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We study the effects of a signalling constraint on an individual-based model of self-organizing group for-
mation using a coarse analysis framework. This involves using an automated data-driven technique
which defines a diffusion process on the graph of a sample dataset formed from a representative station-
ary simulation. The eigenvectors of the graph Laplacian are used to construct ‘diffusion-map’ coordinates
which provide a geometrically meaningful low-dimensional representation of the dataset. We show that,
for the parameter regime studied, the second principal eigenvector provides a sufficient representation of
the dataset and use it as a coarse observable. This allows the computation of coarse bifurcation diagrams,
which are used to compare the effects of the signalling constraint on the population-level behavior of the
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1. Introduction

Animal groups, such as schools of fish, flocks of birds, swarms of
locusts, and herds of wildebeest, often display collective motion
[1-5]. Such groups may exhibit a variety of behaviors including
swarming about a food source, milling around a central location,
or migrating over large distances in aligned groups. These collec-
tive behaviors are often advantageous to groups, allowing them
to increase their harvesting efficiency [3,6], better follow migration
routes [7], improve their aerodynamic efficiency [8,9], and avoid
predation [10,11]. In such self-organized groups, there is no leader
directing the motion of the individual members. Instead, the local
interactions of the individual group members with their nearby
neighbors gives rise to the collective dynamics [1].

A single animal group may display different collective behaviors
at different times [12]. For the one-dimensional individual-based
schooling model studied in [13], it was shown that stochasticity
in individual decisions can be responsible for switching between
co-existing collective motion states, corresponding to a ‘stationary
state’, in which the dynamics are driven by repulsion with the
school remaining approximately stationary in time, and a ‘mobile
state’, in which the school is aligned and travels in the positive
or negative direction.

In the schooling model in [13], it was assumed that individuals
are able to communicate with all neighbors within their behavioral
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zones, regardless of their relative position/orientation (i.e., irre-
spective of whether they are ahead or behind or facing towards
or away). For many animal groups, however, it is realistic to as-
sume that individuals may only receive some signals unidirection-
ally [14-16]. This might be due to many factors including their
physiology, behavioral preferences, or environmental conditions
[17,18]. Most organisms, for example, have a limited field of vision,
and neighbors in their ‘blind spot’ are visually undetectable. In the
presence of predators, birds may use directional sound cues to pre-
vent receivers other than the addressee from obtaining informa-
tion [16]. In [19], different animal communication mechanisms
were explored for a one-dimensional hyperbolic partial differential
equation model for group formation. Here we compare the effects
of a change in the communication protocol on the individual-based
schooling model. More specifically, we consider the case where
individuals receive repulsion and attraction signals omnidirection-
ally but orient only with those facing towards them (this is called
mechanism M1 in [19]). In this paper, we demonstrate quantita-
tively how this signalling constraint affects the properties of collec-
tive motion.

The average distance to the nearest neighbor was used as a
coarse variable in [13] to characterize the collective behavior of
the school. This was shown to be a dynamically meaningful obser-
vable through computational experiments testing different candi-
date observables. However, as discussed in [13], the value of this
coarse variable can depend on details of the positions of the indi-
viduals which do not affect the dynamics. This is a consequence
of the fact that the dynamics of each individual are determined
only by the occupancies of each of its behavioral zones (by other
individuals): details of the positions of individuals within these
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zones are not important. This may be viewed as a ‘neutral stability’
property of solutions to the model.

In the present paper, we use an automated data-driven tech-
nique for generating coordinates that correlate with the collective
behavior of the school. We construct the normalized graph Lapla-
cian by interpreting a sample simulation dataset as a graph whose
connection strengths are given by a Gaussian kernel [20]. Using the
framework developed in [21], we then construct ‘diffusion map’
coordinates from the eigenvectors of this matrix and use them to
provide a geometrically meaningful lower-dimensional represen-
tation of the dataset. The advantage of using such an approach over
traditional methods such as principal component analysis is that it
is non-linear and preserves the local dataset geometry [22]. Fur-
ther discussion on using diffusion maps as reaction coordinates
for stochastic dynamical systems can be found in [23]. The diffu-
sion map framework allows us to find a low dimensional represen-
tation of the dynamics of the schooling model. Specifically, we
show that here, a single diffusion map coordinate is sufficient to
characterize the dynamics. This coordinate also overcomes the
‘neutral stability’ issue which arose for the coarse variable used
in [13]. An effective potential is computed and used to locate meta-
stable states, their parametric dependencies, and estimate mean
switching times as in [13]. Coarse bifurcation diagrams are con-
structed for each of the models and compared to quantify the ef-
fects of the signalling constraint on the collective dynamics.
Overall, our results suggest that the diffusion map framework con-
stitutes a promising approach for understanding collective motion
for fish schooling models.

