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Abstract
We consider the problem of desynchronizing a network of synchronized, globally (all-to-all)
coupled neurons using an input to a single neuron. This is done by applying the discrete time
dynamic programming method to reduced phase models for neural populations. This
technique numerically minimizes a certain cost function over the whole state space, and is
applied to a Kuramoto model and a reduced phase model for Hodgkin–Huxley neurons with
electrotonic coupling. We evaluate the effectiveness of control inputs obtained by averaging
over results obtained for different coupling strengths. We also investigate the applicability of
this method to Hodgkin–Huxley models driven by multiplicative stimuli.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Due to their periodic spiking behavior, neurons are often
thought of as oscillators whose state may be represented by a
phase variable. Although phase models of neurons have been
extensively used to investigate the patterns of synchrony that
result from the type and architecture of coupling [1–7] and
to characterize the response of large groups of oscillators to
external stimuli [8–10], only recently have researchers used
these phase models in the context of controlling neurons to
achieve certain desired behavior [8, 11–18].

Much of the motivation for considering demand-control
problems for neurons comes from the desire to increase the
efficacy of surgical treatment of certain neurological diseases,
like Parkinson’s disease, by a method known as electrical
deep brain stimulation (EDBS). In standard EDBS, a high-
frequency (>100 Hz), low-duration (60–450 μs) mono-polar
pulse train of up to 10.5 V is injected in the brain through
a surgically implanted electrode to mitigate the pathological
synchrony of populations of neurons, which is thought to be
one of the potential causes of the disease [19–23]. Despite
the fact that this method has shown substantial improvement
in the condition of its receiving patients [19, 22, 23], an
optimal (feedback-based) approach is attractive from a clinical

1 Author to whom any correspondence should be addressed.

perspective to optimize the timing and energy of the input
stimulus, which would directly result in reducing the potential
negative side effects of the procedure.

When it comes to controlling phase models of neurons,
most of the work in the literature has been either on a single
neuron level [8, 11–15, 17] or, if on the population level,
multiple inputs have been allowed to the system [16, 24].
However, since there is typically only one electrode implanted
into the brain, EDBS in its current state is limited by the
number of input stimuli that it can deliver. This hinders the
implementation of the previous methods in practice.

In recent work [18], we have proposed nonlinear hybrid
control as a promising method for controlling networks
of neurons with a single input. In this paper, we
consider a different approach. Specifically, we employ
discrete dynamic programming as an efficient mathematical
optimization method for numerically solving the problem of
desynchronizing a network of pathologically synchronized,
globally (all-to-all) coupled phase neurons.

In dynamic programming, a cost function is defined
that is to be minimized over the entire time horizon.
From this cost function, one finds the value functions
V1(x), V2(x), . . . , VK(x) for all states x ∈ X d , where the
indices 1, 2, . . . , K represent time and X d is the state space.
These value functions indicate the cost-to-go from time k
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at state x to the end time. Therefore, by computing the
value functions, one has knowledge of the cost incurred for
accomplishing a certain desired task starting from any point
in the time domain and any point in the state space. The value
functions are recursively computed by defining the value of
the cost-to-go at time step K + 1, VK+1(x).

The organization of the paper is as follows. In section 2,
after giving the general form for phase models of networks of
coupled neurons, we briefly introduce the Kuramoto model and
then elaborate on deriving the Hodgkin–Huxley phase model
for networks of coupled neurons. In section 3, we present
the setup of the discretized model and explain, in detail, our
control strategy in the dynamic programming framework. We
present the results in section 4 along with some discussion.
In section 5, we consider applying dynamic programming to
a Hodgkin–Huxley phase model driven by a multiplicative
control. Finally, in section 6, we draw conclusions and discuss
some future directions.

2. The mathematical model

For a general network of N weakly coupled phase neurons (or,
more generally, oscillators) we have [25]

θ̇i = ωi +
N∑

j=1

Fij (θj − θi), i = 1, 2, . . . , N,

where θi ∈ (0, 2π ] is the phase of neuron i, ωi is its natural
frequency of spiking and Fij (·) is the 2π -periodic coupling
function acting on neuron i from neuron j .

As mentioned earlier, we restrict the problem by only
allowing a single control input, with the assumption that this
control input is an additive control input that, without loss of
generality, is applied to the Nth neuron in the network. Later, in
section 5, we briefly explore the case of a multiplicative control
as well. We also assume in this study that all neurons are
identical and hence they all have identical natural frequencies
ω, and that the functional form of the coupling between any
pair of neurons is identical, but the strength of this coupling
may be different. This yields the controlled form of the
coupled phase neuron system as

θ̇i = ω +
N∑

j=1

αijf (θj − θi) + δiNu(t) (1)

for i = 1, 2, . . . , N . Here, we have assumed that Fij (·) ≡
αijf (·), where αij is the coupling strength from neuron j to
neuron i, f (·) is the 2π -periodic coupling function acting
between every pair of neurons, δ is the Kronecker delta
function, and u(t) is the single control input.

