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Abstract

The effect of additive white noise on a model for bursting behavior in large aspect-ratio binary fluid convection is considered.
Such bursts are present in systems with nearly square symmetry and are the result of heteroclinic cycles involving infinite
amplitude states created when the square symmetry is broken. A combination of numerical results and analytical arguments
shows how even a very small amount of noise can have a very large effect on the amplitudes of successive bursts. Large enough
noise can also affect the physical manifestations of the bursts. Finally, it is shown that related bursts may occur when white
noise is added to the normal form equations for the Hopf bifurcation with exact square symmetry. 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

In physical systems, noise is unavoidable. Thus, it
is important to study the effect of noise on models of
physical systems. It has been shown that some mod-
els are very sensitive to the presence of noise: for ex-
ample, the model for the resonant interaction of three
wave modes considered in [1–3] shows that a tiny
amount of noise can replace a bifurcation structure
involving a period doubling cascade to chaos with a
noisy periodic orbit which is attracting over a wide
range of parameter values. This may be understood in
terms of the slow–fast character of the dynamics for
this model. In the absence of noise, during the slow
phase the trajectory moves near an invariant plane
from a region where the plane is attracting to a re-
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gion where it is repelling. The closer the trajectory
gets to the invariant plane in the attracting region, the
larger the subsequent fast excursion which reinjects
the trajectory near the attracting region. The presence
of noise perturbs the trajectory away from the invari-
ant plane during the slow phase, thereby limiting the
size of the fast excursions and effectively destroying
the chaotic behavior. Related effects of noise occur for
models of other systems with slow–fast behavior in-
cluding pulsating laser oscillations [4] and the shear
instability of tall convection cells [5]. Noise can also
have a profound effect on models with structurally
stable heteroclinic cycles. These cycles involve con-
nections between unstable states, and the connections
typically occur in invariant subspaces. Even small
amounts of noise can cause the system to jump across
these subspaces, and this can lead to very different dy-
namical behavior [6]. If such a heteroclinic cycle also
is attracting, the time spent in the neighborhood of the
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unstable states of the cycle increases without bound
with increasing time. This is not observed in physical
systems and noise provides an explanation: the het-
eroclinic cycle becomes a “statistical limit cycle” in
which switching between the unstable states of the cy-
cle occurs randomly in time but with a well-defined
mean period [7–9]. Finally, we mention the phenom-
enon of stochastic resonance in which a weak peri-
odic signal can be greatly enhanced by the presence of
noise. Specifically, there is an optimal noise strength
which gives a peak in the signal-to-noise ratio for the
system. First proposed as a mechanism by which ice
ages occur roughly periodically in time [10–12], sto-
chastic resonance has since been observed in models
and experiments for a large variety of physical and bi-
ological systems (see [13,14] and references therein).

In [15,16], a model of large aspect-ratio binary fluid
convection was studied. The model considers the com-
petition between two nearly degenerate modes of op-
posite parity. The evolution equations correspond to
a Hopf bifurcation with broken D4 symmetry, where
the “interchange” symmetry between the two modes is
weakly broken because of the large but finite aspect-
ratio. For open parameter regimes, periodic or ir-
regular bursting with very large dynamic range can
occur close to threshold. The bursts are associated
with nonattracting heteroclinic cycles involving solu-
tions “at infinity” [16,17]. These cycles may be struc-
turally stable or unstable. Bursts occur when the sys-
tem evolves toward an infinite amplitude state along its
stable manifold, then gets kicked toward another infi-
nite amplitude state with an unstable manifold which
returns the system to finite amplitude. This mechanism
provides an explanation for bursts found experimen-
tally for large aspect-ratio binary fluid convection [18],
and may also provide a deterministic explanation for
the variability of the solar magnetic cycle [19]. Related
bursts can occur due to the resonant temporal forc-
ing of a system undergoing a Hopf bifurcation with
D4 symmetry [20]. There are many other mechanisms
that lead to behavior that has been described as “burst-
ing” in hydrodynamical and neural systems; a review
of such mechanisms is given in [21,22].