2. Schooling model

We consider a one-dimensional individual-based model for
schooling with local behavioral interactions. Similar individual-
based models have been studied in [13,24-28]. Groups are com-
posed of N individuals with positions c;(t) € R, unit directions
vi(t) = +1, and constant speed s € R. Every time step 7, individuals
simultaneously determine their direction of travel by considering
neighbors within three non-overlapping behavioral zones, a zone
of repulsion of radius r;, and zones of orientation and attraction
with widths Ar,, and Ar,, respectively; see Fig. 1.

These zones are used to define behavioral interaction rules.
First, if an individual i finds other agents within its zone of repul-
sion Z,,, then it orients its direction away from the average relative
directions of those agents. Its desired direction of travel in the next
time step is given by

(O, (1) lcj(t) — ci(t)]

izj

vi(t+1)=— (1)

This vector is normalized as vi(t+7)— yiy, assuming

vi(t + 1) # 0. In the case that v;(t + t) = 0, agent i maintains its pre-
vious direction of travel with v;(t + 7) = v;(t).

If agents are not found within individual i’s zone of repulsion,
then it aligns with neighbors within its zone of orientation Z,, by
computing an average over their directions and that of itself.
Attraction of agent i to neighbors within its zone of attraction Z,
is imposed by orienting it towards the average of their relative
directions. The desired direction of agent i is then given by the
sum of two terms,

Z, Z, Z,
Ar, Ar, T

vi(t) + ch(r)ezui(r)vj(t)

¢ :
vi(t) + ch(r)ezgi(r)vj(t)‘ ‘ZCj([)EZai(t) POEG]

Vi(t+ 1) =

(2)

For the constrained signalling model, an agent only aligns with those
in its zone of orientation that are facing towards itself (i.e., moving
in the direction that it is facing). In this case, the orientation summa-
tion index in (2) will change to {c;(t) € Z,, (t)[v;(t) ‘gigjzig‘ =—-1%.1In
both cases, the vector contribution from orientation and alignment
is then normalized as v;(t + 1) — mm;‘ assuming v;(t + 1) # 0. As
before, if v;(t + T) = 0, then agent i maintains its previous direction
of travel.

Stochastic effects are incorporated into the model by changing
the sign of agent i's desired direction with probability p. Finally,

each agent’s position is updated simultaneously using

Gt +T) = G(t) +svi(t + T)T. 3)

To begin a simulation, individuals are placed in a bounded region
(so that each agent initially interacts with at least one other agent)
with randomized positions and directions of travel.

For the parameters studied in [13], namely N = 100, s = 0.75,
7=01,r=1,0.1<Ar, <13,Ar, =1,p = 0.001, we observe that
both models, each with a different communication rule, can dis-
play two metastable collective states: a ‘stationary state’, in which
the dynamics are driven by repulsion, and a ‘mobile state’, in which
the school is aligned and travels in the positive or negative direc-
tion. For certain values of the parameters, the school stochastically
switches between the stationary and mobile state. For the signal
constrained model the mobile state only exists for higher values
of Ar,; a detailed bifurcation analysis will be performed later in
the paper to quantify this more precisely.

