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Abstract
We develop a novel optimal control algorithm to change the phase of an oscillator using a minimum energy input, which
also minimizes the oscillator’s transversal distance to the uncontrolled periodic orbit. Our algorithm uses a two-dimensional
reduction technique based on both isochrons and isostables. We develop a novel method to eliminate cardiac alternans by
connecting our control algorithm with the underlying physiological problem. We also describe how the devised algorithm can
be used for spike timing control which can potentially help with motor symptoms of essential and parkinsonian tremor, and aid
in treating jet lag. To demonstrate the advantages of this algorithm, we compare it with a previously proposed optimal control
algorithm based on standard phase reduction for the Hopf bifurcation normal form, and models for cardiac pacemaker cells,
thalamic neurons, and circadian gene regulation cycle in the suprachiasmatic nucleus. We show that our control algorithm is
effective even when a large phase change is required or when the nontrivial Floquet multiplier is close to unity; in such cases,
the previously proposed control algorithm fails.

Keywords Optimal control · Phase reduction · Alternans · Circadian rhythms · Spike timing control

1 Introduction

Periodic orbits, whose dynamics repeat in time, are ubiqui-
tous in dynamical systems of biological interest, with cardiac
rhythms, neural spikes, circadian rhythms, cell division, and
the flowering cycle in plants being a few examples. “Stan-
dard” phase reduction (Winfree 1967; Guckenheimer 1975;
Kuramoto 1997; Brown et al. 2004), a classical reduction
technique based on isochrons (Winfree 1967; Guckenheimer
1975;Winfree 2001), has been instrumental in understanding
such biological oscillators. It works by reducing the dimen-
sionality of a dynamical system with a periodic orbit to a
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single-phase variable. This reduction captures the oscilla-
tor’s dynamics near the periodic orbit and the change in its
phase due to an external stimulus through the phase response
curve (PRC). Not only does it make the analysis of the
high-dimensional systems more tractable, but it also has the
potential to make their control (Moehlis et al. 2006; Wilson
and Moehlis 2014; Zlotnik et al. 2013; Tass 2007; Minors
et al. 1991) experimentally implementable; see, e.g., Stigen
et al. (2011), Nabi et al. (2013b), Snari et al. (2015), Zlotnik
et al. (2013). This is because although the whole state space
dynamics of the system may not be known, PRCs can often
be measured experimentally; see, e.g., Netoff et al. (2012);
Minors et al. (1991).

This reduction is valid only in close proximity to the peri-
odic orbit as noted, for example, by Guillamon and Huguet
(2009). Consequently, the magnitude of the allowable stim-
ulus is limited by the nontrivial Floquet multipliers (Guck-
enheimer and Holmes 1983) of the periodic orbit: in systems
with a nontrivial Floquet multiplier close to 1, even a rel-
atively small stimulus can drive the trajectory away from
the periodic orbit, rendering the phase reduction inaccurate
and control based on phase reduction ineffective. In most
practical applications, the effectiveness of a control algo-
rithm depends on the size of the allowable stimulus (Wilson

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00422-018-0764-z&domain=pdf
http://orcid.org/0000-0003-2408-511X


162 Biological Cybernetics (2019) 113:161–178

and Moehlis 2014; Snari et al. 2015; Zlotnik et al. 2013).
This suggests the use of a reduction technique called aug-
mented phase reduction (Wilson and Moehlis 2016), which
is an n-dimensional reduction based on both isochrons and
isostables (Mauroy et al. 2013). The first dimension captures
the phase of the oscillator along the periodic orbit, as for
the standard phase reduction, while the other n − 1 dimen-
sions give a measure of the oscillator’s transversal distance
from the periodic orbit along the n − 1 isostable directions.
The reduction captures the effect of an external stimulus on
the change in the oscillator’s phase through the PRC, and the
change in its transversal distance to the periodic orbit through
the isostable response curve (IRC).

An equivalent reduction based on the Koopman operator
is given by Shirasaka et al. (2017). This gives the same out-
come as the phase-amplitude reduction devised by Castejón
et al. (2013) for planar systems, but the augmented phase
reduction does not require computationally intensive cal-
culation of a coordinate system with respect to periodic
orbit of dimensionality greater than 2. Moreover, the phase-
amplitude description devised by Wedgwood et al. (2013)
is not explicitly dependent on the Floquet multipliers of
the system, whereas the augmented phase reduction is. This
dependencyonFloquetmultipliers is advantageous in higher-
dimensional systems, where the periodic orbit is weakly
stable in only a few directions, as it allows us to reduce the
dimensionality of the augmented phase reduction to capture
transversal dynamics only along theweakly stable directions.
The use of Floquet coordinates (Guckenheimer 1995) results
in a similar reduction, but an additional step is required to
quantify the effect of an external perturbation on the oscilla-
tor’s dynamics. It also requires the knowledge of the whole
state space dynamics along the periodic orbit, which might
not be observable in an electrophysiological setting. On the
other hand, for our algorithm, the response functions that
arise for augmented phase reduction in principle can be mea-
sured in an electrophysiological setting; indeed, we envision
that IRCs can be measured experimentally just like PRCs,
making the control based on the augmented phase reduction
experimentally amenable as well. Control algorithms based
on the augmented phase reduction are expected to be more
effective than thosebasedon just the phase coordinate, as they
can be designed to allow a larger stimulus without the risk of
driving the oscillator away from the periodic orbit (Wilson
and Moehlis 2016).

In this paper,we develop a novel optimal control algorithm
basedon augmentedphase reduction to advance (resp., delay)
the phase of the oscillator, such that the oscillator completes
one periodic trajectory sooner (resp., slower). Along with
minimizing the total energy consumption, our control algo-
rithm also minimizes a measure of the transversal distance of
the oscillator from the unperturbed periodic orbit. This novel
aspect of our control algorithm is crucial in ensuring that the

controlled oscillator always stays close to the unperturbed
periodic orbit, where phase reduction is valid, thus making
our control algorithm effective. Note that this way of incor-
porating closeness of the controlled trajectory to the periodic
trajectory in the cost function is possible due to the explicit
formulation of transversal dynamics in terms of Floquet mul-
tipliers in the augmented phase reduction. This allows us to
efficiently keep the perturbed trajectory close to the periodic
orbit along weakly stable isostable directions, even in the
presence of noise.

Moreover,wedevelop a novel strategy to eliminate cardiac
alternans by connecting our control algorithmwith the under-
lying physiological problem to change the phase of cardiac
pacemaker cells. This strategy removes the need to excite the
myocardium tissue at multiple sites. We also show how our
control algorithm can be used to change the spike timing of
neurons, which could be relevant to the problem of desyn-
chronizing neurons for the treatment of essential and parkin-
sonian tremor (Nabi et al. 2013a; Nabi and Moehlis 2012).
Such an optimal control is expected to consume less energy
than the pulsatile current in the present deep brain stimulation
(DBS) protocol, thus possibly prolonging the battery life of
the stimulator, and also preventing tissue damage caused by
the high-energy DBS stimuli. Finally, we apply our control
algorithm to realign circadian rhythm with the new light and
dark cycle to treat jet lag (Wever 1985) or adapt to night shift
work (Czeisler et al. 1990; Eastman and Martin 1999).

We compare our new algorithm with a previous algorithm
based on standard phase reduction proposed by Moehlis
et al. (2006) by applying it to four different dynamical sys-
tems: the Hopf bifurcation normal form, cardiac pacemaker
cells (motivated by suppressing alternans), thalamic neu-
rons (motivated by desynchronizing neurons via spike timing
control), and circadian gene regulation in the superchias-
matic nucleus (motivated by controlling circadian rhythm).
We show that our algorithm effectively changes the phase in
these dynamical systems while keeping the controlled oscil-
lator close to the unperturbed periodic orbit. The previous
algorithm drives the oscillator away from the periodic orbit
and thus can fail. We also perform a parametric study to ana-
lyze the dependence of the control error on the nontrivial
Floquet multiplier of the periodic orbit and on the amount of
phase change desired. This study demonstrates the promising
potential of our new algorithm over the previous algorithm,
especially when a large change in phase is required or when a
nontrivial Floquet multiplier of the oscillator is close to 1. In
such cases, our algorithm does an order of magnitude better
in terms of the calculated control error.