The coupling function f (·) distinguishes between
different models. For the Kuramoto model, f (·) = sin(·),
which yields

θ̇i = ω +
N∑

j=1

αij sin(θj − θi) + δiNu(t). (2)

This characterizes a system of globally heterogeneously
coupled Kuramoto phase neurons driven by a single control
input. We should mention that Kuramoto’s phase model can be

applied to many other oscillator systems and is not specific to
neurons. Applications range from biology [26–29] to physics
and engineering [30–34]. A good review on the Kuramoto
model is given in [25].

For the rest of this section, we focus on deriving an
example coupling function for Hodgkin–Huxley’s model for
neurons [35]. This model, presented in 1952, was derived to
model Loligo squid’s giant axon. Since it is the most widely
used model in the literature for modeling the dynamics of
neurons, we chose to consider it in the present study. The
specifics of this model are as follows:

V̇ = (Ib + I (t)) /c +

(−ḡNah(V − VNa)m
3 − ḡK(V − VK)n4 − ḡL(V − VL)︸ ︷︷ ︸

Ig(V ,m,h,n)

)/c,

ṁ = am(V )(1 − m) − bm(V )m, (3)

ḣ = ah(V )(1 − h) − bh(V )h,

ṅ = an(V )(1 − n) − bn(V )n,

where

am(V ) = 0.1(V + 40)/(1 − exp(−(V + 40)/10)),

bm(V ) = 4 exp(−(V + 65)/18),

ah(V ) = 0.07 exp(−(V + 65)/20),

bh(V ) = 1/(1 + exp(−(V + 35)/10)),

an(V ) = 0.01(V + 55)/(1 − exp(−(V + 55)/10)),

bn(V ) = 0.125 exp(−(V + 65)/80),

VNa = 50 mV, VK = −77 mV, VL = −54.4 mV,

ḡNa = 120 mS cm−2, ḡK = 36 mS cm−2,

ḡL = 0.3 mS cm−2, c = 1 μF cm−2,

in which V ∈ R is the voltage across the neuron membrane,
[m,h, n]T ∈ R

3
[0,1] is the vector of gating variables which

correspond to the state of the membrane’s ion channels, c ∈ R
+

is the constant membrane capacitance, Ig : R×R
3 �→ R is the

sum of the membrane currents and I : R �→ R is the stimulus
current. Ib ∈ R is the baseline current, which represents
the effect of other parts of the brain on the neuron under
consideration and can be viewed as a bifurcation parameter in
the model that controls whether the neuron is in an excitable
or an oscillatory regime. In, e.g., [36], it is discussed that in
this model for Ib < 6.26 μA cm−2 the neuron would be in
excitable mode where it does not show spontaneous periodic
spiking. For 6.26 � Ib � 9.78 μA cm−2, there is a bistable
regime in which the neuron can be excitable or oscillatory, and
for Ib > 9.78 μA cm−2, the neuron would be in oscillatory
regime where it has a stable periodic orbit and oscillates with
period Ts < +∞. For Ib = 10 μA cm−2, which we will use
in the following, the period of oscillations is Ts = 14.63 ms.
In the oscillatory mode, the neuron periodically gives action
potentials in the form of voltage spikes.

When grouped together, the spiking of each neuron affects
the voltage dynamics of the neighboring neurons as they
sense the spike as an input. This interaction is referred to
as electrotonic coupling. It can be mathematically modeled
by modifying the voltage equation in (3):

V̇i = (Ib + Ig + I (t))/c + αe

N∑
j=1

(Vj − Vi), (4)

2
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where αe is the electrotonic coupling strength between the
neurons. We assume that the network is weakly coupled
and hence αe = O(ε), where ε > 0 is a small number. It
should be pointed out that the effect of electrotonic coupling
only manifests itself in the voltage dynamics and not in the
dynamics of the gating variables [37]. We also note that the
techniques that we consider in this paper could also be used for
synaptic coupling, and in fact any type of coupling for which
a phase reduction can be performed. We choose to consider
electrotonic coupling for simplicity of presentation.

In order to find the reduced phase model [4, 38–40] for
the Hodgkin–Huxley coupled neuron system, we first consider
(3) in the absence of any external input stimulus I (t). This
system oscillates with period T. To characterize this oscillation,
following [9, 41], a phase variable θ ∈ (0, 2π ] is defined such
that

dθ

dt
= ω = 2π

T
.

Now, if we define X = [V,m, h, n]T as the state vector for
the system, we can combine (3) and (4) and write the coupled
system’s equations as

dXi

dt
= F(Xi ) + ε

N∑
j=1

p(Xi , Xj )

for i = 1, . . . , N . In this equation, F(Xi ) represents the
dynamics of neuron i in the absence of any external stimuli
or coupling effects and p(Xi , Xj ) accounts for the effect that
neuron j has on neuron i due to coupling. We can write [4]

dθi

dt
= ∂θi

∂Xi

· dXi

dt

= ∂θi

∂Xi

·
⎛
⎝F(Xi ) + ε

N∑
j=1

p(Xi , Xj )