When noise is added to the model considered in [15,
16], there will be a burst with larger amplitude if the
noise kicks the system closer to the stable manifold
of an infinite amplitude state, and a burst with smaller
amplitude if the noise kicks it away. Thus a state which

bursts in the absence of noise is still expected to burst
in the presence of noise, but the successive burst am-
plitudes and the time between successive bursts may
change substantially. The details of the effect of noise
on the bursting behavior are described in this Let-
ter. This includes the possibility that noise can affect
the physical manifestations of the bursts. Specifically,
purely blinking and winking states in which succes-
sive bursts occur at opposite sides or the same side of
the container, respectively, can be destroyed by suf-
ficiently large noise. Finally, it is shown that related
bursts can occur even if the D4 symmetry of the model
is not broken, i.e., when noise is added to the normal
form equations for the Hopf bifurcation withexactD4
symmetry.

2. Evolution equations for the model

For binary fluid convection, if the separation ratio
of the mixture is sufficiently negative then convection
arises via a Hopf bifurcation. This is the case for the
3He/4He mixture used by Sullivan and Ahlers [18] in
their experiment carried out in the large aspect-ratio
rectangular container
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with aspect-ratioΓ = 34 andΓY = 6.9. In this exper-
iment, it was observed that immediately above thresh-
old convective heat transport may take place in a se-
quence of irregular bursts of large dynamic range de-
spite constant heat input. A model for this experiment
is considered in [15,16]. The perturbation to the con-
duction state temperature profile is assumed to take the
form

Θ(X,Y,Z, t)

= ε1/2 Re
{
z+(t)f+(X,Y,Z)+ z−(t)f−(X,Y,Z)

}
+O(ε),

where ε � 1, f±(−X,Y,Z) = ±f±(X,Y,Z). Here
z+ and z− are the (complex) amplitudes of the first
modes to lose stability which are respectively even and
odd under the reflectionX → −X. In [15], evolution
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equations forz+ andz− were derived using symme-
try arguments, with the resulting equations describ-
ing a Hopf bifurcation with broken D4 symmetry. The
applicability of this model to the experiment is dis-
cussed further in [23]. As shown in [15,16], solutions
of the evolution equations include bursts of very large
dynamic range similar to those found in the experi-
ments. The mechanism by which these bursts arise is
discussed in detail in [17] and is summarized below.

In this Letter we generalize the model considered
in [15,16] to include additive random forcing terms.
Specifically, we consider the formal equations

dz+
dt

= (
λ+∆λ+ i(ω+∆ω)

)
z+

+A
(|z+|2 + |z−|2)z+ +B|z+|2z+

(1)+Cz̄+z2− + η1(t)+ iη2(t),

dz−
dt

= (
λ−∆λ+ i(ω−∆ω)

)
z−

+A
(|z+|2 + |z−|2)z− +B|z−|2z−

(2)+Cz̄−z2+ + η3(t)+ iη4(t),

where theηi ’s represent real, independent Gaussian
white noise random processes with the properties〈
ηi(t)

〉= 0,
〈
ηi(t)ηj (t

′)
〉= 2Dδ(t − t ′)δij ,

(3)i, j = 1,2,3,4.

Herez+, z−,A,B,C are complex, andλ,∆λ,ω,∆ω,
D are real. The quantity∆ω measures the difference
in frequency between the two modes at onset, and∆λ

measures the difference in their linear growth rates.
The terms involving∆λ and ∆ω are called forced
symmetry-breaking terms because they break the D4
symmetry of the governing equations [16]. The new
ηi terms represent unavoidable random effects in the
experiment.