This article in organized as follows. In Sect. 2, we describe
standard and augmented phase reduction. In Sect. 3, we
devise our optimal control algorithm based on augmented
phase reduction and also present the previously devised algo-
rithm based on standard phase reduction. In Sect. 4, we
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compare the two control algorithms by applying them to four
different dynamical systems and in turn develop strategies to
suppress cardiac alternans, change the firing time of thalamic
neurons, and shift the phase of a circadian rhythm. Section 5
analyzes the effect of noise on the performance of our control
algorithm. Section 6 summarizes the results and gives con-
cluding remarks. Numerical methods used in this article are
detailed in “Appendix A.” “Appendix B” lists themathemati-
cal models used in this article and also gives their augmented
and standard phase reduction parameters.

2 Standard and augmented phase reduction

In this section, we give background on the concepts of
isochrons, isostables, standard and augmented phase reduc-
tion. These concepts will be useful for devising our control
algorithm in Sect. 3.

2.1 Standard phase reduction

The standard phase reduction is a classical technique used
to describe dynamics near a periodic orbit by reducing the
dimensionality of a dynamical system to a single-phase vari-
able θ (Winfree 1967; Kuramoto 1984, 1997). Consider a
general n-dimensional dynamical system given by

dx
dt

= F(x), x ∈ R
n, (n ≥ 2). (1)

Suppose this system has a stable periodic orbit γ (t) with
period T . For each point x∗ in the basin of attraction of the
periodic orbit, there exists a corresponding phase θ(x∗) such
that

lim
t→∞

∣
∣
∣
∣
x(t) − γ

(

t + T

2π
θ(x∗)

)∣
∣
∣
∣
= 0, (2)

where x(t) is the flow of the initial point x∗ under the given
vector field. The function θ(x) is called the asymptotic phase
of x and takes values in [0, 2π). Isochrons are level sets of
this phase function. It is typical to define isochrons so that the
phase of a trajectory advances linearly in time. This implies

dθ

dt
= 2π

T
≡ ω (3)

both on and off the periodic orbit.
Now consider the system

dx
dt

= F(x) +U (t), x ∈ R
n, (4)

where U (t) ∈ R
n is an external perturbation. Standard

phase reduction can be used to reduce this system to a one-

dimensional system given by (Malkin 1949; Kuramoto 1984;
Brown et al. 2004; Monga et al. 2018):

θ̇ = ω + Z(θ)TU (t). (5)

HereZ(θ) ≡ ∇γ (t)θ ∈ R
n is the gradient of phase variable θ

evaluated on the periodic orbit and is referred to as (infinites-
imal) phase response curve (PRC). It quantifies the effect of
control input on the phase of the periodic orbit. The PRC
can be found by solving an adjoint equation numerically;
see, eg., Ermentrout (2002); Brown et al. (2004); Monga
et al. (2018). Alternative approaches for computing the PRC
have been detailed in Efimov et al. (2009); Zlotnik and Li
(2014); Wataru et al. (2013). Equation (5) is valid only in a
close vicinity of the periodic orbit and diverges from the true
dynamics as one goes further away from the periodic orbit.
Therefore, the amplitude of the control input has to be small
enough so that it does not drive the system far away from the
periodic orbit, where the phase reduction is not accurate; see,
e.g., Castejón et al. (2013). This limitation on control input
becomes evenmore important if the nontrivial Floquet multi-
plier of the periodic orbit is close to 1. This limits achieving
certain control objectives and thus suggests the use of the
augmented phase reduction.

2.2 Augmented phase reduction

For a dynamical systemwith a periodic orbit, isostables (Wil-
son and Moehlis 2016) are coordinates which give a sense
of the distance in directions transverse to the periodic orbit.
Standard phase reduction can be augmented with these coor-
dinates as follows.

Consider a point x0 on the periodic orbit γ (t)with the cor-
responding isochronΓ0. The transient behavior of the system
(given by Eq. 4) near x0 can be analyzed by a Poincaré map
P on Γ0,

P : Γ0 → Γ0; x → P(x). (6)

Here x0 is a fixed point of this map, and we can approximate
P in a small neighborhood of x0 as

P(x) = x0 + DP(x − x0) + O
(

||x − x0||2
)

, (7)

where DP = dP/dx |x0 . Suppose DP is diagonalizablewith
V ∈ R

n×n as a matrix with columns of unit length eigenvec-
tors {vk |k = 1, . . . , n} and the associated real eigenvalues
{λk |k = 1, . . . , n} of DP . These eigenvalues λi are the Flo-
quet multipliers of the periodic orbit. For every nontrivial
Floquet multiplier λi , with the corresponding eigenvector vi ,
the set of isostable coordinates is defined as (Wilson and
Moehlis 2016)
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ψi (x) = eTi V
−1(x j

Γ − x0) exp(− log(λi )t
j
Γ /T ), (8)

where i = 1, . . . , n−1. Here x j
Γ and t jΓ ∈ [0, T ) are defined

to be the position and the time of the j th crossing of the
isochron Γ0, and ei is a vector with 1 in the i th position
and 0 elsewhere. When an eigenvalue λi has multiplicity
m > 1, and m linearly dependent eigenvectors (DP is non-
diagonalizable), isostables can be defined in a similar way by

multiplying Eq. (8) with (t jΓ )
1−m

, cf. Mauroy et al. (2013).
Since DP is diagonalizable for the systems we consider in
this article, we consider Eq. (8) as the isostable coordinate.
As shown by Wilson and Moehlis (2016), cf. Castejón et al.
(2013), we get the following equations forψi and its gradient
∇γ (t)ψi under the flow ẋ = F(x):

ψ̇i = kiψi , (9)
d∇γ (t)ψi

dt
=

(

ki I − DF(γ (t))T
)

∇γ (t)ψi , (10)

where ki = log(λi )/T are Floquet exponents, DF is the
Jacobian of F , and I is the identity matrix. We refer to this
gradient ∇γ (t)ψi ≡ Ii (θ) as the isostable response curve
(IRC). Its T -periodicity along with the normalization condi-
tion ∇x0ψi · vi = 1 gives a unique IRC. It gives a measure
of the effect of a control input in driving the trajectory away
from the periodic orbit. The n-dimensional system (given by
Eq. 4) can be realized as (Wilson and Moehlis 2016)

θ̇ = ω + ZT (θ)U (t), (11)

ψ̇i = kiψi + IT
i (θ)U (t), for i = 1, . . . , n − 1. (12)

We refer to this reduction as the augmented phase reduc-
tion (APR). Here, the phase variable θ indicates the position
of the trajectory along the periodic orbit, and the isostable
coordinate ψi gives information about the transversal dis-
tance from the periodic orbit along the i th eigenvector vi .
This reduction is similar to the 2-dimensional system given
by Eq. 22 in the article of Castejón et al. (2013), in which θ

andσ describe the dynamics along, and transverse to the limit
cycle, respectively. It is evident from Eqs. (11)–(12) that the
control input affects the oscillator’s phase through the PRC,
and its transversal distance to the periodic orbit through the
IRC. In practice, isostable coordinates with nontrivial Flo-
quet multiplier close to 0 can be ignored as perturbations
in those directions are nullified quickly under the evolution
of the vector field. If all isostable coordinates are ignored,
the augmented phase reduction reduces to the standard phase
reduction. In this article, we consider dynamical systems that
only have one of the nontrivial Floquet multipliers close to
one, and the remaining n − 2 nontrivial Floquet multipli-
ers close to zero. We then can write the augmented phase
reduction as

θ̇ = ω + ZT (θ)U (t), (13)

ψ̇ = kψ + IT (θ)U (t). (14)

Since we are only considering one isostable coordinate, we
have removed the subscript for ψ .