⎞
⎠

= ω + ε
∂θi

∂Xi

·
N∑

j=1

p(Xi , Xj )

for i = 1, . . . , N . We note that in the absence of coupling
terms, we obtain dθi

dt
= ω, where we have assumed that all

neurons have identical natural frequencies.
Since we have assumed weak coupling, we argue that

each neuron, even under the influence of coupling, remains
close to its stable periodic orbit that characterizes its periodic
spiking in its phase space, i.e. T ≈ Ts . In addition, there is a
mapping from the states to the phase variable on the periodic
orbit and so with the assumption of weak coupling (small ε),
we can consider the effect of coupling as a perturbation to the
oscillatory neuron and write

dθi

dt
= ω + εZ(θi) ·

N∑
j=1

p(θi, θj ), (5)

where p(θi, θj ) = p(Xpo(θi), Xpo(θj )), with Xpo denoting
the periodic orbit. Z(θi) represents the gradient of the phase
variable θi with respect to the state variables [V,m, h, n]T on
the periodic orbit and is defined as

Z(θi) = ∂θi

∂Xi

∣∣∣∣
Xpo(θi )

.

0 π/2 π 3π/2 2π
−0.2

−0.1

0

0.1

0.2

θ

Z
V

(θ
)

Figure 1. Hodgkin–Huxley PRC computed using the adjoint
method as implemented by XPPAUT [42] with Ib = 10 μA cm−2.

It turns out that since the coupling term
p(Xpo(θi), Xpo(θj )) is only dependent on the first state
variable V (see (4)), only the first entry of Z(θi) comes
into play. This first entry, denoted by ZV (θi), is called
the phase response curve (PRC) of the ith neuron. For
the Hodgkin–Huxley equations, ZV (θi) can be computed
numerically using the adjoint method; see, e.g., [9]. This
can easily be done using the software XPPAUT available
as open source software on the web [42, 43]. The PRC for
the Hodgkin–Huxley equations is shown in figure 1. For
notational convenience, we continue using the vector form of
Z(θi) in the equations.

We can simplify (5) by first defining θi = φi + ωt .
Substituting this into (5) one can take out the mean field effect
of ω and write

dφi

dt
= εZ(φi + ωt) ·

N∑
j=1

p(φi + ωt, φj + ωt). (6)

Using the averaging theorem from [44] and [45], we
obtain the approximate equation

dφi

dt
= ε

T

∫ T

0

⎡
⎣Z(φi + ωτ) ·

N∑
j=1

p(φi + ωτ, φj + ωτ)

⎤
⎦ dτ.

Letting s = φi + ωτ , we obtain

dφi

dt
= ε

2π

N∑
j=1

∫ 2π

0
[Z(s) · p(s, φj − φi + s)] ds,

which in terms of θi is

dθi

dt
= ω +

ε

2π

N∑
j=1

∫ 2π

0
[Z(s) · p(s, θj − θi + s)] ds. (7)

It is worth pointing out that the right-hand sides of these
equations are functions of the phase differences only. If we
rewrite equation (7) more succinctly as

dθi

dt
= ω + αe

N∑
j=1

fe(θj − θi) (8)

with fe(·) denoting the electrotonic coupling, considering (4)
and the fact that αe = O(ε), we find fe(·) to be

fe(θ) = 1

2π

∫ 2π

0
ZV (s)(Vj (θ + s) − Vi(s)) ds,

3
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Figure 2. Electrotonic coupling function for the Hodgkin–Huxley
equations with Ib = 10 μA cm−2.

where ZV (·) is the PRC for the Hodgkin–Huxley equation as
shown in figure 1. Figure 2 shows the plot of this coupling
function computed numerically. ZV (·) from figure 1 has been
used in producing this figure.

In the presence of external control, an additional term
would appear in (8) that would be a function of the external
control stimulus I (t) in (3), as we discuss more carefully in
section 5. For now, we simplify the problem by considering
the control input to be an additive u(t) to (8) that incorporates
the appropriate functional relationship with I (t). Furthermore,
we restrict the problem by only allowing a single control
input to the system that, without loss of generality, is applied
to the Nth neuron in the network. In order to incorporate
heterogeneity of electrotonic coupling, instead of a common
αe, we consider different coupling strengths between different
neuron pairs and rewrite (8) as

dθi

dt
= ω +

N∑
j=1

αijfe(θj − θi) + δiNu(t), (9)

where δiN is the Kronecker delta function and u represents the
control input. This equation is similar in form to (2), but with
the coupling function being that shown in figure 2.

Now in order to further simplify the equations, we note
that the right-hand sides of (2) and (9), and in general (1),
are only in terms of phase differences. This allows us to find
the phase difference dynamics for these systems and hence,
by defining ψi = θi − θ1 for i = 2, 3, . . . , N , reduce the
system dimension by 1. This yields the following general
phase difference equations:

ψ̇i = αi1f (−ψi) − αiif (0)

+
N∑

j=2

[αijf (ψj − ψi) − α1j f (ψj )] + δiNu(t), (10)

for i = 2, 3, . . . , N . In these equations, f (·) can be any 2π -
periodic coupling function. Equation (10) will be the basis on
which we design and present the desynchronizing control law
in subsequent sections.