We first summarize results for the case that there
is no noise, i.e., whenD = 0. New coordinates(ρ, θ,
φ,ψ) are defined according to

z+ = ρ−1/2 cos(θ/2)ei(φ+ψ)/2,
z− = ρ−1/2 sin(θ/2)ei(−φ+ψ)/2,

where without loss of generalityθ ∈ [0,π], φ ∈
[−2π,2π), andψ ∈ [0,4π). Also introducing a new
time τ defined bydτ/dt = 1/ρ, Eqs. (1), (2) with

D = 0 take the form

(4)

dρ

dτ
= −ρ

[
2AR +BR

(
1+ cos2 θ

)+CR sin2 θ cos2φ
]

− 2(λ+∆λcosθ)ρ2,

(5)

dθ

dτ
= sinθ

[
cosθ(−BR +CR cos2φ)−CI sin2φ

]
− 2∆λsinθρ,

(6)

dφ

dτ
= cosθ(BI −CI cos2φ)−CR sin 2φ+ 2∆ωρ,

(7)

dψ

dτ
= 2AI +BI +CI cos2φ +CR sin 2φ cosθ

+ 2ωρ.

HereA=AR + iAI , etc. Let

r = 1

ρ
= |z+|2 + |z−|2

denote the amplitude of a solution. As discussed in
[16,17], Eqs. (4)–(7) have an invariant subspaceΣ

at ρ = 0 (corresponding to infinite amplitude states)
on which the equations are equivalent to those with
∆λ = ∆ω = 0. Since the variableψ decouples from
the other variables, the dynamics onΣ are two-di-
mensional and hence simple to analyze [24]. Such an
analysis (see [17]) allows us to conclude that, for this
truncation, infinite amplitude periodic and quasiperi-
odic solutions exist. Bursts are associated with hetero-
clinic cycles involving such infinite amplitude states.
Ref. [17] shows that for such cycles to form, it is
necessary to have at least one subcritical and one su-
percritical solution branch bifurcating from the trivial
state with∆λ=∆ω = 0; also, the “angular stability”
properties of the solutions must be correct. Ref. [17]
also shows that despite their heteroclinic nature, the
duration of the resulting bursts in the original timet
is in fact finite, i.e., the excursion to and return from
infinity occur infinite time. Of course, the infinite am-
plitude solutions and connections to them are of phys-
ical interest only insofar as they are responsible for
the presence of nearby solutions which make visits to
large but finite amplitude. This type of bursting behav-
ior persists forD = 0 even when higher-order terms in
Eqs. (1), (2) are retained [17]. It should be emphasized
that the noise is added on the original timescalet , not
τ (see Eqs. (1), (2)).
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3. Effect of noise on bursting behavior

We now describe the effect of noise on the bursting
behavior reported in [15,16]. Coefficient values which
give the appropriate sub- and supercriticality of trav-
eling and standing wave branches in large aspect-ratio
binary fluid convection systems are considered [16]:

A= 1− 1.5i, B = −2.8+ 5i, C = 1+ i,

ω= 1, ∆λ= 0.03, ∆ω= 0.02.

For these coefficient values in the absence of noise,
nonattracting, structurally stable heteroclinic cycles
connecting infinite amplitude periodic orbits (here-
after,u∞ solutions) and infinite amplitude quasiperi-
odic orbits (hereafter,qp∞ solutions) exist over a
range ofλ values. These heteroclinic cycles are of
Shil’nikov–Hopf type, and there are associated stable
solutions which display bursting behavior [16,17].

For definiteness, consider the stable quasiperiodic
solution which is present in the absence of noise for
λ = 0.1 (see Fig. 1(a); in the notation of [17], this is
a w1

e solution). The trajectory makes successive vis-
its neardifferent but symmetry-relatedu∞ solutions
given by (ρ, θ,φ,ψ) = (0,π/2,mπ, (2AI + BI +
CI )τ mod4π), m = 0,±1,±2. Theu∞ solutions are
unstable withinΣ , and the trajectory gets kicked to-
ward aqp∞ solution. Theqp∞ solutions are unstable
in theρ direction, so the trajectory returns to smaller
amplitude (largerρ). Physically, this solution corre-
sponds to ablinking statefor the convection system
because successive bursts occur at opposite sides of
the container [16]. Fig. 1(b) shows the corresponding
results forD = 1× 10−7. Clearly, even this very small
amount of noise can have a very large effect on the
burst amplitudes. These and other numerical results
were obtained using a stochastic second-order Runge–
Kutta algorithm [25]. Unless otherwise indicated, the
time step of integration isδt = 1× 10−4.

