

/lfo t T
< = f f lx(o + 5) — x(0)||dsdo
T 0 0

- 491 -



dsdo

/lfO f f
= &E—
] 0 0

/1‘0 t T T+
<o fo fo f 1200 + £ (x(0). Dlldgdsdor

f (P00 + F (KD, o)d(‘

A

! T o+s
<o fo fo f U@, Ol + 11 (<), DlDdgdsdor

A el 1
< 8%0 f f (Mys + M,s)dsdo = ze/l_fot(Mo +M)T
0o Jo

1
< E/lfoL(MO + M)T.
Putting these expressions together gives the result. |

Lemma 2.3 Consider the initial value problem (1). If y is
the solution of the initial value problem

y=effy.0+ef 0,0,

then x(t) = y(t) + O(eT) on the time scale é

¥(0) = xo,

Proof The proof is similar to [7, Lemma 4.2.8].

x(f) — xo — & f FAx(o), o)do — & f F(x(o), a')dO'H
0 0

<

x() — xp — sf f})(x(O'), o)ds
0

e T 1+5
- = f f Fl(x(o), o)dods
T 0 0
& T I+5 t
2 f f FH(x(0), )dords — & f fl(x((r),o-)do-”.
T 0 0 0

Now, the term

T 1+ !
z f f fl(x(o), o)dods — 8f F(x(o), a')do-H
T Jo Jo 0

& T t+s
_f f fl(x(o), o)dods
TJ) Jo
e (T
__f ffl(x(U'),O')dO'ds
TJo Jo
& T 1+ ’
:H_f (f fl(x(0), oydor — f fl(x(a'),O')dO')ds
T Jo 0 5
oy T 45
T f ( f fl(X(O'),o-)do-)ds
T Jo .
T
Ef SMldS
T 0

Putting this together with Lemma 2.2, we obtain

+

1
< = —eMT.
= 281

x(t) — xp — sf f}’(x(o'), o)do — ef fl(x(O'), O')dO'H
0 0

1 1
< EET((l +ApL)Mg + ApLMy) + §8M1T-
Thus, we have
i3 3
x(t) = xo + sf f?(x(o-), o)do + sf fl(x(a'), o)do
0 0

+0(eT).

Now,

Y0 =xo+e f t (o), o)do + & f t (o), o)do,
0 0

SO
x(t) - y(t)=¢ fo [P (x(0), o) = [ (o), 0)]do
+& f [F (x(0), o) — f1(y(0), o)]do + O(er).
0
Therefore,

lx(®) =yl < & Lr(/ljﬂ + Ap)llx(o) = y(o)lldo + O(eT).
Then, applying Gronwall’s Lemma [7, Lemma 1.3.1],
be(0) = y(0)ll = O (T4 Y).. 1
We can now prove the following.

Theorem 2.4 (Selective Averaging Theorem) Let x(t) be
the solution to

i=ef'x 0 +ef(x, 1), x(0) = xo, 2)
and let y(t) be the solution to
y=efP 0 +ef' 00, ¥(0) = xo, 3)

where f is T-periodic, and f° and f' satisfy the assump-
tions given in Section 1. Then

[lx(®) = y(@Il = O(e)
on the time scale 1/¢.

Proof This follows from Lemmas 2.1 and 2.3. |

3. Application to Phase Reduction

A powerful technique for analyzing biological oscilla-
tors is the rigorous reduction to a phase model, with a single
variable for each oscillator describing the phase of the os-
cillation with respect to some reference state [5, 9, 3]. This
tremendous reduction in the dimensionality and complex-
ity of a system often retains enough information to yield a
useful understanding of its dynamics, and can allow for the
implementation of phase-based control algorithms.
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Phase reduction is commonly applied to systems of cou-
pled oscillators, where in the limit of weak coupling one
can use averaging to obtain terms which only depend on the
phase differences of the oscillators; see, for example, [2].
Phase reduction has also been applied to systems of uncou-
pled oscillators which receive an external input, for exam-
ple in [1]. Here we consider phase reduction for coupled
oscillators with an external input; by averaging only the
coupling term, we provide justification for models that are
sometimes useful for neural control problems, e.g., [8, 6].

Suppose that the system

dx
2 _F
7 (%)

has a periodic orbit x, (f) with period T = %” Now consider

Y (I szjj p(xi, X)) + £u()é,

i=1,---,N,
where x; is the state of the i oscillator, p represents cou-
pling between oscillators, u(¢) is the external input, and é;
is a unit vector in the x;-direction. (For a neuron, this could
correspond to an input u(¢) in the voltage equation.) Here,
for simplicity we have assumed that all oscillators are iden-
tical, have identical coupling to all other oscillators, and re-
ceive the same input u(). We transform to phase variables
as follows, cf. [5]:

d6; _ 96, dxi _ 96,

T a T o F(x;) + SZ P(X;, X)) + su(1)é,
69,‘ 691‘ ~
= wegs: Zj: p(Xi X)) + oo u(0))).
To lowest order in &,
d6); .
—r = w+eL(0)- Z P(6;, 6)) + Z(6;) - (u(1)e,),