3. Discretization and control

3.1. Discretization

In order to compute the desynchronizing control input for
the system (10) numerically, we need to discretize these

equations. To this end, we define dψ to be the grid size
for the phase differences ψi and du to be the step size
for the control input u. This yields the phase differences
and control spaces ψd

i = {dψ, 2 dψ, . . . , 2π} and Ud =
{−umax, . . . ,−du, 0, du, . . . , umax} for i = 2, 3, . . . , N . We
define the discrete state space X d such that it has a
state variable for every possible vector (ψ2, ψ3, . . . , ψN).
Enumerating the states in the discrete state space yields
X d = {1, 2, . . . , nX d }, where nX d = ( 2π

dψ
)N−1 is the total

number of states. We assign the first state in X d to the state
(ψ2, ψ3, . . . , ψN) = (dψ, dψ, . . . , dψ). Subsequent states in
X d are assigned to vectors of (ψ2, ψ3, . . . , ψN) in which, for
j = 2, . . . , N − 1, each ψj increments by dψ when ψj+1 has
finished marching through its minimum to its maximum with
dψ increments. This way, the nX d state of X d corresponds
to (ψ2, ψ3, . . . , ψN) = (2π, 2π, . . . , 2π). At each instant of
time, the state of the system is one of the states in the discrete
state space X d . We choose dψ to be a divisor of 2π to have
an integer nX d .

3.2. Discrete time dynamic programming

Considering (10), one can write the following general
difference equation:

xk+1 = Fk(xk, uk) ∀k ∈ {1, 2, . . . , K}, (11)

where xk ∈ X d denotes the state of the system, corresponding
to a case of (ψ2, ψ3, . . . , ψN), at time k, uk ∈ Ud is the control
input at time k, and Fk( · , · ) gives the dynamics of the system
at time k computed by integrating the right-hand side of (10)
numerically. K is the end time.

The objective is to find a sequence uk for all k ∈
{1, 2, . . . , K}, such that the state in (11) approaches a value for
which the phase difference between any two neurons is at least
as big as a predetermined amount �min ∈ [0, 2π

N
]. The ideal

case for desynchronizing the firing times for the population
is when the state x in (11) approaches xsplay = {x| ψi ∈
{ 2π

N
, 4π

N
, . . . , 2π} ψi 	= ψj ∀i, j = 2, 3, . . . , N , i 	= j}.

For a system of N neurons, there are (N − 1)! splay states.
More concretely, we define the target set

Xtarg = {x|(ψi&(2π − ψi)&|ψi − ψj |) > �min} (12)

for all i, j = 2, 3, . . . , N, i 	= j . If xK ∈ Xtarg, then
the system is considered to be desynchronized. In order to
formulate the problem, we define the following time additive
cost function:

J =
K∑

k=1

γ 2u2
k + R(xK+1), (13)

where γ > 0 is a scalar penalizing factor and

R(xK+1) =
∥∥∥∥∥1 +

N∑
i=2

ejψi,K+1

∥∥∥∥∥ . (14)

Here j = √−1 and the ψi,K+1 variables are the phase
differences at time K +1 associated with state xK+1 as obtained
from (11). R(xK+1) ∈ R[0,N] is known as the end point
cost. The objective is to find a sequence uk ∈ Ud for
k = {1, 2, . . . , K} such that (13) is minimized subject to (11).

4
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It is worth mentioning that R(xK+1) is a variation of the order
parameter for systems of coupled oscillators [25] rearranged
to fit the phase difference system here and is minimized if
the neurons desynchronize fully by assuming one of the splay
states and maximized if the neurons synchronize. Therefore,
by minimizing (13) along the solutions of (11) the state x is
driven toward xsplay ⊂ Xtarg. We note that although reaching
the splay state would be ideal in maximizing the ISIs, any
state within the spectrum of in-phase and splay states may
be achieved, and as long as the ISIs of the neurons are such
that xK ⊂ Xtarg, the system is considered desynchronized.
Considering the bounded control, the values of the coupling
strengths, the discretization error due to meshing the phase
space, and the limited time of control application, it is likely
that the optimal controller results in a final state that is not
one of the splay states. Another point to make here is
that by defining the cost function as in (13), we emphasize
desynchronization at the last time step, K. By choosing K to
correspond to the spiking instant of the population, one can
hope for achieving desynchronization of spikes.

To cast the problem in the dynamic programming format,
we argue that the cost presented in (13) is composed of the
cost incurred from the current time step to the next, plus the
cost-to-go from the next time step to the final time. The cost-
to-go (also known as the value function) from a state x at time
l, denoted as Vl(x), can be written as follows [46]:

Vl(x) = inf
uk∈Ud ,∀k�l

(
K∑

k=l

γ 2u2
k + R(xK+1)

)

= inf
uk∈Ud ,∀k�l

(
γ 2u2

l +
K∑

k=l+1

γ 2u2
k + R(xK+1)

)

= inf
ul∈Ud

(
γ 2u2

l + inf
uk∈Ud ,∀k�l+1

(
K∑

k=l+1

γ 2u2
k +R(xK+1)

) )
.