3. Diffusion maps: data-driven detection of coarse observables
3.1. Background

For many complex biological systems, it is difficult to identify
appropriate coarse variables (‘observables’, or ‘reaction-coordi-
nates’) that correlate with the population-level behavior of the sys-
tem and capture its geometric structure. In addition, often such
systems have many degrees of freedom and it is useful to explore
methods for reducing their dimensionality. Here we summarize a
data-mining technique for obtaining a low-dimensional represen-
tation of a high-dimensional dataset [21,23,29], and show how it
can be applied to find an appropriate coarse observable for our
schooling models. This technique has been successfully applied
to other biological models in [28,30,31].

3.2. Diffusion map theory

Suppose {X"}", is a finite dataset with each X" € R. A ran-
dom walk may be defined on a graph based on the dataset con-
structed as follows. Points in the dataset correspond to nodes of
a graph with connection strength given by a Gaussian kernel. (In
[21], anisotropic kernels formed from renormalizing the Gaussian
kernel were also explored.) Applying the graph Laplacian normali-
zation [20] to the kernel, one may form a Markov (row stochastic)
matrix M. With this framework, one can quantify the similarity be-
tween datapoints, the ‘diffusion distance’, by comparing the prob-
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Fig. 1. Behavioral zones for the one-dimensional fish schooling model: Z, = zone of repulsion, Z, = zone of orientation, and Z, = zone of attraction.
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ability distributions of the end points of random walks starting at
the nodes of the graph. A ‘diffusion map’, which maps datapoints to
their eigencomponents in diffusion map space, is constructed from
the first k eigenvectors of M. It was proved in [29] that diffusion
distance is equal to Euclidean distance in diffusion map space.
Thus, datapoints that are close together in diffusion distance are
mapped to points close together in Euclidean distance in diffusion
map space. In addition, if M has a spectral gap, it was shown that a
k < N dimensional approximation is optimal under a certain mean
squared error criterion.

Asymptotic analysis has also shown that for datasets sampled
from an underlying probability distribution, written in Boltzmann
form as p(x) = e~U® with potential U(X), in the limit that the sam-
ple size m — oo and the standard deviation of the kernel ¢ — 0, the
random walk on the graph converges to a diffusion process which
can be described by a Fokker-Planck equation [29]. Different nor-
malizations of the Gaussian kernel were shown to produce differ-
ent differential operators [23]. In particular, for the isotropic
Gaussian kernel, the eigenvalues and eigenvectors of M are discrete
approximations to the eigenvalues and eigenfunctions of the Fok-
ker-Planck operator with potential 2U(X). In the case that U(X)
(and thus 2U(X)) has two wells separated by a large barrier (i.e.,
the dataset has two well-separated clusters), then the diffusion
map approach can identify a single coarse observable, the first
non-trivial (second principal) eigenvector, whose components
parametrize the dataset.

3.3. Diffusion map coordinates and Nystrom extension

We now review the procedure for computing diffusion map coor-
dinates for a dataset, including the use of the Nystrém extension to
obtain diffusion map coordinates for points outside the dataset.
(See [31] for an example of this approach applied to a neural field
model.) Let {X? € RV}, be a finite dataset with distance measure
d: RV x RN — R. For our model, this corresponds to snapshots of
the school taken from a representative steady state simulation. Next,
define the Gaussian kernel K(X®, X9) = exp{—[d(X?,X")]? /62} and
its corresponding matrix representation K;; = K(X® X?). Let

D;; = ZJ ,Kij be the diagonal matrix formed from the row sums of
K. Then, the Markov (row stochastic) matrix M = D~'K defines a ran-
dom walk on a graph whose nodes correspond to the points in the
dataset. The entries M;; can be interpreted as representing the prob-
ability of transition from X to X" in the time At = ¢ [29].

Define the symmetric matrix My = D'2MD~'/2, Note that M is
related to M; through a similarity transformation, so they share
the same eigenvalues. Since M; is symmetric, it is diagonalizable,
and its eigenvectors {¥;}"; form an orthonormal basis of R™. Let
{% }m be the corresponding (real) eigenvalues of My and M. Then
the eigenvectors {®;}/", of M are related to those of M; by the rela-
tion @; = D~'/2¥;. For o large enough, all points are connected (M is
strlctly posmve) and it follows from the Perron-Frobenius Theo-
rem [33] that /; =1 is a unique eigenvalue with corresponding

eigenvector ¢, =[1,1,...Jand 1> /4 > A3 > /4 > .../ = 0. The
diffusion map f : RN —

R* is defined as
FoXO = (0,0, af,), (4)

where an appropriate k is chosen based on the spectral gap. Here k
is the number of non-trivial eigenvalues clustered near one with all
additional eigenvalues close to zero. The notation <I>,(<') represents the
ith component of the kth eigenvector. In practice, we compute the
eigenvalues and eigenvectors of M; and then use the relation
@; = D' to find the eigenvectors of M.