3 Optimal phase control

Suppose we start at the point x0 on γ (t). Without any control
input, we expect the trajectory will return to the point x0 at
time t = T . Our objective here is to devise a control which
returns the trajectory to its initial position after time t = T1,
where T1 	= T . It should do so using minimal energy input
and staying close to the uncontrolled periodic trajectory. An
“easy” way of doing this is by taking the control input to be a
scalar multiple of the vector field,U (t) = sF(x). s would be
positive (resp., negative)when phase advance (resp., delay) is
the control objective. However, there are three problemswith
such a control in an experimental setting: first, the dynamical
system under consideration may not be fully actuated (not all
the states of the system can be perturbed), which is generally
the case in practical situations; second, the entire state of the
systemmay not be experimentally measurable; and third, the
function F(x) might be unknown.

Here we consider dynamical systems which only have
one degree of actuation: the control input vector is U (t) =
[u(t), 0, . . . , 0]T . Such a control input is motivated by the
applications we consider in this article, where only one of the
elements of the state vector is affected directly by the control
input. So the standard phase reduction becomes

θ̇ = ω + Zx1(θ)u(t), (15)

and the augmented phase reduction is

θ̇ = ω + Zx1(θ)u(t), (16)

ψ̇ = kψ + Ix1(θ)u(t). (17)

HereZx1 and Ix1 correspond to the first component in the n-
dimensional vector functionsZ and I, respectively. Without
loss of generality, we will do away with the subscripts and
write them as Z and I. An optimal control law based on
the augmented phase reduction is found by using the cost
function C :

C =
∫ T1

0

[

αu2 + βψ2 + λ1
(

θ̇ − ω − Z(θ)u(t)
)

+λ2
(

ψ̇ − kψ − I(θ)u(t)
)]

dt .

(18)

The first term in the cost function ensures that the control
law uses a minimum energy input. The second term mini-
mizes the transversal distance (in the direction of the slow
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isostable coordinate ψ) from the uncontrolled periodic tra-
jectory, thus ensuring that the controlled trajectory stays close
to the periodic trajectory where the reduction is valid. The
coefficients α and β give us the freedom to weight energy
minimization and transversal distance minimization differ-
ently for different problems. The last two terms ensure that
the system obeys the augmented phase reduction, with λ1
and λ2 being the Lagrange multipliers. The Euler–Lagrange
equations are obtained from

∂P

∂q
= d

dt

(
∂P

∂q̇

)

, q = λ1, λ2, θ, ψ, u, (19)

where P is the integrand in the cost function C . This gives

θ̇ = ω + Z(θ)u(t), (20)

ψ̇ = kψ + I(θ)u(t), (21)

λ̇1 = −u
(

λ1Z ′(θ) + λ2I ′(θ)
)

, (22)

λ̇2 = 2βψ − kλ2, (23)

where

u(t) = λ1Z(θ) + λ2I(θ)

2α
. (24)

These equations are solved as a two point boundary value
problem (see “Appendix A”) with the boundary conditions

θ(0) = 0, θ(T1) = 2π, ψ(0) = 0, ψ(T1) = 0. (25)

The last boundary condition makes sure that trajectory ends
back on the periodic orbit.

The previously proposed optimal control problem based
on standard phase reduction (Moehlis et al. 2006) can be
obtained by setting β = 0 and λ2 = 0 in the cost function.
This gives Euler–Lagrange equations for the variables θ and
λ1 as

θ̇ = ω + Z(θ)u(t), (26)

λ̇1 = −uλ1Z ′(θ), (27)

where

u = λ1Z(θ)

2α
. (28)

These control laws (Eqs. 24 and 28) can then be applied to
the full model ẋ = F(x) +U (t) to change the orbit’s phase.
To compare the control laws, we compute the control energy
as

∫ T1

0
u2dt, (29)

T1

0
Euler-Lagrange equations

θ(t), ψ(t), λ1(t), λ2(t)

U(t) =
λ1(t)Z(θ(t))+λ2(t)I(θ(t))

2α
, 0, . . . , 0

T
0 ≤ t ≤ T1

[0, 0, . . . , 0]T t > T1

x(t) =
t

0
[F (x) + U(t)] dt

Control error = ||x(T1) − x(0)||/max(||x(t)||)

Fig. 1 Flowchart describing the control algorithm based on augmented
phase reduction

and the control error as the normalized Euclidean distance
between the final position and the initial position given as

||x(T1) − x(0)||
max(||x(t)||) , (30)

where ||x || represents the standard Euclidean norm, and max
(||x(t)||) represents the maximum value of the Euclidean
norm of the periodic solution x(t). The control error arises
because we apply the control input (Eqs. 24 and 28) based
on the reduced model to the full model (Eq. 1).The control
algorithm based on augmented phase reduction is outlined
in the flowchart in Fig. 1. The algorithm based on standard
phase reduction is implemented in a similar manner. We will
see in Sect. 4 that our new control law is effective in circum-
stances in which the previously proposed control law fails
since the novel attribute of our cost function minimizes the
transversal distance, ensuring that the controlled trajectory
is always close enough to the periodic orbit so that the phase
reduction is valid. On the other hand, with the previously pro-
posed control law, even a small control input can drive the
trajectory away from the periodic orbit, thereby rendering
the phase reduction invalid and the control law ineffective.

4 Applications

We apply the new optimal control algorithm (based on the
augmented phase reduction) and the previously proposed
optimal control algorithm (based on the standard phase
reduction) to four different dynamical systems: the Hopf
bifurcation normal form, cardiac pacemaker cells, thalamic
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neurons, and circadian gene regulation in the suprachias-
matic nucleus. For all these systems, the PRC is numerically
computed using the software XPP (Ermentrout 2002). We
use Newton iteration to obtain the IRC as the periodic solu-
tion to Eq. (14). The control input is obtained by solving
the Euler–Lagrange Eqs. (20)–(23) or (26)–(27) as a two
point boundary value problem numerically. It is then applied
to the full model to compute the resulting trajectory x(t). A
parametric study is performed to compute this error as a func-
tion of the ratio T1/T and, for the Hopf bifurcation normal
form, the nontrivial Floquet multiplier of the periodic orbit.
A detailed description of the numerical procedures used is
given in “Appendix A”.

4.1 Hopf bifurcation normal form

4.1.1 Motivation

Here we consider the normal form for a supercritical Hopf
bifurcation (Guckenheimer and Holmes 1983), which occurs
in several applications including biological and chemical
oscillators (Winfree 2001; Marsden and McCracken 2012;
Kopell and Howard 1973; Izhikevich 2007). This example
allows us to explore in detail the interplay between the con-
trol objective and the nontrivial Floquet multiplier for the
new and the previously proposed control algorithm.

4.1.2 Control strategy

We use our control algorithms to change the phase of a peri-
odic orbit near a supercritical Hopf bifurcation. By varying
parameters, we can calculate the control error for both algo-
rithms as a function of the nontrivial Floquet multiplier and
the target phase change, which gives a sense of which control
algorithm would work better in what ranges of these quanti-
ties.

The normal formof the supercriticalHopf bifurcationwith
an external control input u(t) is:

ẋ = ax − by +
(

x2 + y2
)

(cx − dy) + u(t), (31)

ẏ = bx + ay +
(

x2 + y2
)

(dx + cy), (32)

with c < 0. With zero control input u(t), and a < 0, the sys-
tem has a stable fixed point. As a increases through 0, a stable
periodic orbit is born, and the fixed point becomes unstable.
With parameters a = 0.004, b = 1, c = −1, d = 1, the
system has a stable periodic orbit with the time period T =
6.2582 and the nontrivial Floquet multiplier exp(−2aT ) =
0.9512. The PRC and the IRC are sinusodial, cf. Castejón

et al. (2013); Monga et al. (2018), with amplitudes
√

d2+c2
−ac

and
√

1 + d2
c2

, respectively. Here, θ = 0 corresponds to the

Fig. 2 Hopf bifurcation normal form: Top row shows the uncontrolled
periodic orbit, PRC, and IRC for the Hopf normal formwith parameters
given in the main text. The middle (resp., bottom) row shows the trajec-
tory, time series, and control input for control based on our new (resp.,
the previously proposed) algorithm. Control is on (resp., off) for the
portion shown by the thick black (resp., thin blue) line. The trajectory
starts at the small red circle. The red horizontal line shows the amplitude
of the uncontrolled periodic orbit (color figure online)

initial condition x = −0.0447, y = 0.0447. The top row of
Fig. 2 shows the uncontrolled periodic orbit, PRC, and IRC
for the given parameter values. The control parameters α and
β are both taken to be unity. We calculate the optimal control
with T1 = 1.3T = 8.1356 both for our new algorithm and
the previously proposed algorithm.