The inner infimum on the right-hand side of the above equation
is exactly the cost-to-go starting at time k = l + 1 from the
state xl+1 = Fl(x, ul). So we can write

Vl(x) = inf
ul∈Ud

(
γ 2u2

l + Vl+1(Fl(x, ul))
)

(15)

for all x ∈ X d . This equation is valid for all l ∈ {1, 2, . . . , K}
when we define

VK+1(x) =
{
R(xK+1) if xK+1 ∈ Xtarg,

+∞ if xK+1 /∈ Xtarg
(16)

for all x ∈ X d . With this, the optimal control and trajectory
will be

u∗
k = arg min

uk∈Ud

(
γ 2u2

k + Vk+1(Fk(x
∗
k , uk))

)
, (17)

x∗
k+1 = Fk(x

∗
k , u∗

k), x∗
1 = x1 (18)

for all k ∈ {1, 2, . . . , K}.
The final time K in the above formulation is chosen to be

the time beyond which the control law would not be applied.
We note that xK+1 = Fk(xK, uK) and so if the state of the
system is not going to fall within the set Xtarg even by applying
the optimum control at time K, u∗

K , then it is considered not to
be desynchronizable and the cost-to-go that is associated with

it for time step K +1 is infinity (see (16)). However, if with the
control sequence u∗

1, u
∗
2, . . . , u

∗
K the system falls within the set

Xtarg at time K +1, then it would be considered desynchronized
and a cost-to-go of R(xK+1) is associated with it for time step
K + 1. This formulation is known as fixed termination time
dynamic programming.

3.3. Implementation in Matlab

Dynamic programming characterized by equations (15)–(18)
forms a computationally efficient way to compute the cost-
to-go for a system throughout the time and state domains
recursively. After initializing VK+1(x), one can first perform a
backward iteration to compute V1(x) for all x ∈ X d [47]:

for k=K:-1:1
V{k}=min(G{k}+V{k+1}(F{k}),[ ],2);

end

Then, given an initial condition x(1), a forward iteration
loop will yield the optimal control and state trajectories:

for k=1:K
[dummy, u] = min(G{k}(x(k),:)+

V{k+1}(F{k}(x(k),:))′,[ ],2);
x(k+1) = F{k}(x(k),u);

end

4. Example

As an example, we solve this problem for a network of three
neurons. In accordance with (10), we present the phase
difference equations for a network of three neurons as

ψ̇2 = −2α12 sin(ψ2) + α23 sin(ψ3 − ψ2) − α13 sin(ψ3),

ψ̇3 = −2α13 sin(ψ3) + α23 sin(ψ2 − ψ3) − α12 sin(ψ2) + u

(19)

for the Kuramoto system and

ψ̇2 = α12 (fe(−ψ2) − fe(ψ2))

+ α23fe(ψ3 − ψ2) − α13fe(ψ3),

ψ̇3 = α13 (fe(−ψ3) − fe(ψ3)) (20)

+ α23fe(ψ2 − ψ3) − α12fe(ψ2) + u

for the Hodgkin–Huxley system. We note that we have
assumed symmetry for the coupling strengths, i.e. αij = αji .
The two splay states for this system are (ψ2, ψ3) = (

2π
3 , 4π

3

)
and (ψ2, ψ3) = (

4π
3 , 2π

3

)
.

With positive values for αij , and in the absence of control,
these systems synchronize resulting in ψ2 = ψ3 at all times.
In order to find a desynchronizing control for these systems,
one needs knowledge of αij values. Several experimental and
numerical studies have been carried out to find these coupling
strengths [48–53]. The values that are suggested in these
studies generally fall within the range of [0 , 1]. Since the
true values of the coupling strengths are unknown, we allow
each α to change within this interval. For the purpose of
simulations we consider 0.1 � αij � 1 with 0.1 steps. This
gives ten possibilities for each α resulting in 1000 different
combinations of (α12, α13, α23). We note that since we are
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Table 1. The percentage of different (α12, α13, α23) cases for which
a desynchronizing control law exists when employing fixed
termination time dynamic programming with a synchronized initial
condition. The simulations were performed for Tf = 6.28 time
units with dt = 0.0349 for the Kuramoto system and Tf = 14.6
with dt = 0.08 for the Hodgkin–Huxley system. In these
simulations �min = 10◦ and dψ = 2◦.

umax Kuramoto Hodgkin–Huxley

1 0% 30.7%
2 6.6% 61.1%
3 11.2% 77.7%

considering all-to-all coupling, we have omitted zero values
for the coupling strengths. In addition, allowing different
combinations for (α12, α13, α23) results in situations where the
α values are very close to (or far from) each other, which
resembles the different coupling strengths among an actual
neural population.