We now discuss how to compute the diffusion map coordinates
for points outside of our dataset. By definition, the eigenvectors ¥;
of M; satisfy the following equation

ZM . (5)

/fol

Here M; = D"'2KD™'/2, so that the component

\/Z} 1

The eigenvectors @; of M satisfy

1 1
ol — po -~
J VDix ! Z}”l] K(X(k) 7 X(l))

We can extend these formulas for a point X™" outside the dataset
using the Nystrom extension [34] as follows:

K(x(") , X(i))

(My),.; = Ms(X _ .
X XNy k(XD x9)

P, (7)

jnew) _ /11 zm: x(new) x() )q,](i), (8)
where
W, X X0 KXt .x% ©)
\/Zm KX, x0)ysm k(X0 X0)
K(xmew xy 10)

KX X KX X,

and (-) denotes expectation over all elements of the dataset. New
datapoints in the @ coordinates are related by the equation

(p(new) — ]

( lpgnew) . (1 1)
J Sm . K(x(new) XO))
}: )

]

An eigendecomposition is typically performed using a sample data-
base and the Nystrom extension is used to efficiently compute the
diffusion map coordinates for points outside of the database. It is
worth noting that the Nystrém extension can be quite successful
in interpolating new points, but can quickly and spectacularly fail
when extrapolating beyond the original database. A discussion of
this can be found in [35].

4. Distance measure for the schooling model

In order to form a Markov matrix whose leading eigenvectors
provide a reduced set of coarse observables for our dataset, we
must first define a distance measure between schools. We choose
the one described below which leads to useful diffusion map
coordinates.

Let N be the size of a school and d;; denote the Euclidean dis-
tance between fish i and j. In the following, we will assume that
members of a given school have been sorted by position in increas-
ing order from left to right. Two schools are considered ‘close’ in
distance if they are composed of members exhibiting the same
behavioral responses at the same ordering index within the school
(modulo the left-right reflection symmetry). To account for the the
fact that the behavioral zones elicit the same response for a range
of distances, we first replace distances d;;,;, i=1,...N—1 be-
tween subsequent individuals as follows:

T'r, di.i+1 <y

To, I <dij1 <To
di,i+1 i

Ta, ro < di,i+1 < Ta

ra+ 57 di,i+1 >Ta

That is, immediate neighbors within the repulsion (resp., orienta-
tion, attraction) zone are moved a fixed distance r; (resp., 1o, I'a)
apart. Agents that are spaced a distance d;;, 1 > r, apart, who do
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not feel any social forces, are moved a fixed distance r, + é from one
another. The precise value of § is not important; in the following we
take § = r;. After replacing distances, the schools are shifted so that
the center of mass lies at the origin.

After this rearrangement, let x; and y;, i = 1,...N, be the posi-
tions of individuals in schools X and Y, respectively. The distance
d(X,Y) between schools X and Y is defined as

d(X,Y) = min(d;, d,),
where
N
di = Zi:l( -y’ d = \/Z; N (=Yni1i)

Here d; and d, are the Euclidean distances between vectors in
RY whose components are the (one-dimensional) coordinates
of the sorted positions of the individuals within the school. Note
that we take min(d;,d,) to take into account the reflection
symmetry.