The resulting trajectories, time series, and control inputs
are shown in the bottom two rows of Fig. 2.As seen in this fig-
ure, the new control algorithm does much better in changing
the phase of the periodic orbit while also keeping the trajec-
tory close to the periodic orbit for the uncontrolled system.
This is because our algorithm minimizes the transversal dis-
tance, ensuring that the controlled trajectory is always close
enough to the periodic orbit so that the phase reduction is
valid. On the other hand, with the previously proposed con-
trol law, the control input drives the trajectory away from the
periodic orbit, thereby rendering the phase reduction invalid
and the control law ineffective. This is apparent from the
control error (given by Eq. 30) as well, which is 0.1435 and
1.1394 for the new and the previous optimal control algo-
rithms, respectively.However the new control algorithmdoes
better at the expense of consuming more energy (given by
Eq. 29), which comes out to be 0.0032 units, compared with
0.0015 units for the previous control algorithm. We note that
the trajectory in the bottom row of Fig. 2 will eventually
return to the stable uncontrolled periodic orbit, but will not
have the corresponding desired phase shift.
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Fig. 3 Hopf bifurcation normal form: Top (resp., bottom) row shows
the control error (Eq. 30) from the control based on our new (resp., the
previously proposed) algorithm as a function of the nontrivial Floquet
multiplier and the ratio T1/T

As the parameter a is further increased, the system moves
away from the bifurcation point, resulting in a decreasing
nontrivial Floquet multiplier. A parametric study is per-
formed to analyze the dependence of the control error on
the nontrivial Floquet multiplier and the ratio T1/T . The top
(resp., bottom) row of Fig. 3 shows this error for the new
(resp., the previously proposed) control algorithm. The error
for the previously proposed control algorithm increases as
the nontrivial Floquet multiplier increases toward 1 and/or
ratio T1

T moves away from 1 (the control objective becomes
more extreme). This is because an extreme control objective
requires a large control input, which drives the trajectory
away from the periodic orbit, resulting in the phase reduc-
tion losing accuracy. However, when the nontrivial Floquet
multiplier is close to zero, a trajectory kicked away from the
periodic orbit returns quickly back to it, thereby nullifying
the effect of a large control input on the accuracy of phase
reduction. On the other hand, for the new control algorithm,
the error remains small for all values of the ratio T1

T and non-
trivial Floquet multiplier considered. Thus we can conclude
that our new control algorithm is much more effective than
the previously proposed control algorithm, especially when
the control objective is extreme and/or the nontrivial Floquet
multiplier of the periodic orbit is close to 1.

We expect that the asymmetry in control error, as seen in
the bottom panel of Fig. 3, can be explained by the inherent
shear present in the model’s dynamics (Wang and Young
2003). For the parameters considered, we observe that when
phase delay is the desired control objective, the trajectory
is kicked inside the periodic orbit, i.e., the amplitude of the
transient trajectory decreases. On the other hand, for a phase
advance control objective, the trajectory is kicked out of the

periodic orbit, i.e., the amplitude of the transient trajectory
increases. The difference between this amplitude increase
and decrease is magnified for the standard phase reduction-
based control with a small Floquet multiplier. Shear present
in the dynamics acts differently on these two cases, which is
reflected as a small asymmetry in control error seen in the
bottom panel of Fig. 3. For the new control algorithm, the
difference between the amplitude increase and decrease stays
relatively small, and thus, the control error ismore symmetric
as can be seen in the top panel of Fig. 3.

4.2 Controlling cardiac pacemaker cells

4.2.1 Motivation

The heartbeat is initiated by a collection of cells in the sinoa-
trial node (SA node), which acts as a pacemaker. These cells
elicit periodic electrical pulses which polarize a collection of
excitable and contractile cells called myocytes. In the pro-
cess of depolarizing, myocytes contract and propagate action
potentials to the neighboring cells. This well-coordinated
process of excitation/depolarization and contraction enables
the heart to pump blood throughout the body. Under normal
conditions, with constant pacing, the action potential dura-
tion (APD), that is the time forwhich an action potential lasts,
also remains constant. However, under some conditions, this
1:1 rhythm between pacing and the APD can become unsta-
ble, bifurcating into a 2:2 rhythm of alternating long and
short APD, known as alternans (Mines 1913). Alternans is
observed to be a possible first step leading to fibrillation (Pas-
tore et al. 1999). Thus, a number of researchers have worked
on suppressing alternans as a method of preventing fibrilla-
tion, thereby preventing the need for painful and damaging
defibrillating shocks. Many of these methods (Hall and Gau-
thier 2002; Christini et al. 2006; Hall et al. 1997; Wilson
andMoehlis 2015b) operate by exciting the myocardium tis-
sue externally with periodic pulses and changing the period
according to the alternating rhythm. However, such a control
requires excitation at several sites in the tissue (Rappel et al.
1999).

4.2.2 Control strategy

We devise a novel strategy to suppress alternans by chang-
ing the phase of the inherent pacemaker cells. Such a control
strategy could eliminate the need to excite the tissue at multi-
ple sites.Wemake use of the relation betweenAPD, diastolic
interval (DI), and basic cycle length (BCL) to devise our con-
trol strategy. DI is the time for which a myocyte cell remains
depolarized, and BCL is the time between successive action
potentials, which is dictated by the period of the pacemaker
cells. In the simplest model (Guevara et al. 1984), APD is a
function of the previous DI, given by the restitution curve:
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Fig. 4 Suppression of alternans: the top panel shows the stable 2:2
rhythm of alternans. The bottom panel shows the 1:1 rhythm stabilized
by reducing the BCL for one cycle

APDi = f (DIi−1). DI is a function of the currentAPD, given
by what we call as the BCL curve: APDi +DIi = BCL. The
intersection of these two curves gives the normal 1:1 rhythm.
If the slope of the restitution curve at this intersection is
greater than 1, the 1:1 rhythm is unstable, giving rise to alter-
nans. Thiswas first shown byNolasco andDahlen (1968) and
is illustrated in the top panel of Fig. 4. Given the current DIi ,
the next APDi+1 is given by the restitution curve. Traversing
horizontally from this point to the BCL curve gives the next
DIi+1. Repeating this analysis gives all the successive DIs
and APDs. Under constant BCL, it is graphically illustrated
in the top panel of Fig. 4 that when slope of the restitution
curve is greater than 1, APDs and DIs alternate between two
values, corresponding to alternans. If starting from point 2 in
the bottom panel of Fig. 4, we reduce the BCL for one cycle
such that the next DI corresponds to the unstable 1:1 state,
this would stabilize the 1:1 rhythm, eliminating alternans.
Thus our control strategy to eliminate alternans corresponds
to decreasing the BCL for one cycle, i.e., advancing the phase
of the SA node cells. Note that in a clinical setting, we may
need to apply this control strategy multiple times, as the 1:1

rhythm is unstable. Applying control multiple times is phys-
ically realistic as long as the trajectory returns to the limit
cycle before the next stimulus arrives. As we will see later,
this is not the case with the previously proposed optimal con-
trol algorithm based on the standard phase reduction. This
novel strategy should be clinically feasible as well, since an
implanted battery could generate multiple stimuli.