To find the desynchronizing control law for (19) and (20),
we apply the fixed termination time dynamic programming
formulation and find the optimal control law for every case
of (α12, α13, α23). Depending on the maximum allowable
value for the control input umax and the minimum acceptable
phase difference �min, a control sequence u∗

1, u
∗
2, . . . , u

∗
K can

be found for some of the cases. This means that for those
cases of (α12, α13, α23), a control input can be found that can
achieve, for the system, a phase desynchronization of at least
�min. The simulations were carried out for �min = 10◦ and
using three different values for umax, namely umax ∈ {1, 2, 3}.
The penalizing constant in (13) is taken to be γ = 10−4.
The statistics for the ratio of desynchronizable cases to the
total number of cases (which is 1000) for both the Kuramoto
system (19) and the Hodgkin–Huxley system (20) are shown
in table 1. The period of control application was taken to be
approximately equal to that of the uncontrolled neurons. The
initial condition for all simulation results shown here is the
synchronized state where ψ2 = ψ3 = 2π . As expected, table 1
shows an increase in the percentage of desynchronizable cases
with the increase in control authority umax. We see that
for umax = 1, there does not exist a control law that can
desynchronize any of the 1000 different Kuramoto systems
given the simulation parameters. We note that, according
to table 1, it is easier to desynchronize the Hodgkin–Huxley
model than the Kuramoto model. A possible explanation for
this is that the slope of the coupling function at zero is smaller
for the Hodgkin–Huxley model, which suggests that it would
be easier for the control to drive the system away from the
in-phase solution.

As an example, with umax = 3 and �min = 10◦, figure 3(a)
shows the end state (ψ2(K),ψ3(K)) for all different cases of
(α12, α13, α23) for the Kuramoto model (19). Each case has
been subject to its own optimal control input computed through
fixed termination time dynamic programming, equations (13),
(15) and (16). We note that multiple cases can end up at the
same location in the state space. Figure 3(b) shows four planes
in the α space with points shown for those cases that were
desynchronized. Figure 4 communicates similar information
for the Hodgkin–Huxley system (20). It can be seen from
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Figure 3. Simulation results for the Kuramoto system with
umax = 3, �min = 10◦ and dψ = 2◦. (a) The end state
(ψ2(K),ψ3(K)) for all different cases of (α12, α13, α23). Each case
has been subjected to its own optimal control input computed
through fixed termination time dynamic programming. (b) Four
planes in the α space with points shown for those cases that were
desynchronized.

figures 3(b) and 4(b) that as α12 increases, those (α12, α13, α23)

combinations in which the α13 and α23 values are close to each
other have a lesser chance of being desynchronized. This
is intuitively appealing because the control is being applied
to neuron 3 and so there needs to be a significant difference
between the forces applied to neurons 1 and 2 (i.e., significant
difference between α13 and α23) for the control to even have a
chance of overcoming the strong bond between neurons 1 and
2 (i.e., large α12).

We have included the optimal control input and state
trajectory obtained for the specific case of (α12, α13, α23) =
(0.1, 0.1, 0.7) with �min = 10◦ and umax = 3 for both the
Kuramoto and Hodgkin–Huxley systems in figures 5(a) and
(b), respectively. As can be seen from these figures, the control
has been able to take the system from the in-phase initial state
to final states that are very close to the splay states.
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Figure 4. Simulation results for the Hodgkin–Huxley system with
umax = 3, �min = 10◦ and dψ = 2◦. (a) The end state
(ψ2(K),ψ3(K)) for all different cases of (α12, α13, α23). Each case
has been subjected to its own optimal control input computed
through fixed termination time dynamic programming. (b) Four
planes in the α space with points shown for those cases that were
desynchronized.

We note that due to the way the cost function (13)
is defined, for large enough simulation times, the resulting
control stimulus would remain zero at first before it starts to
apply force at some specific point in time. This is because of
the fact that the time additive cost is only on the control input
and the state cost only manifests itself at the last time step. As
a result, the controller does not apply any control until there is
just enough time to optimally desynchronize the system with
an optimal control (see figure 5(a) for example).

One important point in finding a control law for networks
of coupled neurons is that we may not have any knowledge
about the coupling strengths αij . In order to find a more general
solution, given a umax and �min, we might consider all the
control inputs that are able to achieve desynchronization, feed
them through an averaging filter, find the average control input
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Figure 5. The optimal control input and state trajectory obtained for
(α12, α13, α23) = (0.1, 0.1, 0.7) with umax = 3, �min = 10◦ and
dψ = 2◦ computed through fixed termination time dynamic
programming for the (a) Kuramoto and (b) Hodgkin–Huxley
systems.

and apply it to the entire 1000 different cases to investigate
the probability of achieving desynchronization without having
prior knowledge of coupling strengths. However, one can
imagine that running a simple averaging routine on a number
of different desynchronizing control sequences can result in
an average sequence that is, due to potential cancellations,
much smoother than each of the desynchronizing controls.
This greatly reduces the chances of the averaged control in
desynchronizing the network as it would, most likely, lack the
important features of each control sequence.