00;

(0, = I

, p(9;, 8;) = p(x,(0:), X, (6)).
Xy (6;)
Here, Z(6) is known as the phase response curve [9]. Let
0; = ¢; + wt:

dg;
dt

Now, apply the Selective Averaging Theorem to average
the coupling term (to use this theorem, we can consider the
lift of ¢; to R):

dei 8fTZ( + z)Z( +ot, ¢ +wt )dt
i _ & i) - b 0+ w
i 7T J, Moo Yt von gy sor

Qj—pitpitwt

+eZ(p; + wi) - (u(t)eéy).

— = sZ(¢i+wt)'Z p(¢i+wt, ¢ j+wt)+eZ(p;+wt)-(u(r)éy).
J

Let s = ¢; + wt, which gives

dQD,' B e 27
% . E;fo Z(5) - pls. ) — o1 + $)ds

+eZ(p; + wt) - (u(r)eéy).
Then, letting ©¥; = ¢; + wt,

dv; & 2
E—w+§zj:\fo‘ Z(s)-p(s,ﬁj—ﬁ,-+s)ds.

+eZ(1;) - (u(t)er)
That is,

% —w+te zj: h(®; — 07) + Z(9;) - (u()ey),

where

1 27
h(y) = " fo‘ Z(s) - p(s, ¥ + s)ds.

From the Selective Averaging Theorem, we expect 6;(t) —
9i(t) = ¢i(t) — pi(t) = O(e) on the time scale 1/e.

We note that a similar phase reduction result has been
obtained using different means in [4].

4. The General Selective Averaging Theorem

Following [7], we can also prove a general selective av-
eraging theorem. Consider a vector field f : R” X R — R”
which is continuous in x and ¢, and Lipschitz continuous in
xon D c R". If the average

T
F0o = lim = fo £Cx,5)ds

exists and the limit is uniform in x on compact sets K C
D, then we call f a Krylov-Bogoliubov-Mitropolsky (KBM)
vector field. The following lemmas will allow us to prove
the General Selective Averaging Theorem.

Lemma 4.1 (Lemma 4.3.1 from [7]) If f° is a KBM vec-
tor field, and assuming that eT = o(1) as € | 0 (that is,
limg o €T = 0), then on a time scale % one has

0 7 0o(&)
frix, 0= f0x) +0( T )

where

0p(e) =sup sup &
XeD 1e[0,%)

fo [ £ ) = £20)| ds

Lemma 4.2 Let y be the solution of the initial value prob-
lem

y=eff.0+ef 0,0, ¥0) = xo, (4)

and suppose f° is a KBM vector field with order function
60(&). Then the solution of

t=ef5) +ef' @D, 20) = x )
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satisfies

W) = 20+ 0 (50(8))

eT

with t on a time scale %

Proof The proof is similar to ([7, Lemma 4.3.5]). We ex-
press the solutions to (4) and (5) respectively as:

y() = xo + Sf F0(s), 9)ds + Sf ['((s), 9)ds,
0 0

) =xo+¢ f FOz(s))ds + & f Fl(z(s), s)ds.
0 0

Using Lemma 4.1,

i 70 O
y(t) —z(¢) = SL (fo(y(s)) _ fO(Z(S))) ds + O( o(e)t)

T

ve fo (F 5. ) = £ s), $))ds.

Since it can be shown that

fo (F0(s) = fO(s)) ds| < fo Apolly(s) = 2(s)lds,

we find that

lly(@) =zl < 8[ (Apo + Ap)lly(s) = z(s)llds

o)
T

Applying Gronwall’s Lemma [7, Lemma 1.3.1] we obtain
oo(e)t
10 - 20 =0 erm ).

The result follows by taking 7 on the time scale 1/¢. |
We can now prove the following.

Theorem 4.3 (General Selective Averaging Theorem)
Let x be a solution of the initial value problem
x=ef'x 1) +ef'(x, 1), x(0) = xo.

We assume that f° is a KBM-vector field with order func-
tion 0o(€). Let 7 be the solution of the initial value problem

:=ef%02) +ef' (2. 1), 2(0) = xo.

Then x(t) = z(t) + O(~/S0(€)).

Proof The proof similar to [7, Theorem 4.3.6]. By
Lemma 2.3 we know that the solution y of

y=effn+ef (1)

satisfies
x(t) = y(t) + O(eT)

on a time scale <. Also, from Lemma 4.2,

50(8)).

&

y() = z(0) + 0(
Then, from the triangle inequality

llx(®) = 2Ol < [1x(2) = yOIl + lly(@) = 2D,

we have

() = 2t) + O(T) + O (52(8)) :
If we let T = /0o(e)/e, then the result follows. |
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