5. Diffusion map coordinates for the schooling model

Starting with this measure of distance, we can form a Markov
matrix from long-time stationary simulation data of the model
and compute diffusion map coordinates. First we show some re-
sults from a dataset created by sampling every 8 time units a 10*
step run (after initial transients have passed) of the original fish
schooling model with N =100, r. =1, Arg =0.6, Ar, =1, and
o = 40 for the diffusion kernel. Note that the Gaussian kernel acts
as a non-linear transformation on distances between points in the
dataset. The variance of the kernel, g, should be chosen so that
points close by (in the same potential well) have a value close to
one, while points that are far away (in different wells) have a value
close to zero and thus not directly connected to the graph of the
dataset. For the distance measure chosen in Section 4, ‘far away’
is on the order of 90 units, while ‘close by’ is on the order of 5 units.
This narrows the range of possible values for ¢. In practice, differ-
ent values of ¢ were tested, and the spectral gap was used as an

indicator of an appropriate choice. See Appendix for an example
which compares the effects of varying ¢ and relates the diffusion
map procedure to principal component analysis.

Fig. 2 shows a space-time plot of the school as well as its low-
dimensional representation in terms of the second principal eigen-
vector (D(' In Fig. 3 we show that the data collapse on an approx-
imately one-dimensional manifold (prOJected here on the (<1§(’ P ”)
plane). Simulation points in the (d><2' , @) coordinates are colored
according to their associated value of the empirical coordinate
used in [13]:
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Fig. 3. Plot of the data in the plane of the first two non-trivial eigenvectors
(00, @) constructed from the simulation dataset. Simulation points in the
diffusion map coordinates are colored according to their associated value of the
coordinate A, average distance to nearest neighbor. Inset: Plot of the first few
eigenvalues. Since there is a spectral gap, we are justified in keeping ¢(2i) as a single
observable for the system.
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Fig. 2. Positions of N = 100 agents (after transient) for a 10* step run of the original schooling model with parameters s = 0.75, t = 0.1, 1; = 1, Ar, = 0.6, Ar, = 1.0, p = 0.001;
red (resp., blue) indicates motion of an agent in the positive (resp., negative) direction. The black dots indicate the corresponding diffusion map coordinate representation.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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N
Aty = > min g(t) - (o), (12)

J#

the average distance between nearest neighbors. When A is large
(red), the school is in the ‘mobile’ state, and when A is small (blue),
the school is in the ‘stationary’ state. Since the manifold is approx-
imately one-dimensional and there is a large gap in the eigenvalue
spectrum, we appear justified in keeping the first non-trivial eigen-
vector as our coarse observable. The first panel of Fig. 4 shows the
dataset in the two coordinates ¢} and A.

The second panel of Fig. 4 shows why the observable A is less
useful than the diffusion map coordinates. This dataset was ob-
tained by running a 10* step simulation of the schooling model
with the same parameters as above but with a slightly different
initial population density. Like the previous dataset, the school is
transitioning between the stationary and mobile state, however A
takes values in the range [0.98, 1.13] instead of [0.92, 1.07]. This
is a consequence of the model, which specifies rules of motion
based on occupancies of zones, allowing the school to exhibit the
same dynamics at a range of distances between neighbors. Our

i n ]

ot

08 1000 3000 5000 7000 9000 —0.05

7

new distance measure avoids this problem by systematically
replacing the range of distances which yield the same response
in the model by a single distance. As can be seen from Fig. 4, the
diffusion map coordinate @g), obtained on this new dataset by
using the Nystrom extension, gives values in the same range as
the previous dataset.

In some cases, a school may fragment into subgroups displaying
the same or different dynamics. As in [13], such fragmented states
will not be included in the coarse analysis of the dynamics of the
schooling models. Clearly, multiple coordinates are necessary to
successfully describe fragmentation and will be the subject of fu-
ture work.