In order to achieve a better averaged control stimulus for
the general network, we first categorize the desynchronizing
controls based on some similarity index and then find the
average of each group. We then apply each of these averaged
controls to the entire set of 1000 different cases and pick the
one that results in the most desynchronizations as the best
(final) answer. The similarity index for each desynchronizing
control is a vector of length 10 that is obtained as follows.
We divide the time axis of the control sequence into ten equal
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Figure 6. The averaged desynchronizing control inputs for different
umax values for (a) the Kuramoto system and (b) the Hodgkin–
Huxley system. There does not exist a desynchronizing control with
umax = 1 for the Kuramoto system.

intervals. We find the mean value of the control sequence
for each of these intervals. If the mean falls in

[
umax

2 , umax
]
,

we assign the number 2 to that interval. If the mean falls
in

[
0, umax

2

)
, we assign the number 1 to that interval, if in[− umax

2 , 0
)
, we assign −1 and if in

[−umax,− umax
2

)
, we

assign −2 to that interval. This way each desynchronizing
control will have an index vector of length 10 where each
entry is chosen from the set {−2,−1, 1, 2}. We then group all
controls that have the same index vector.

The averaged desynchronizing control inputs for different
values of umax are shown in figure 6. The result of this
investigation is summarized in table 2. The initial condition
for all simulation results shown here is the synchronized
state where ψ2 = ψ3 = 2π . To show the performance of
the average controls, we have included figures 7 and 8 for the
Kuramoto and Hodgkin–Huxley systems, respectively. These
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Figure 7. Simulation results for the Kuramoto system using the
umax = 3 averaged control shown in figure 6(a) and with �min = 10◦

and dψ = 2◦. (a) The end state (ψ2(K),ψ3(K)) for all different
cases of (α12, α13, α23). (b) Four planes in the α space with points
shown for those cases that were desynchronized using the common
averaged control. We see that for α12 = 1 there are no
desynchronized cases.

Table 2. The probability of being able to desynchronize a
synchronized network of three globally coupled neurons. The
simulations were performed for Tf = 6.28 time units with
dt = 0.0349 for the Kuramoto system and Tf = 14.6 with
dt = 0.08 for the Hodgkin–Huxley system. In these simulations
�min = 10◦ and dψ = 2◦. The control input for each simulation is
found by averaging the desynchronizing control inputs.

umax Kuramoto Hodgkin–Huxley

1 0% 30.7%
2 4.9% 57.1%
3 8.4% 73.1%

figures show simulation results for each of these systems using
the umax = 3 averaged controls shown in figures 6(a) and (b).
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Figure 8. Simulation results for the Hodgkin–Huxley system using
the umax = 3 averaged control shown in figure 6(b) and with
�min = 10◦ and dψ = 2◦. (a) The end state (ψ2(K),ψ3(K)) for all
different cases of (α12, α13, α23). (b) Four planes in the α space with
points shown for those cases that were desynchronized using the
common averaged control.

5. Multiplicative control in the Hodgkin–Huxley
phase model

In this section, we briefly investigate the control laws that one
obtains by implementing dynamic programming on a different
phase model for Hodgkin–Huxley neurons which allows a
closer comparison to the full Hodgkin–Huxley model. In
writing (1), we simplified the problem by assuming that the
effect of the input current stimulus I (t) on the phase dynamics
is like an additive control u(t). However, when one carefully
does the phase reduction, the input current stimulus appears
in the phase reduced model having been multiplied by the
PRC of the neuron to which it is being applied, that is,
u(θ, t) = ZV (θN)I (t). Indeed, using a generalization of the
averaging theorem in [54] when I (t) = O(ε), one can show
that when the coupling p in (5) and the external input u(θ, t)

are Lipschitz continuous in the state variables and continuous
in time, on the time scale of O(1/ε) the solutions of (6) can be
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Figure 9. (a) The optimal control input (shown in red) and state
trajectory obtained for (α12, α13, α23) = (0.2, 0.6, 0.2) and
Imax = 2 μA cm−2 computed through fixed termination time
dynamic programming for the Hodgkin–Huxley coupled phase
model. (b) Voltage variable evolution for three coupled full
Hodgkin–Huxley neurons under the control shown in (a). For this
simulation, we have considered a mesh size of 1◦.

approximated with the solutions for the system in which only
the coupling term is averaged [55], cf [56]. So instead of (1)
one obtains

dθi

dt
= ω +

N∑
j=1

αijfe(θj − θi) + δiNZV (θi)I (t). (21)

We note that models of this form have been considered
elsewhere, for example [8], but to our knowledge dynamic
programming has not been applied to such a model before.
A computational challenge is that (21) cannot be rewritten
in terms of phase differences only, so it is necessary to
discretize θ1, θ2, . . . , θN separately, which leads to a dynamic
programming problem with one more dimension than the
analogous problem for additive control considered above.

For a network of three neurons, we have applied the
fixed termination time dynamic programming formulation
to find the optimal desynchronizing control law for (21)
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Figure 10. (a) Voltage traces for the full Hodgkin–Huxley model
obtained for (α12, α13, α23) = (0.2, 0.6, 0.2) by applying the optimal
control input from the phase model (not shown) with
Imax = 10 μA cm−2 computed through fixed termination time
dynamic programming. (b) Voltage traces as a result of applying
three copies of the optimal input. For this simulation, we have
considered a mesh size of 2◦.

for the case of (α12, α13, α23) = (0.2, 0.6, 0.2) and Imax =
2 μA cm−2, with the results shown in figure 9(a). When this
input is applied to the full model we see that the voltage
traces of the three neurons become slightly desynchronized
(figure 9(b)).