To demonstrate our approach, we consider the SA node
cell dynamics, instead of the discrete APD/DI dynamics. Our
control objective is to change the phase of SA node cells; the
amount of change required is linked to the amount by which
the BCL curve needs to be shifted to stabilize the unstable
APD/DI dynamics. Here we advance the phase by 20 % as
an example. We consider the 7-dimensional YNI model of
SA node cells in rabbit heart proposed by (Yanagihara et al.
1980). The model is of Hodgkin–Huxley type with 6 gat-
ing variables d, f ,m, h, q, p and a transmembrane voltage
variable V . The model is given as

V̇ = Im − INa − Ik − Il − Is − Ih
C

+ u(t), (33)

ẏ = αy(1 − y) − βy y, (34)

where y represents the 6 gating variables. u(t) represents the
applied current as the control input. For details of the currents
(INa, Ik, Il , Is, Ih) and the parameters, see “Appendix B.1.”
With Im = 1.0609, we get a stable periodic orbit with time
period T = 203.4552 ms and nontrivial Floquet multipliers
0.7595, 0.1365, 0.0299, ≈ 0, ≈ 0, ≈ 0. Since one of the non-
trivial Floquet multipliers is considerably larger than others,
we only consider the isostable coordinate corresponding to it.
The top row of Fig. 5 shows the uncontrolled periodic orbit,
PRC, and IRC for the given parameter values. Control param-
eters α and β are taken as 100 and 0.1, respectively. Here we
give considerablemoreweight tominimizing energy, to over-
come our new control algorithm’s tendency for this problem
to require more energy than the previously proposed control
algorithm. We calculate optimal control for the new and pre-
viously proposed algorithms with T1 = 0.8T = 162.7641
ms.

The resulting trajectories, time series, and control inputs
are shown in the bottom two rows of Fig. 5. As seen in this
figure, our new control algorithm successfully achieves the
control objective while keeping the trajectory close to the
uncontrolled periodic orbit. It is able to do so while giv-
ing considerable importance to energy minimization (α is
significantly bigger than β). On the other hand, with the
previous control algorithm, instead of staying close to the
periodic orbit, the trajectory decays to the stable fixed point
of the system. This is evident from the control error, which
is 0.0858 and 0.3677 for our new and the previous optimal
control algorithms, respectively. Our control does better at
the expense of consuming more energy (6.3850 units) than
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Fig. 5 YNI model for cardiac pacemaker cells: top row shows the
uncontrolled periodic orbit, PRC, and IRC for the YNI model with
parameters given in themain text. Themiddle (resp., bottom) row shows
the trajectory, time series, and control input for control based on our
new (resp., the previously proposed) algorithm. Control is on (resp.,
off) for the portion shown by the thick black (resp., thin blue) line. The
trajectory starts at the small red circle. The red horizontal line shows
the amplitude of the uncontrolled periodic orbit (color figure online)

the previous control (0.2100 units). Note that here we change
the phase by 20% as an example. In a more realistic setting,
we would require a more integrated model which combines
the discrete APD/DI dynamics together with the dynamics
of the SA node cell. This would automatically determine the
phase change required.

4.3 Controlling neurons

4.3.1 Motivation

Essential and parkinsonian tremor, the most common move-
ment disorders, affect millions of people worldwide. These
cause involuntary tremors in various parts of the body, dis-
rupting the activities of daily living. Pathological neural
synchronization in the thalamus and the STN brain region
is hypothesized to be one of the causes of motor symptoms
of essential and parkinsonian tremor, respectively (Kane et al.
2009; Kühn et al. 2009). Deep brain stimulation (DBS),
an FDA-approved treatment, helps to alleviate these symp-
toms (Benabid et al. 1991, 2009) by stimulating the thalamus
or the STN brain regions with a high-frequency high-energy
pulsatile waveform. In the process, the high-frequency high-
energy waveform has been hypothesized to desynchronize
the synchronized neurons; see, e.g., Wilson et al. (2011);
Wilson andMoehlis (2015a). This has motivated researchers
to come upwith efficient control techniques (Tass 2003; Nabi

et al. 2013a) which not only desynchronize the neurons, but
also consume less energy, thus prolonging the battery life of
the stimulator and preventing tissue damage caused by the
high-energy pulsatile stimuli.

4.3.2 Control strategy

At a single neuron level, desynchronization can be viewed
as changing the phase of a neuron to be at a different phase
than other neurons (Moehlis et al. 2006; Nabi and Moehlis
2012). With this in mind, we use our algorithm to change
the phase of neuron spikes in thalamic neurons. To see the
performance of our algorithm in an extreme scenario, we
set the control objective to advance the phase by 60%. We
demonstrate this by using the thalamic neuron model (Rubin
and Terman 2004) given as

v̇ = −IL − INa − IK − IT + Ib
Cm

+ u(t), (35)

ḣ = h∞ − h

τh
, (36)

ṙ = r∞ − r

τr
. (37)

In these equations, Ib is the baseline current, which we
take as 5µA/cm2, v is the membrane voltage, and h, r
are the gating variables of the neuron. u(t) represents the
applied current as the control input. For details of the cur-
rents (IL , INa, IK , IT ), functions h∞, τh, r∞, τr and the rest
of the parameters, see “Appendix B.2.” Under zero con-
trol input, these parameters give a stable periodic orbit with
time period T = 8.3955 ms and nontrivial Floquet multipli-
ers 0.8275 and 0.0453. Since one of the nontrivial Floquet
multiplier is close to 0, we only consider the isostable coordi-
nate corresponding to the larger nontrivial Floquet multiplier
in the augmented phase reduction. The top row of Fig. 6
shows the uncontrolled periodic orbit, PRC, and IRC for
the given parameter values. Control parameters α and β

are taken as unity. We calculate the optimal control for our
new algorithm and the previously proposed algorithm with
T1 = 0.4T = 3.3582 ms.

The resulting trajectories, time series, and control inputs
are shown in the bottom two rows of Fig. 6. As seen inmiddle
and bottom panels of the left column of this figure, our new
control algorithm does better in keeping the trajectory close
to the periodic orbit. On the other hand, with the previous
control algorithm, the trajectory moves away from the peri-
odic orbit. Looking at the central middle and bottom panels,
it seems that the trajectory returns back to the periodic orbit
even for the previously proposed optimal control algorithm,
but this is not the case. Since one of the Floquet multipliers
is close to zero, the voltage state returns back quickly, but
the other states still remain far away from the limit cycle.
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Fig. 6 Thalamic neuron model: top row shows the uncontrolled peri-
odic orbit, PRC, and IRC for the thalamic neuronmodelwith parameters
given in the main text. The middle (resp., bottom) row shows the tra-
jectory, time series, and control input for our new (resp., the previously
proposed) control algorithm. Control is on (resp., off) for the portion
shown by the thick black (resp., thin blue) line. The trajectory starts at
the small red circle. The red horizontal line shows the amplitude of the
uncontrolled periodic orbit (color figure online)

Fig. 7 Thalamic neuron model: blue � (resp., red ∗) shows the con-
trol error for the control from our new (resp., the previously proposed)
algorithm as a function of the ratio T1/T (color figure online)

This is evident from the first two panels of the bottom row
of Fig. 6, as well as from the control error, which is 0.032
and 0.088 for our new and the previous optimal control algo-
rithms, respectively. Our new control algorithm does better at
the expense of consuming more energy (1119.15 units) com-
pared to (784.16 units) in the previous control algorithm.

We test the control algorithms for various target phase
changes, corresponding to the range from T1 = 0.2T to
T1 = 1.8T . Fig. 7 shows control error for these phase changes
for both our new and the previous optimal control algorithms.
We see that the control error grows as the control objec-
tive becomes more extreme, which is expected. But it still

remains relatively small for our new control algorithm. This
again shows that our new control algorithm is more effective
in changing the phase than the previously proposed control
algorithm.

4.4 Controlling circadian oscillators

4.4.1 Motivation

Neurons in the suprachiasmatic nucleus (SCN) of the brain
are responsible formaintaining the circadian rhythm inmam-
mals. This rhythm is synchronized with the external day and
night cycle under normal conditions. A disruption between
these two rhythms can happen due to multiple reasons, such
as travel across time zones, starting a night shift job, work-
ing in extremeenvironments (space, earth poles, underwater),
etc. Such an asynchrony leads to several physiological dis-
orders like insomnia, improper digestion, and even cancer
and cardiovascular diseases (Rea et al. 2008; Klerman 2005),
thus driving researchers to try to develop ways to remove this
asynchrony. One way of doing this is by using a light stimu-
lus, which affects the circadian rhythm (Czeisler et al. 1989).
Therefore, many researchers have used appropriately timed
exposure to light to entrain circadian rhythm with the new
external cycle; see, e.g., Wever (1985); Czeisler et al. (1990);
Eastman and Martin (1999).