The results shown in Fig. 1(b) may be qualitatively
understood by recognizing that there will be a burst
with larger amplitude if the noise kicks the trajectory
closer to the stable manifold of au∞ solution, and
a burst with smaller amplitude if the noise kicks it
away. This is elucidated by ignoring the uncoupled
variable ψ , linearizing Eqs. (4)–(6) about theu∞
solutions, and defining coordinates(ρ, x, y) to give

the diagonal form

(8)
dx

dτ
= λux,

dρ

dτ
= −λsρ, dy

dτ
= −λssy,

where λu,λs, λss > 0. The stable manifold of the
u∞ solutions then approximately intersects a plane of
sufficiently small, constantρ along the linex = 0.
For the parameters under consideration,λu = 0.0682,
λs = 0.2, andλss = 5.868, and Eq. (8) is obtained by
using the coordinates approximately given by(
ρ

x

y

)
=
( 1 0 0

0.269 −0.730 0.706
0.00626 0.902 0.467

)(
ρ

θ − π/2
φ −mπ

)
.

Fig. 2(a) shows values at which the trajectory inter-
sects the surfaceρ = 1 with decreasingρ for D =
1×10−7. This is interpreted as showing how the noise
affects the proximity of the trajectory to the stable
manifold of theu∞ solutions. The probability distrib-
ution function (pdf) ofx values at the surfaceρ = 1 is
shown in Fig. 2(b). By definition,p(x) dx is the proba-
bility that thex value at the surfaceρ = 1 is betweenx
andx+dx. This is fit reasonably well by the Gaussian
distribution

(9)p(x)= 1√
2πσ 2

x

exp
[−(x − x̄)2

/(
2σ 2

x

)]
.

Fig. 2(c) shows that the variancesσ 2
x of fitted Gaus-

sians vary linearly with the noise strengthD. Over
this rangex̄ ≈ 0.200, independent ofD. The noise
strengths have been restricted to the range shown in
the figure because for largerD the noise can kick the
trajectory close enough to the stable manifold of au∞
solution that the long-time integration of Eqs. (1), (2)
becomes numerically difficult.

Appendix A argues that it is reasonable to assume
that the noise plays no significant role in the portion of
the dynamics where the amplitude is large; the local
deterministic dynamics near au∞ solution are then
used to transform the pdfp(x) at constantρ to a pdf
p(ρ) at constantx for sufficiently small noise. Next
we assume that in the trajectory’s successive visits
near u∞ solutions,ρ always reaches its minimum
valueρmin at somefixed x = x∗. This is reasonable
because at somex value the trajectory will have been
kicked close to aqp∞ solution which isunstablein the
ρ direction, so the trajectory starts to evolve towards
largerρ (cf. Fig. 1). Then from (A.1), the pdfs forρmin



176 J. Moehlis / Physics Letters A 284 (2001) 172–183

Fig. 1. Bursts forλ = 0.1 and (a)D = 0, (b)D = 1 × 10−7. Clearly, even a very small amount of noise can have a very large effect on the
burst amplitudes. Fixed points (periodic orbits) in these projections correspond to periodic orbits (quasiperiodic orbits) for the full system. In
this and later figures, theu∞ solutions are denoted by+, and theqp∞ solutions appear as periodic orbits atρ = 0.

Fig. 2. (a) Values of(x, y) at which the trajectory intersects the surfaceρ = 1 with decreasingρ for D = 1× 10−7. The stable manifold of the
u∞ solutions intersects the surfaceρ = 1 approximately along the linex = 0. (b) Probability distribution functionp(x) at the surfaceρ = 1.
The histogram is from a long-time integration of Eqs. (1), (2), and the solid line shows a fit to Eq. (9). (c) Varianceσ2

x from fitting p(x) to
Eq. (9) for different noise strengthsD.
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Fig. 3. Probability distribution functions for (a)rmax, (b) ρmin, and (c)T for λ = 0.1, D = 1 × 10−7. The histograms are from a long-time
integration of Eqs. (1), (2), and the solid lines show fits given by Eqs. (10)–(12).

andrmax = 1/ρmin are

(10)

p(ρmin)= 1√
2πσ 2

× exp
[−(ρmin − ρ̄min)

2/(2σ 2)],

(11)

p(rmax)= 1

r2
max

√
2πσ 2

× exp

[
−
(

1

rmax
− ρ̄min

)2/(
2σ 2)].