We have also found that when one increases the bound on
I (t) to Imax = 10 μA cm−2, the resulting control only achieves
a 2-1 state, in which two neurons have the same phase and the
other has a different phase. It turns out that the algorithm
determines that going to a 2-1 state that is spaced out on the
phase circle results in less cost than going to any of the 1-1-
1 states (in which all neurons have different phases) within
the domain of capability of the control law. Interestingly,
when the optimal control for this case is applied to the

full Hodgkin–Huxley equations, it achieves an appreciable
desynchronization (see figure 10).

We note that the major drawback for dynamic
programming is that in this method the size of the state vector
grows exponentially with the number of neurons in the system.
Therefore, given one’s computational power and resources,
there are limitations as to how small the mesh size can be. In
these simulations we have set the mesh size to be reasonably
small, but we can still see the effect of the mesh size on
the accuracy of the output results. For example, we have
observed cases where, in the absence of any input, the weak
coupling that should be acting as a synchronizing force for
the neurons is actually unable to fully synchronize them. This
is because as the phases of the neurons get closer to each
other, the dynamical contribution from the coupling becomes
smaller, eventually becoming so small that it is unable to exert
enough force to move the neurons over the boundaries of
their bins. An obvious future direction for this method would
be to find efficient ways to perform these computations with
reduced mesh size to avoid such issues in these systems. One
observation that might help is that the computed controls that
we find tend to be zero for the first half of the period of the
neurons, starting right after they have fired. Intuitively, one
can let the system evolve according to its natural dynamics
until the control is needed and most effective. This suggests
that we could start our initial condition at θ1 = θ2 = θ3 = π at
a time equal to half the period of the periodic orbit, assuming
zero input for the evolution from θ1 = θ2 = θ3 = 0 (or 2π ) up
to this point, thereby freeing up computational resources for
the consideration of smaller bins.

6. Conclusion and future directions

We have considered the problem of desynchronizing a
network of pathologically synchronized globally coupled
phase neurons using optimal control techniques. We used
the Kuramoto model and a reduced phase model derived for
a network of N Hodgkin–Huxley neurons under weak global
electrotonic coupling as the basis for our control design. We
allowed only one bounded control input to one of the neurons
in the system, and we have assumed observability of all phases
at all times. We introduced discrete dynamic programming as
a mathematical optimization method for numerically solving
this problem.

For both the Kuramoto and Hodgkin–Huxley models,
the desynchronization problem was solved for a network
of three coupled neurons. Since the coupling strengths
between the neurons are in practice unknown, a spectrum
of different coupling strengths was considered. For
some combinations of coupling strengths there exists a
desynchronizing control, while for some there does not. The
period of control application was taken to be approximately
equal to that of the uncontrolled neurons. The different
desynchronizing control laws were then categorized and
averaged, which resulted in a single control law for the entire
system regardless of what the coupling strengths may be.
When the bound on the controller is set to be umax = 3,
this final control law can desynchronize the system, under
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the mentioned assumptions and simulation parameters, with a
probability of 8.4% for the Kuramoto network and 73.1% for
the Hodgkin–Huxley network. Figure 6 and table 2 present
the final control for each control bound and the probability of
it achieving desynchronization.

The method was also tested with a more realistic modeling
of the control for the Hodgkin–Huxley model. It was observed
that there is good agreement between the simulation results and
the theory on which the model is based. However, the curse
of dimensionality and the effect of discretization error due to
relatively large mesh size proved to be limiting factors that
need more consideration in the future.

The control approach presented in this study can be
viewed as an event-based control approach where the
controller starts to apply input upon occurrence of an event.
The event here would be the simultaneous spiking of all
neurons. When the controller is triggered, it applies the
precomputed traces of figure 6 and waits until the next event
triggers it.

In order to improve the accuracy of the results presented
in this paper, one can reduce the mesh size when discretizing
the phases. This would substantially improve the precision
of the solutions. However, by reducing the mesh size,
the number of states grows exponentially, which can be
detrimental given one’s available computational power. We
believe that by decreasing the mesh size, the results from
the full Hodgkin–Huxley model will match more closely the
results from the phase model presented in section 5. In
addition, one can optimize the averaging process that leads to
the final control laws, so that more systems, as characterized by
their (α12, α13, α23), can be desynchronized with an averaged
final control. Also, it would be beneficial to consider more
combinations of (α12, α13, α23) in order to have a better
probabilistic estimate for any control input.

The main drawback in dynamic programming is that it
demands exponentially higher computational power as the
number of states in the system is increased. An interesting
future direction for this work would be to find reasonable
approximations to networks of higher dimension to overcome
the curse of dimensionality without greatly sacrificing
the accuracy of the results. As a suggestion, one can think
of splitting larger networks into several smaller networks that
each are all-to-all coupled, but only communicate with each
other through a mean field effect. This way, it might be possible
to take advantage of parallel programming techniques and
distribute the computational burden onto several processors.

Other interesting future directions would be to add
uncertainties to the models and investigate the extent of the
applicability of current control laws in the presence of noise
and to compare the results obtained by dynamic programming
to those for other control schemes.
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