4.4.2 Control strategy

Several control-theoretic approaches have been used in the
past to determine timing and intensity of the light stimulus
to synchronize the circadian rhythm with a new light–dark
cycle (Dean et al. 2009; Forger and Paydarfar 2004; Zhang
et al. 2012). One way of doing this is by changing the phase
of one circadian oscillation so that the oscillation gets aligned
with the external cycle after the end of the controlled oscil-
lation. As an example, consider a person who is going on
a vacation to London, traveling east from New York City.
The day–night cycle in his new environment would be 5 h
behind his internal rhythm. Thus, advancing the phase of his
internal circadian rhythm by 20 percent (≈ 5 h) for one cycle
would realign his internal rhythm with the new environment.
This would be equivalent of taking T1 = 0.8T in our control
algorithm.

We use the 3-dimensional model of the clock gene regula-
tion in SCN developed by Gonze et al. (2005) to demonstrate
our control algorithm. This model has a negative feedback
loop, where production of one gene leads to the inhibition of
the other, thus causing oscillatory behavior. It is given as:

Ẋ = v1
K 4
1

K 4
1 + Z4

− v2
X

K2 + X
+ L(t), (38)
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Fig. 8 Circadian oscillator: top row shows the uncontrolled periodic
orbit, PRC, and IRC for the circadian oscillator model with parameters
given in the main text. The middle (resp., bottom) row shows the trajec-
tory, time series, and control input for control based on our new (resp.,
the previously proposed) algorithm. Control is on (resp., off) for the
portion shown by the thick black (resp., thin blue) line. The trajectory
starts at the small red circle. The red horizontal line shows the amplitude
of the uncontrolled periodic orbit (color figure online)

Ẏ = k3X − v4
Y

K4 + Y
, (39)

Ż = k5Y − v6
Z

K6 + Z
. (40)

Here X represents mRNA concentration of a clock gene,
per or cry, Y represents the resulting protein, PER or
CRY (Gad et al. 2008), and Z is the active protein which
inhibits production of the clock gene. L(t), the perturba-
tion in ambient light, acts as the control input. Parameters
v1, K1, v2, K2, k3, v4, K4, k5, v6, K6 are taken fromFig. 1 in
the article of Gonze et al. (2005), and are given in “Appendix
B.3.” These parameters give a stable periodic orbit with time
period T = 23.5398 hrs and the nontrivial Floquet multi-
pliers 0.9509 and ≈ 0. Since one of the nontrivial Floquet
multipliers is approximately 0, we only consider the isostable
coordinate corresponding to the larger nontrivial Floquet
multiplier in the augmented phase reduction. The top row
of Fig. 8 shows the uncontrolled periodic orbit, PRC, and
IRC for the given parameter values. We have taken the con-
trol parameters α = 10 and β = 0.1. We again give more
weight to minimizing energy to compensate for our new con-
trol algorithm’s tendency to require more energy than the
previously proposed control algorithm for this problem.

The resulting trajectories, time series, and control inputs
are shown in the bottom two rows of Fig. 8. We see that
our new control algorithm is able to advance the phase while
keeping the trajectory close to the unperturbed periodic orbit.
It is able to do so while giving considerable importance to
energy minimization (α is 100 times bigger than β). On the

Fig. 9 Circadian oscillator: blue � (resp., red ∗) shows the control
error from the control based on our new (resp., the previously proposed)
algorithm as a function of the ratio T1/T (color figure online)

other hand, with the previous control algorithm, the trajec-
tory moves away from the unperturbed periodic orbit. This is
apparent from the control error as well, which is 0.0099 and
0.0665 for our new and the previous optimal control, respec-
tively. Our new control algorithm does better at the expense
of consuming more energy (0.00096 units) than the previous
control algorithm (0.00015 units).

We also test our algorithm formore extreme cases of asyn-
chrony, ranging from T1 = 0.5T (traveling west and gaining
12 h in time) to T1 = 1.4T (traveling east and losing 9 h in
time). Figure 9 shows the control error for these cases for both
our new and the previous control algorithm. The control error
increases as the control objective becomesmore extreme, but
it still remains relatively small for our new control algorithm.
This again demonstrates the effectiveness of our new control
algorithm over the previously proposed control algorithm.

5 Effect of noise

So far we have demonstrated that our new control is effective
in deterministic systems.However, real systems are subjected
to noise, so here we analyze how such noise affects the per-
formance of our new algorithm. We calculate control from
the deterministic phase model (24 and 28) and apply it to the
full model with added white noise. So in effect we consider
noise to be an external disturbance that affects only the first
state variable that we control directly. Thus we simulate the
stochastic dynamical system

dx
dt

= F(x) + [u(t) + ση(t), . . . , 0]T . (41)

Here ση(t) = σN (0, 1) is zero mean white noise with
strength σ . To simulate this equation numerically, we rewrite
it as

dx = F(x)dt + [u(t)dt + σdW (t), . . . , 0]T , (42)
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Fig. 10 Hopf bifurcation normal form with white noise: top (resp.,
bottom) row shows the control error (Eq. 30) from the control based on
our new (resp., the previously proposed) algorithm for the system with
white noise (color figure online)

where dW (t) = η(t)dt and W (t) is the standard Weiner
process. We use the second-order Runge–Kutta algorithm
developed in (Honeycutt 1992) to simulate the above equa-
tion.

To analyze the effect of noise on the performance of our
control algorithm, we perform a parametric study by calcu-
lating control error as a function of the nontrivial Floquet
multiplier and the ratio T1/T for the Hopf bifurcation nor-
mal form. We take the noise strength σ = 0.1rpo, where
rpo = √−a/c is the radius of the periodic orbit. This ensures
that the relative noise strength remains the same as the radius
of the periodic orbit varies with the parameter a. The top
(resp., bottom) row of Fig. 10 shows the control error for
the new (resp., the previously proposed) control algorithm in
presence of white noise.We see that this figure is very similar
toFig. 3wherewedidnot includewhite noise.The additionof
white noise increases control errors for both the algorithms
slightly, but the algorithm based on the augmented phase
reduction still does much better than the algorithm based on
standard phase reduction. Noise doesn’t affect the perfor-
mance of the previous algorithm when the nontrivial Floquet
multiplier is close to 0 and the ratio T1/T is close to one.
This is because any perturbation caused by the noise is nulli-
fied quickly under the evolution of the vector field. However,
the control error for our algorithm based on the augmented
phase reduction remains small in the presence of noise for
all analyzed values of the nontrivial Floquet multipliers and
ratios T1/T .

We also present results for controlling the circadian oscil-
lator from Sect. 4.4 with white noise added to the X equation.
Here we take the noise strength σ = 0.004, and the rest of
the control parameters are the same as before. The corre-
sponding results displayed in Fig. 11 show that white noise

Fig. 11 Circadian oscillator with noise: top left (resp., bottom left)
panel shows the controlled trajectory in blue for control based on our
new (resp., the previously proposed) algorithm, and the periodic orbit
in black. The trajectory starts at the small red circle and reaches the
small blue circle at time T1 = 0.8T . Top right (resp., bottom right)
panel shows the control input added to the noise for our new (resp., the
previously proposed) algorithm (color figure online)

drives the controlled trajectory slightly further away from the
periodic orbit for both algorithms, but our new control is still
able to bring the trajectory close to where it started at time
T1. However, the previously proposed control algorithm fails
to do so. Thus these results demonstrate the effectiveness of
our new control algorithm in the presence of noise.