The p(rmax) distribution has a long 1/r2
max tail for

largermax, indicating some probability of bursts hav-
ing very large amplitudes. These functional forms
for the pdf’s are verified forD = 1 × 10−7 in Figs.
3(a), (b). For the range of noise strengths consid-
ered,ρ̄min ≈ 0.131 independent ofD; this is expected
from (A.2) recalling thatx̄ was found to be indepen-
dent ofD. The varianceσ 2 of the fitted distributions
is linear in the noise strengthD (see Fig. 4(a)). This
is also expected from (A.2) sincēx is independent of
andσ 2

x is linear inD.

The statistics for the timeT between successive
bursts are shown in Fig. 3(c) forD = 1 × 10−7. The
pdf for T is fit very well by the Gaussian distribution

(12)p(T )= 1√
2πσ 2

T

exp
[−(T − T̄

)2/(2σ 2
T

)]
.

The varianceσ 2
T of the fitted distributions is linear in

the noise strengthD (see Fig. 4(b)), and̄T ≈ 29.3 is
independent ofD. It is interesting to compare these
results to the results of [8,9] which considered the ef-
fect of noise on attracting, structurally stable hetero-
clinic cycles connectingfinite amplitude fixed points.
It was found that the distribution of times between suc-
cessive visits near the fixed points on the cycle was
not Gaussian; instead, it has a long, exponential tail
for large times. There is a fundamental reason for the
difference between those results and the results pre-
sented here: because the heteroclinic cycles consid-
ered in [8,9] connectfinite amplitude solutions, the
trajectory spends most of its time in a small neigh-
borhood these solutions. Indeed, this is what allowed
a detailed analysis for the times between successive
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Fig. 4. Linear dependence of the variances (a)σ2, (b) σ2
T

on the noise strengthD.

Fig. 5. (a), (b) Trajectory forλ= 0.1 andD = 0.01. (b) shows the detail near theu∞ solution at(ρ, θ,φ) = (0,π/2,0), and the arrows show
the sense in which the trajectory is evolving.

visits near the fixed points to be done. On the other
hand, the heteroclinic cycles considered in this Letter
involve infinite amplitude solutions and are traced out
in finite time [17]. More specifically, in the original
time t defined bydt/dτ = ρ, Eqs. (8) become

dx

dt
= λux

ρ
,

dρ

dt
= −λs.

Assuming the initial condition(x0, ρ) ∈ Σρ at t = 0,
these equations have the solutionx(t)= x0(ρ

∗/(ρ∗ −
λst))

λu/λs , ρ(t) = −λst + ρ∗. The time to go from
Σρ to Σx is thus t = (ρ∗/λs)(1 − (x0/x

∗)λs/λu).
For the limit x0 → 0 (i.e., as the heteroclinic cycle
is approached),t → ρ∗/λs , a finite time. A similar
argument shows that the trajectory also returns from
infinity in finite time (cf. [17]). This is why the time
series in Fig. 1(a) shows very rapid growth to and
decay from large amplitude. We conclude that the time
spent near solutions at infinity is not a dominant part of
the total time between bursts. Thus, the results given
in [8,9] are not relevant here. It is not possible to
do detailed analytical work for the statistics of the

times between bursts without a more detailed under-
standing of how the trajectory behaves away from
the u∞ solutions. However, the model described in
Appendix A gives some qualitative understanding,
predicting a Gaussian distribution for the time between
successive bursts with the average time between bursts
independent of and the variance linear inD. This is
precisely what was found numerically.