6. Estimating the effective potential and mean residence times

We may construct an effective potential in terms of the coarse
observable X (in our case &,) from long-time simulation data in
one of two ways. The simplest approach is to form a probability
distribution function P(X) from long-time simulation statistics

and then use the relation U(X)

= —log(P(X)) + const. This method

1.2 0.05
L . ’ ( M

A J 1o 3@
J L L

08 1000 3000 7000 9000 0.05

5000
i

Fig. 4. Left Panel: Representation of the first dataset in A (black) and 4>(2” (gray) coordinates. Right Panel: Representation of the second dataset, a simulation with slightly
different initial population density, in A (black) and <I>5;) (gray) coordinates. The coordinate <1>§') is a more useful coordinate than A, which may take on a range of values when

the school is in the same collective state.
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Fig. 5. Probability distributions and corresponding effective potentials for the original and the signal constrained schooling model with Ar, = 0.2.
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is used in Fig. 5, in which the probability distribution functions and
corresponding effective potentials for the original and signal con-
strained schooling model are compared for Ar, = 0.2. In each case,
a database was formed from one hundred 10* step simulations,
with the first 1000 transient steps discarded. As one can see from
the figure, for Ar, = 0.2, the original model has two metastable
states, the stationary state at @, ~ —0.018 and the mobile state
at @, ~ 0.042. The school exhibits stochasticity-induced switching
between these states, spending more time in the stationary than in
the mobile state on average. For this same parameter value, the
signal constrained schooling model has only one stable state at

A. Kolpas et al./ Mathematical Biosciences 214 (2008) 49-57

strained model does exhibit switching between the stationary
and mobile state. It therefore appears that the signalling constraint
prevents the mobile state from existing below a certain threshold
of the parameter Ar,. We will investigate the precise parametric
dependencies in the next section.

Alternatively, one may construct an effective potential by
assuming that the observable X obeys an effective Langevin equa-
tion, or equivalently its probability distribution P(X) obeys an
effective Fokker-Planck equation

62

@, = —0.018, remaining in the stationary state for the entire dura- oPX,t) 0 {D(”(X)P(X. t)] +— [D<2) X)P(X, t)]. (13)
tion of the simulations. For larger values of Ar,, the signal con- ot oX oX
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Fig. 6. Top: Drift D" (®,) and diffusion terms D?(®,) estimated from the simulation dataset. Bottom: Estimates of the effective potential, using

U(®P,) = — log(P(®,)) + const. (solid gray) and estimating the drift and diffusion terms and using Eq. (15) (black dots).



A. Kolpas et al./ Mathematical Biosciences 214 (2008) 49-57 55

As described in [36], the drift D) (X) and diffusion term D (X) are
related to the short time evolution of the first two moments of an
ensemble of replica simulations by

X (t:X0)) D (xy) — L Var(E:Xo)

M(Xq) =
DHXo) =5 o 2ot |

(14)
where X(t; Xo) denotes a trajectory initialized at X, at t = 0, angular
brackets denote ensemble averaging over different realizations of
the trajectory, and Var denotes the variance of X for such an ensem-
ble. Assuming P(X) ~ exp(—U(X)) at steady state, it follows that the
effective potential U(X) satisfies

U(X) = log(D dX'+const (15)

w D@

One may estimate the effective potential by compiling enough sta-
tistics from long-time simulation data to estimate the drift and dif-
fusion terms using (14). More specifically, X = &, is discretized over
a grid of values in the range [-0.019,0.043] with a uniform grid
spacing of size 10~%. Then, for each X, over the grid, DV (X,) and

@ (X,) are estimated as follows. Every appearance of X, in the
database, within a certain error tolerance, is recorded. Its subse-
quent values are saved over a fixed time interval of 10 steps and
the mean (X(t; Xo)) and variance Var(t; X,) are computed by averag-
ing over these segments. Finally, D" (X,) (resp., D (X,)) are esti-
mated by computing the slope of the linear regression of (X(t;Xo))
(resp., Var(t; Xo)). Once the drift and diffusion terms have been esti-
mated, U(X) may then be estimated by numerically approximating
the integral in Eq. (15).

Fig. 6 shows the drift, diffusion, and effective potential as a
function of X = @,, the latter obtained using both estimation ap-
proaches for the original schooling model with Ar, = 0.6. The
effective potential formed using Eq. (14) agrees very well with that
obtained using the relation U(X) = — log(P(X)) + const, which sup-
ports our choice of @,.