6 Discussion and conclusion

Standard phase reduction is a vital tool in the analysis and
control of biological oscillators. It reduces the dimension
of dynamical systems and can make their control experi-
mentally feasible. However, it only allows a small stimulus
without the risk of driving the oscillator away from the
periodic orbit. This limitation makes it unsuitable for some
control purposes, especially when a significant control stim-
ulus is required or when a nontrivial Floquet multiplier of the
periodic orbit is close to 1. This suggests the use of control
techniques based on the augmented phase reduction. In this
article, we have developed a novel optimal control algorithm
based on the augmented phase reduction to change the phase
of a periodic orbit. Our algorithm not only minimizes the
total energy consumption but also reduces the controlled tra-
jectory’s transversal distance from the uncontrolled periodic
orbit. This is because of inclusion of both the “energy” (u2)
and the “transversal distance” terms (ψ2) in the cost func-
tion ensures that the control input remains small overall, and
keeps the controlled trajectory from getting far away from
the unperturbed periodic orbit.
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Our algorithm is applicable to generic oscillators, which
we have demonstrated for a diversity of applications. We
compared the performance of our algorithm as a function of
both the Floquet multiplier and the desired phase change by
applying it to the normal form for the supercriticalHopf bifur-
cation.We devised a novel approach to eliminate alternans by
changing the phase of the pacemaker cells and showed how
our optimal control algorithm can be tied to the formulated
geometrical approach. Such a control strategy could remove
the need to excite the myocardium tissue at multiple sites.
We also applied our algorithm to change the phase of tha-
lamic neurons, which could be useful for desynchronizing
pathologically synchronized neurons, thus holding potential
to alleviate themotor symptomsof essential andparkinsonian
tremor. Such an optimal control is expected to consume less
energy than the pulsatile current used in present DBS proto-
col, thus prolonging the battery life of the stimulator, and also
preventing tissue damage caused by the high-energy DBS
stimuli. Additionally, we applied the algorithm to change the
phase of the clock gene regulation in SCN, which has rele-
vance to treating jet lag or to adapting to night shift work.
Finally, we showed that our algorithm performs well even in
the presence of noise.

For some systems, the previous control algorithm based
on the standard phase reduction could not keep the trajec-
tory close to the unperturbed periodic orbit and thus failed
in achieving the desired control objective. We showed that
our new algorithmworks much better than the previous algo-
rithm, especially when a nontrivial Floquet multiplier of the
periodic orbit is close to 1 and/or a significant change in
phase is required. In such cases, our new algorithm can do
an order of magnitude better in terms of the calculated con-
trol error. From the right column of Figs. 2, 5, 6, and 8, we
see that the control inputs for both of the control algorithms
have similar shape, but are shifted in phase. As seen in these
figures, for our new control algorithm, the control input is
large when the IRC is near zero and is small when the IRC
is large. This diminishes the effect of the control input on
the isostable coordinate, and thus, the oscillator’s transversal
distance from the periodic orbit remains small. This ensures
that the augmented phase reduction represents the dynamics
accurately, making the control more effective. Our new con-
trol algorithm does better at the expense of consuming more
energy than the previously proposed control algorithm. We
expect that by tuning the control parameters α and β, this
energy difference can be reduced.

PRCs are measured experimentally by giving perturba-
tions to the oscillator at various phases and recording the
phase change caused by the perturbation as a function of the
stimulation phase. We propose that IRCs can be measured in
a similar way. One can apply perturbations at various phases
and record the resulting “amplitude” change as a function of
the stimulation phase, or one can record the time required for

the trajectory to return to the periodic orbit as a function of
the stimulation phase. Either of these approaches will give a
measure of the IRC,which can be appropriately scaled to give
the true IRC. Thus, just like the control algorithm based on
standard phase reduction, we propose that our new algorithm
from this paper can be applied in an electrophysiological set-
ting.
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ANumerical Methods

In this appendix, we give details on the numerical methods
we used to compute the Floquet multipliers, PRC, and IRC,
and solve the Euler Lagrange equations and the full model
equations.

A.1 Computation of PRC

For the normal form of the Hopf bifurcation, we can com-
pute the PRC and its derivative w.r.t. θ analytically, see,
e.g., Brown et al. (2004). For computing the PRCs (and
their derivatives w.r.t. θ ) of the YNI, thalamic neuron, and
the clock gene regulation model, we use the XPP package
(Ermentrout 2002), which is widely used by the commu-
nity working on nonlinear oscillators. This package solves
the appropriate adjoint equation backward in time along the
periodic orbit to compute the PRC as a function of time. We
scale the PRC computed by this package by ω, as we con-
sider PRC as Z(θ) = ∂θ

∂x , whereas the computed PRC from

the XPP package is Z̃(t) = ∂t
∂x . Note that the XPP com-

putes the derivative of the PRC w.r.t. time
( ˙̃Z(t) = ∂2t

∂x∂t

)

,

which is numerically equivalent to its derivative w.r.t. θ
(

Z ′(θ) = ∂2θ
∂x∂θ

)

. The XPP package gives the PRC and its

derivative as a time series. After appropriately scaling the
time series, we write them as an analytical expression of θ

by approximating them as a finite Fourier series, to be used in
the numerical computation of the Euler–Lagrange equations.

A.2 Computation of Floquet multipliers

Once the PRC has been computed, we choose an arbitrary
point on the periodic orbit as θ = 0 and approximate the
isochron Γ0 as an n − 1 dimensional hyperplane orthogonal
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to the PRC at that point. To compute the Jacobian DF , we
compute x j

Γ (as defined beneath Eq. 8 in the main text) for
a large j , for a number of initial conditions x0 spread out on
the isochron. Eigenvector decomposition of DF gives us the
Floquet multipliers of the periodic orbit and the correspond-
ing Floquet exponents ki . Note that for planar systems, the
nontrivial Floquet exponent can be directly computed from
the divergence of the vector field as (Glendinning 1994)

k =
∫ T
0 ∇ · F(γ (t))dt

T
. (43)

A.3 Two point boundary value problemwith Newton
iteration

We calculate the IRC and solve the Euler–Lagrange equa-
tions as a two point boundary value problem using Newton
iteration, which we briefly summarize. Consider a general
two point boundary value problem

ẏ = f (t, y), y ∈ R
n, 0 ≤ t ≤ b, (44)

with the linear boundary condition

B0y(0) + Bby(b) = a, B0, Bb ∈ R
n×n .

To solve such a boundary value problem, we integrate Eq.
(44) with the initial guess c = y(0) and calculate the function
g(c):

g(c) = B0c + Bby(b) − a,

where y(b) is the solution at time b with the initial condition
c. If we had chosen the correct initial condition c, g(c)would
be 0. Based on the current guess cν , and the g(cν) value, we
choose the next initial condition by the Newton Iteration as

cν+1 = cν −
(

∂g

∂c

∣
∣
∣
∣
cν

)−1

g(cν). (45)

We compute the Jacobian J = ∂g
∂c

∣
∣
∣
cν

numerically as

Ji = g+ − g−

2ε
,

where

g+ = g
(

cν + eiε
)

,

g− = g
(

cν − eiε
)

,

Ji is the i th column of J , ε is a small number, and ei is a
column vector with 1 in the i th position and 0 elsewhere.

A.3.1 Computation of IRC

To calculate the IRC, we first compute and save the periodic
solution γ (t) using Matlab’s ODE solver ode45 with a rela-
tive error tolerance of 3e−12, and an absolute error tolerance
of 1e − 15. The next step is to solve the adjoint equation

İ =
(

ki I − DF(γ (t))T
)

I, 0 ≤ t ≤ T ,

with periodic boundary conditions

I(0) = I(T ).

We choose an initial guess I(0), and integrate the adjoint
equation using Matlab’s ODE solver ode45 with a relative
error tolerance of 3e− 12, and an absolute error tolerance of
1e − 15. For Newton iteration, we take

cν = I(0), (46)

g(cν) = I
︸︷︷︸

B0

I(0) − I
︸︷︷︸

Bb

I(T ),

⇒ g(cν) = I(0) − I(T ), (47)
∂g

∂c

∣
∣
∣
∣
cν

= I − J , (48)

where I is the identity matrix, and J is the Jacobian matrix

J = ∂I(T )

∂I(0)
,

which we compute numerically. We use Eqs. (46)–(48)
together with Eq. (45) to compute the next initial condition.
Once a periodic solution is obtained, the computed IRC is
scaled by the normalization condition ∇x0ψi · vi = 1 (Wil-
son and Moehlis 2016). Its derivative w.r.t. θ is obtained
numerically by a central difference scheme

I ′(θi ) = I(θi+1) − I(θi−1)

θi+1 − θi−1
.