Fig. 5 shows the projection of a numerical solu-
tion to Eqs. (1), (2) with the same parameter values
as for the trajectories shown in Fig. 1, except with
D = 0.01. Unlike the result in Fig. 1(b) for much
smaller noise strength, here the underlying stable qua-
siperiodic solution is not even recognizable. The ar-
rows in Fig. 5(b) show that the trajectory can make
a visit near au∞ solution and depart either to the
“left” or to the “right”. In the (ρ, x, y) coordinates in-
troduced above (cf. Eq. (8)), the trajectory can inter-
sect a surface of constantρ for either positive or neg-
ative x values. Thus, sufficiently large noise can be
responsible for the trajectory crossing the stable man-
ifold of the u∞ solutions. This leads to the possibil-
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Fig. 6. Bursts forλ= 0.1253 and (a)D = 0, (b)D = 1× 10−7. In (b), it is seen that the noise kicks the system out of the basin of attraction of
the state shown in (a) and into the basin of attraction of a solution with constantρ = 1/r .

ity that successive visits near infinity can either be to
differentor to thesameu∞ solutions. In the convec-
tion system, successive visits near thesameu∞ solu-
tion correspond to successive bursts occurring on the
sameside of the container [16]. Therefore, sufficiently
large noise can affect the physical manifestation of the
bursts by destroying purely blinking states. We note
that such large noise will eventually kick the trajectory
so close to au∞ solution that the accurate integration
of Eqs. (1), (2) becomes very difficult.

Ref. [16] also identified a different type of stable
quasiperiodic solution which is present in the absence
of noise forλ= 0.1253 (in the notation of [17], this is
au/v1 solution). The trajectory for this solution makes
successive visits always near thesameu∞ solution
(see Fig. 6(a)). Physically, this corresponds to awink-
ing statefor the convection system because successive
bursts occur at the same side of the container [16]. This
solution coexists with stable, finite amplitude periodic
solutions at(ρ, θ,φ) = (6.298,1.753,2.010± mπ),
wherem is an integer. Ref. [16] argues that these sta-
ble, finite amplitude periodic solutions are more likely

to be observed in experiments in which the Rayleigh
number is ramped upwards, which helps to explain
why winking states have apparently never been ob-
served in binary fluid convection experiments. It is
seen that even a very small amount of noise(D =
1 × 10−7) can kick the system out of the basin of at-
traction of the winking state and into the basin of at-
traction of a stable periodic solution (see Fig. 6(b)).
Thus, even if a winking state could be established in
an experiment, it would be expected to be particularly
sensitive to noise.

4. Noise-induced bursting

It will now be shown that related bursts may oc-
cur for Eqs. (1), (2) even in the absence of forced
symmetry-breaking, that is, when noise is added to the
normal form equations for the Hopf bifurcation with
exactD4 symmetry. Specifically, consider Eqs. (1), (2)
with the same parameters as considered in the previ-
ous section (A= 1− 1.5i,B = −2.8+ 5i, C = 1+ i,
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Fig. 7. Solutions forλ= 0.1 and (a)D = 0, (b)D = 1 × 10−6, (c) D = 1 × 10−4 with ∆λ=∆ω = 0. Note the different scales for the time
series plots.

ω = 1), except with∆λ = ∆ω = 0. For these coeffi-
cient values in the absence of noise, a branch of un-
stable periodic solutions bifurcates subcritically from
the trivial state, and two branches of unstable periodic
orbits and one branch of globally attracting quasiperi-
odic solutions all bifurcate supercritically (see [24],
also [16,17]). Infinite amplitude periodic and quasi-
periodic solutions exist as counterparts of the finite
amplitude solutions which bifurcate from the trivial
state. In particular,u∞ and qp∞ solutions are the
infinite amplitude counterparts of the periodic solu-

tions on the subcritical branch and quasiperiodic so-
lutions on the supercritical branch, respectively [17].
If for some reason the trajectory comes close to the
stable manifold of au∞ solution, it will make an
excursion to a neighborhood of that solution, then
get kicked toward aqp∞ solution which returns it
to smaller amplitude. However, since the finite am-
plitude quasiperiodic solutions aregloballyattracting,
heteroclinic cycles involving infinite amplitude solu-
tions cannot form, so such a burst is a transient phe-
nomenon. A stable quasiperiodic solution is shown for
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Fig. 8. (a) The attracting infinite amplitude heteroclinic cycle connectingu∞ solutions atρ = 0 and the solution forD = 1×10−4. (b), (c) The
time series for the solution with noise. Bursts occur in clumps of two types: faster with larger amplitudes (as for 130� t � 150) and slower
with smaller amplitudes (as for 160� t � 200).