With U(X) and D® (X) computed using the second approach, we
may estimate the mean residence times in each well using Kramers
theory. If D (X) is relatively small, the average time T spent in a
well located at X = Xy, is approximated by [37]

N 21 exp(AU)
D/~U" Xnin)U” Xonax)

(16)

where X = X« is the location of the local maximum (saddle point)
of the potential U, X, is the location of the local minimum,
D = 1(D® (Xmax) + D® Xmin)), and AU = U(Xmax) — U(Xmin)-

For Ar, = 0.6, the mean residence times were estimated to be
T = 850 timesteps for the leftmost well and T = 321 for the well
on the right. The second derivatives in Eq. (16) were estimated
using a centered difference approximation. These estimated times
compare well to the mean residence times observed directly from
the simulation ensemble database, which gave times of approxi-
mately T; = 1026 and T, = 507 for Ar, = 0.6. This lends further
support that &, is an appropriate dynamic observable for the
schooling model.

7. Coarse bifurcation diagrams

We investigate the dependencies of the schooling model on
the parameter Ar,, the width of the zone of orientation, by track-
ing the critical points of the corresponding effective potentials. As
in deterministic bifurcation diagrams, we associate minima of the
effective potential with stable fixed points and 1-D maxima
(more generally, saddle points) with unstable fixed points. With
this association, we may form a coarse bifurcation diagram by
locating the critical points of the effective potential as the param-
eter Ar, is varied.

Original Schooling Model
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Fig. 7. Coarse bifurcation diagrams showing the critical points of the effective
potential as Ar, is varied. The minima of the effective potential correspond to the
stable branch (black dots) and the maxima correspond to the unstable branch (gray
X’s). Top panel: original schooling model; Bottom panel: signal constrained
schooling model.

As we discussed in Section 5, school fragmentation occurs with
some probability in many of our simulations. Thus, some of the
effective potentials (and associated probability distribution func-
tions) have multiple valleys (peaks) for values of Ar, within the
bistable range. These metastable states are associated with the
fragmentation of the group into non-coordinated subgroups and
are typically quite small in comparison to the coordinated wells.
To filter out such spurious states, we perform a quadratic fit of
the effective potential between the stationary and mobile wells.
This allows us to estimate the saddle point of the effective poten-
tial, and thus obtain a good approximation of the unstable branch
of the bifurcation diagram. See Fig. 7 for bifurcation diagrams of
both the original and signal constrained schooling model.

For the original schooling model, two saddle node bifurcations
are found at Arg ~ 0.12 and Ar, ~ 1.1 and the system is bistable
for Ar, within this range. The diagram compares well qualitatively
and quantitatively with the one constructed in [13] with the
empirical observable A. For the signal constrained model, we also
find two saddle node bifurcations, but they are located at
Ar, ~0.85 and Ar,~1.2. Thus, it seems that the signalling
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Fig. 8. (Top) Dataset sampled from two normal distributions centered at (—1,0) and (1,0) with standard deviation . = 0.4 in each case. (Bottom left) Sorted projection of the
dataset onto the first mode obtained using Principal Component Analysis. (Bottom right) Sorted components of the first non-trivial eigenvector obtained from the diffusion

map procedure with ¢ = 0.4 (gray) and ¢ = 1.2 (black).

constraint effectively prevents the mobile state from existing be-
low Ar, = 0.85, and the parameter range for which the original
model is bistable is effectively shortened.

We can rationalize the effect of the signalling constraint as fol-
lows. The parametric range of existence (and stability) of the station-
ary state is virtually the same for both models. This is not surprising
since this state is driven by repulsion events, which are unaffected by
the signalling constraint. On the other hand, a larger Ar, is necessary
to get sufficiently many interactions when the signalling constraint
is present to ‘hold together’ the mobile state.

8. Conclusion

We studied the effects of a signalling constraint on an individ-
ual-based model of self-organizing group formation using a coarse
analysis framework. This involved the selection of a coarse variable
by defining a diffusion process on a graph constructed from a sam-
ple dataset formed from a representative stationary simulation.
The eigenvectors of the graph Laplacian were used to construct
‘diffusion-map’ coordinates which provide a geometrically mean-
ingful low-dimensional representation of the dataset. The first
non-trivial (second principal) eigenvector provided a sufficient
representation of the dataset, so we used it as a coarse observable.
This facilitated the computation of coarse bifurcation diagrams,
which showed that the signalling constraint reduces the region
over which there is bistability between the stationary and mobile
collective motion states. Overall, our results suggest that the diffu-
sion map framework is a promising approach for understanding
collective motion for fish schooling models.