The obtained IRC and its derivative w.r.t. θ are written
as analytical expressions of θ by a finite Fourier series
approximation, which is used in the computation of the
Euler–Lagrange equations.

A.3.2 Solving Euler–Lagrange equations

For Euler Lagrange equations based on augmented phase
reduction, we set the boundary conditions as θ(0) =
0, θ(T1) = 2π, ψ(0) = 0, ψ(T1) = 0. We can write
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this as a two point boundary value problem with the function
g as

g(c) =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

B0

⎡

⎢
⎢
⎣

θ(0)
ψ(0)
λ1(0)
λ2(0)

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

c

+

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

Bb

⎡

⎢
⎢
⎣

θ(T1)
ψ(T1)
λ1(T1)
λ2(T1)

⎤

⎥
⎥
⎦

−

⎡

⎢
⎢
⎣

0
0
2π
0

⎤

⎥
⎥
⎦

,

⇒ g(c) =

⎡

⎢
⎢
⎣

0
0

θ(T1) − 2π
ψ(T1) − 0

⎤

⎥
⎥
⎦

.

Since θ(0), and ψ(0) are fixed by our problem, g can be
influenced by changing λ1(0) and λ2(0) only. So we get the
following matrices for Newton Iteration:

cν =
[

λ1(0)
λ2(0)

]

, (49)

g(cν) =
[

θ(T1) − 2π
ψ(T1)

]

, (50)

∂g

∂c

∣
∣
∣
∣
cν

=
[

∂θ(T1)
∂λ1(0)

∂θ(T1)
∂λ2(0)

∂ψ(T1)
∂λ1(0)

∂ψ(T1)
∂λ2(0)

]

. (51)

In a similar way, we get the following matrices for Euler–
Lagrange equations based on standard phase reduction:

cν = λ1(0), (52)

g(cν) = θ(T1) − 2π, (53)
∂g

∂c

∣
∣
∣
∣
cν

= ∂θ(T1)

∂λ1(0)
. (54)

All the integrations are done with Matlab ODE solver ode45
with relative error tolerance ≤ 1e − 10 and absolute error
tolerance ≤ 1e − 10.

BModels

In this appendix, we give details of the mathematical models
used and also their augmented and standard phase reduction
models, which are necessary to reproduce the results of this
article.

B.1 YNI model

Herewe list the both full and reducedmodel parameters of the
YNImodel (Yanagihara et al. 1980) introduced in Sect. 4.2.2.

B.1.1 Full model equations and parameters

The full YNI model is given as

V̇ = Im − INa − Ik − Il − Is − Ih
C

+ u(t),

ḋ = αd(1 − d) − βdd,

ḟ = α f (1 − f ) − β f f ,

ṁ = αm(1 − m) − βmm,

ḣ = αh(1 − h) − βhh,

q̇ = αq(1 − q) − βqq,

ṗ = αp(1 − p) − βp p,

where

αd = 0.01045(V + 35)

(1 − exp(−(V + 35)/2.5)) + 0.03125V
(1−exp(−V /4.8))

,

βd = 0.00421(V − 5)/(−1 + exp((V − 5)/2.5)),

α f = 0.000355(V + 20)/(−1 + exp((V + 20)/5.633)),

β f = 0.000944(V + 60)/(1 + exp(−(V + 29.5)/4.16)),

αm = (V + 37)/(1 − exp(−(V + 37)/10)),

βm = 40 exp(−0.056(V + 62)),

αh = 0.001209(exp(−(V + 20)/6.534)),

βh = 1/(1 + exp(−(V + 30)/10)),

αq = 0.0000495 + 0.00034(V + 100)

(−1 + exp((V + 100)/4.4))
,

βq = 0.0000845 + 0.0005(V + 40)/(1 − exp(−(V + 40)/6)),

αp = 0.0006 + 0.009/(1 + exp(−(V + 3.8)/9.71)),

βp = 0.000225(V + 40)/(−1 + exp((V + 40)/13.3)),

is = 12.5(exp((V − 30)/15) − 1),

Is = (0.95d + 0.05)(0.95 f + 0.05)is ,

INa = 0.5m3h(V − 30),

Ih = 0.4q(V + 25),

Ik = 0.7p(exp(0.0277(V + 90)) − 1)/ exp(0.0277(V + 40)),

Il = 0.8(− exp(−(V + 60)/20) + 1),

C = 1,

Im = 1.0609.

B.1.2 Reducedmodel equations and parameters

For the augmented and standard phase reduction of the YNI
model, we get ω = 0.03088, k = −0.00135. Once the
PRC, IRC, and their derivatives w.r.t. θ are numerically com-
puted (see “Appendix A”), we approximate them as finite
Fourier series to be used as an analytical function in the
numerical computation of Euler–Lagrange equations. θ = 0
corresponds to the initial condition V = −19.2803, d =
0.6817, f = 0.0236, m = 0.8540, h = 0.0013, q =
0.0038, p = 0.6592.
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B.2 Thalamic neuronmodel

Here we list both full and reduced model parameters of
the thalamus model (Rubin and Terman 2004) used in Sec-
tion 4.3.2

B.2.1 Full model equations and parameters

The full thalamic neuron model is given as

v̇ = −IL − INa − IK − IT + Ib
Cm

+ u(t),

ḣ = h∞ − h

τh
,

ṙ = r∞ − r

τr
,

where

h∞ = 1/(1 + exp((v + 41)/4)),

r∞ = 1/(1 + exp((v + 84)/4)),

αh = 0.128 exp(−(v + 46)/18),

βh = 4/(1 + exp(−(v + 23)/5)),

τh = 1/(αh + βh),

τr = (28 + exp(−(v + 25)/10.5)),

m∞ = 1/(1 + exp(−(v + 37)/7)),

p∞ = 1/(1 + exp(−(v + 60)/6.2)),

IL = gL(v − eL),

INa = gNa(m∞3)h(v − eNa),

IK = gK ((0.75(1 − h))4)(v − eK ),

IT = gT (p2∞)r(v − eT ),

Cm = 1, gL = 0.05, eL = −70, gNa = 3, eNa = 50,

gK = 5, eK = −90, gT = 5, eT = 0, Ib = 5.

B.2.2 Reducedmodel equations and parameters

For the augmented and standard phase reduction of the tha-
lamic neuron model, we get ω = 0.7484, k = −0.0225.
Once the PRC, IRC, and their derivatives w.r.t. θ are numeri-
cally computed (see “AppendixA”), we approximate them as
finite Fourier series to be used as an analytical function in the
numerical computation of Euler–Lagrange equations. θ = 0
corresponds to the initial condition v = −57.5298, h =
0.1424, r = 0.0017.

B.3 Clock gene regulationmodel

Here we list the both full and reduced model parameters of
the clock gene regulation model (Gonze et al. 2005) used in
Sect. 4.4.2.

Full model equations and parameters

The full thalamus model is given as

Ẋ = v1
K 4
1

K 4
1 + Z4

− v2
X

K2 + X
+ L(t),

Ẏ = k3X − v4
Y

K4 + Y
,

Ż = k5Y − v6
Z

K6 + Z
,

v1 = 0.7, v2 = 0.35, v4 = 0.35, v6 = 0.35,

K1 = 1, K2 = 1, K6 = 1, k3 = 0.7, k5 = 0.7.

Reducedmodel equations and parameters

For the augmented and standard phase reduction of the clock
gene regulation model, we get ω = 0.2669, k = −0.0021.
Once the PRC, IRC, and their derivatives w.r.t. θ are numer-
ically computed (see “Appendix A”), we approximate them
as finite Fourier series to be used as an analytical function
in the numerical computation of Euler–Lagrange equations.
θ = 0 corresponds to the initial condition X = 0.1948, Y =
0.4154, Z = 1.8530.
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