λ = 0.1, D = 0 in Fig. 7(a). For small noise the tra-
jectory remains near the quasiperiodic solution (see
Fig. 7(b)). However, sufficiently large noise can re-
peatedly kick the system close to the stable manifold
of a u∞ solution, leading to bursts of very large dy-
namic range (see Fig. 7(c)). This is highly reminiscent
of results for the effect of resonant temporal forcing
on the Hopf bifurcation with D4 symmetry [20]; there
it was found that as the forcing amplitude increased,
the attractor came closer to the stable manifolds ofu∞
solutions, leading to bursting behavior. We emphasize
that bursting behavior cannot occur unless the parame-
tersA,B,C give appropriate connections to and back
from infinity [17]; for example, bursts cannot occur if
A,B,C are such that there are no subcritical solution
branches.

As a final demonstration of the effect of noise on a
Hopf bifurcation with exact D4 symmetry, we close
by considering anattracting infinite amplitude het-
eroclinic cycle. Specifically, consider the parameters
A = 0.1 − 1.5i, B = −1 − 4i, C = 1 − 2i, λ = 0.1,
ω = 1,∆λ=∆ω= 0. Using the results of [24], it can

be shown that there are heteroclinic connections be-
tweenu∞ solutionswithin the ρ = 0 subspace. Lin-
earizing Eqs. (4)–(6) about theu∞ solutions shows
that the eigenvalue corresponding to perturbations in
the ρ direction is−0.2, while the eigenvalues corre-
sponding to perturbations within theΣ subspace are
−4.828 and 0.828. Since the first eigenvalue is nega-
tive and the sum of the latter two eigenvalues is also
negative, the heteroclinic cycle connectingu∞ is at-
tracting (cf. [24]). Fig. 8 shows a numerically calcu-
lated trajectory for these parameter values andD =
1×10−4; the time step of integration isδt = 1×10−5.
Here noise causes bursts to occur in clumps of two
types: faster with larger amplitudes, and slower with
smaller amplitudes.

5. Conclusion

The effect of additive white noise on a model for
large aspect-ratio binary fluid convection has been
considered. Particular attention has been paid to the
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effect of noise on bursting behavior present in the
model. It was shown that even a very small amount
of noise can have a very large effect on the ampli-
tudes of successive bursts. This is because there will
be a burst with larger amplitude if the noise kicks
the system closer to the stable manifold of an infi-
nite amplitude state, and a burst with smaller ampli-
tude if the noise kicks it away. Numerical results and
analytical arguments were given to understand the sta-
tistical properties of bursts in the presence of noise.
It was also demonstrated that large enough noise can
affect the physical manifestations of the bursts by de-
stroying purely blinking and purely winking states. In
fact, winking states are particularly sensitive to noise,
which helps to explain why they have apparently never
been observed in experiments. Finally, it was shown
that related bursts can occur when noise is added to the
normal form equations for the Hopf bifurcation with
exact square symmetry. It is not immediately clear
how to do more detailed analytical work on the effect
of noise on the bursting behavior: there are no invari-
ant sets near which the noisy trajectory spends most of
its time; the behavior near such invariant sets is crucial
to the analyses given in [1–3] and [8,9].

Reasoning similar to that given in [17] suggests
that this type of bursting behavior can persist when
higher terms in Eqs. (1), (2) are retained, even in the
presence of noise. Bursts will then be associated with
visits near large butfinite amplitude solutions. This
is important because it implies that bursts similar to
those described in this Letter may be observed in real
physical systems undergoing a Hopf bifurcation with
exact or weakly broken D4 symmetry; the (unphysical)
infinite amplitude solutions are not necessary. There is
also a possibility that in appropriate cases the noise
could be more important than higher-order terms so
their exact nature would be irrelevant.