Our approach in this paper complements the one used in[13]. The
main difference in methodology is that [13] used the average

distance to nearest neighbor as a coarse variable to characterize
the collective behavior of the school. This was shown to be a dynam-
ically meaningful observable through computational experiments to
test possible candidate observables. In this paper, we instead used an
automated data-driven technique for generating the coarse variable.
Although it is difficult to interpret this coarse variable physically, we
were able to use it to construct effective potentials and calculate
bifurcation behavior. Notably, the approach described in this paper
overcomes the ‘neutral stability’ issue that arose for the coarse ob-
servable used in[13]. We also note that[13] developed a ‘lifting’ pro-
cedure which initializes the individual-based model with a
particular value of the coarse variable and allowed more efficient
population-level analysis. The need for lifting (and the associated
difficulties) did not arise in the computations presented here.

The framework developed here provides a useful, computer-as-
sisted approach for the analysis of emergent phenomena in indi-
vidual-based models for collective motion. Most analysis of
individual-based models in the field of group formation has relied
on costly long-time simulations, which has limited the number of
individuals that can be simulated as well as the types of analysis
that can be realistically done [38]. This approach allows one to
achieve a new level of understanding and quantification of biolog-
ical self-organization by bridging individual-based modeling with
coarse, population-level analysis. A challenge for extending this
framework to two- or three-dimensional schools is the develop-
ment of an appropriate measure for the distance between two
schools, which perhaps would have to take into account the posi-
tions and velocities of all individuals. This would allow the compu-
tation of diffusion map coordinates which could aid in a similar
analysis of stochasticity-induced switching between the milling
and parallel motion states as was reported in Fig. 7 of [13].
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Appendix. Comparison of diffusion maps and principal
component analysis

The diffusion map approach can be thought of as a non-linear
extension of principal component analysis (PCA) [22,32]. In PCA,
analysis of a dataset is based on the assumption of linearity. A sam-
ple dataset is re-expressed through a linear transformation in
terms of a new orthogonal basis which optimally captures the var-
iance in the dataset. The first few modes provide a low-dimen-
sional representation of the dataset. However, due to this
linearity assumption, PCA may not always find an optimal (in
terms of low-dimensionality) representation of the dataset. For
example, consider as in Fig. 8, two Gaussian clouds in the plane
drawn from normal distributions centered at (—1,0) and (1,0) with
standard deviation o, = 0.4 in both cases. For this dataset, PCA
finds the optimal basis to be e; =[1,0] and e, = [0, 1]. In Fig. 8,
the projection of the dataset onto the first basis vector is plotted,
which in this example is equivalent to plotting the x-coordinates
of the datapoints. As one can see from the bottom left panel of
the figure, the first modal coordinate does not give a sharp param-
etrization of the dataset which distinguishes between the two
cloud clusters.

In contrast, using the diffusion map approach, with Gaussian
kernel of a sufficiently small variance 2, we can capture the bi-
modal structure of the dataset with a single coordinate. In the
bottom right panel of Fig. 8, the sorted components of the first
non-trivial eigenvector obtained from the diffusion map proce-
dure with 6 = 0.4 and ¢ = 1.2 are plotted. The parameter ¢ con-
trols the connection strength of the graph of the dataset. As one
can see from the figure, for ¢ = 1.2 the parametrization of the
dataset appears similar to that of PCA, while for o = 0.4, the first
non-trivial eigenvector is approximately constant in each cloud
with a sharp transition between them. This is due to the fact
that for ¢ sufficiently small, the two clouds are not directly con-
nected in the graph of the dataset and are therefore quite far
away in diffusion distance. Thus, if ¢? is chosen to be of the
same order as the variance ¢? of the dataset, the diffusion
map approach is able to capture the bimodal structure with a
single coordinate.
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