Other physical systems for which the results pre-
sented in the Letter might be relevant because their
evolution equations are related to the Hopf bifurca-
tion with D4 symmetry include any system in a square
domain undergoing an oscillatory instability [26] or
displaying oscillatory patterns which are periodic on a
square lattice [27], electrohydrodynamicconvection in
liquid crystals [28], lasers [29], spring-supportedfluid-
conveying tubes [30], the Faraday system in a square
or nearly-square container [31], and dynamo theories
of magnetic field generation in the Sun [19,32].
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Appendix A

We first show how to understand the statistical
properties of the amplitudes of the bursts in terms of
p(x) as given by (9). In the following, we ignore the
strongly contractingy direction. Define

Σρ = {
(x,ρ)

∣∣ρ = ρ∗} and

Σx = {
(x,ρ)

∣∣x = x∗},
and consider how the pdfp(x) at Σρ evolves into
a pdf p(ρ) at Σx (see Fig. 9). When the amplitude
r becomes large (i.e., whenρ becomes small), the
noise terms in Eqs. (1), (2) are overwhelmed by the
cubic deterministic terms. Therefore, providedρ∗ is
sufficiently small, we can ignore the noise over the
part of the trajectory shown in Fig. 9 and approximate
the vector field by Eq. (8). The point(x0, ρ

∗) ∈ Σρ

is mapped into(x∗, f (x0)) ∈ Σx under the flow,
where f (x) ≡ ρ∗(x/x∗)λs/λu . Given p(x), the pdf
p(ρ) is obtained using|p(x) dx| = |p(ρ) dρ|, with
ρ = f (x). For sufficiently small noise we can take
f (x)≈ f (x̄)+ f ′(x̄)(x − x̄), wherex̄ is the average
value ofx atΣρ . (For larger noise strength, it may be
necessary to use the exact expression forf (x) because
p(x) will be a broader distribution.) Using (9) as the

Fig. 9. Setup for determining how the pdf ofx values at constant
ρ = ρ∗ evolves into a pdf ofρ values at constantx = x∗ .
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pdf for x atΣρ , the pdf forρ atΣx is then

(A.1)p(ρ)= 1√
2πσ 2

exp
[−(ρ − ρ̄)2

/(
2σ 2)],

(A.2)σ 2 = (
f ′(x̄)

)2
σ 2
x , ρ̄ = f (x̄).

We next give a model to help understand the statis-
tics for the time between bursts. Consider

(A.3)
dξ

dt
= v+ η(t),

wherev is constant, andη is a Gaussian white noise
random process with〈η(t)〉 = 0 and 〈η(t)η(t ′)〉 =
2Dδ(t − t ′). If ξ = ξ0 = 0 at t = 0, the conditional
probability distribution functionP(ξ, t|ξ0) for solu-
tions of Eq. (A.3) obeys the Fokker–Planck equation

∂tP = −∂ξ (vP )+D∂ξξP,
P = δ(ξ) for t = 0.

This has solution

P(ξ, t|ξ0 = 0)= 1√
4πDt

exp
(−(ξ − vt)2/(4Dt)

)
,

i.e., a Gaussian centered atξ = vt and with variance
2Dt . The average time to reach afixedvalueξ = ξ∗
is then T̄ ≡ ξ∗/v, and the pdf forξ at this time
is p(ξ) ≡ P(ξ, T̄ |ξ0 = 0). We can re-express this in
terms of a pdf for the timeT at whichξ = ξ∗ by using
the deterministic approximationT ≈ T̄ − (ξ − ξ∗)/v.
Then, using|p(ξ) dξ | = |p(T ) dT |, we obtain

p(T )= v√
4πDT̄

exp
(−v2(T − T̄

)2/(4DT̄ )).
We make a connection to the distribution of times be-
tween successive bursts by thinking ofξ as an ar-
clength coordinate along a trajectory for Eqs. (1), (2),
keeping in mind that the trajectory does not spend a
dominant part of its time in a neighborhood of theu∞
andqp∞ solutions. Assuming that the arclength traced
out between successive bursts is roughly constant as
will be the case for sufficiently small noise, (A.3) thus
predicts a Gaussian distribution for the time between
successive bursts with the average time between bursts
independent of and the variance linear inD.
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