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Abstract

Objective. To demonstrate the applicability of optimal control theory for designing minimum

energy charge-balanced input waveforms for single periodically-firing in vitro neurons from

brain slices of Long-Evans rats. Approach. The method of control uses the phase model of a

neuron and does not require prior knowledge of the neuron’s biological details. The phase

model of a neuron is a one-dimensional model that is characterized by the neuron’s phase

response curve (PRC), a sensitivity measure of the neuron to a stimulus applied at different

points in its firing cycle. The PRC for each neuron is experimentally obtained by measuring

the shift in phase due to a short-duration pulse injected into the periodically-firing neuron at

various phase values. Based on the measured PRC, continuous-time, charge-balanced,

minimum energy control waveforms have been designed to regulate the next firing time of the

neuron upon application at the onset of an action potential. Main result. The designed

waveforms can achieve the inter-spike-interval regulation for in vitro neurons with energy

levels that are lower than those of conventional monophasic pulsatile inputs of past studies by

at least an order of magnitude. They also provide the advantage of being charge-balanced. The

energy efficiency of these waveforms is also shown by performing several supporting

simulations that compare the performance of the designed waveforms against that of phase

shuffled surrogate inputs, variants of the minimum energy waveforms obtained from

suboptimal PRCs, as well as pulsatile stimuli that are applied at the point of maximum PRC. It

was found that the minimum energy waveforms perform better than all other stimuli both in

terms of control and in the amount of energy used. Specifically, it was seen that these

charge-balanced waveforms use at least an order of magnitude less energy than conventional

monophasic pulsatile stimuli. Significance. The significance of this work is that it uses

concepts from the theory of optimal control and introduces a novel approach in designing

minimum energy charge-balanced input waveforms for neurons that are robust to noise and

implementable in electrophysiological experiments.

(Some figures may appear in colour only in the online journal)

1. Introduction

This work investigates the possibility of practical
implementation of alternative stimulation protocols to
conventional pulsatile methods that are more efficient in
terms of performance and the amount of energy used. On a
population level, for example, this idea could prove useful
in prolonging battery life for neurostimulators that are used
to treat various neurological diseases. As a first step, in

this work, we look at single in vitro neurons and show that

by changing conventional pulsatile stimulation methods to

continuous-time analytically-derived optimal stimuli, one can

greatly reduce the input energy needed for regulating the

inter-spike-intervals (ISI) of periodically spiking neurons with

intracellular stimulation.

Optimal control theory is employed to design charge-

balanced, continuous-time, minimum energy input stimuli

1741-2560/13/036005+12$33.00 1 © 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/1741-2560/10/3/036005
mailto:nabi@engineering.ucsb.edu
http://stacks.iop.org/JNE/10/036005


J. Neural Eng. 10 (2013) 036005 A Nabi et al

that can change the ISI of a neuron to pre-specified values.

The optimal control algorithm uses the neuron’s phase

response curve (PRC) which is measured experimentally using

the so-called direct method (see section 2.4). In previous work

[1], following [2], we have applied optimal control theory to

phase models of neurons to derive charge-balanced minimum

energy ISI regulatory input stimuli. In this work, we extend

the theoretical results from [1] and show the applicability of

this method in practice by testing the controller on in vitro

pyramidal neurons in the CA1 region of rat hippocampus.

In addition to being minimum energy, charge-balanced, and

continuous-time, the designed input stimuli are also low

amplitude and of event-based nature. The event-based nature

of the input means that it is only applied when a specific event,

e.g., an action potential, occurs. This way, the onset of an

action potential could be considered as a feedback signal that

triggers the input. The controller would then function without

any need for continuous feedback from the neuron.

In recent years, various studies have considered different

control approaches to neuron systems both on a population

level [3–17] and on a single neuron level [1, 2, 18–25].

However, few papers have shown experimental evidence of

the applicability of their method in practice. In [3], the authors

have employed closed-loop control techniques to test their

hypothesis that the persistent synchronized bursting behavior

seen in high-density cortical cultures is due to the lack of input

from other brain regions. They found that rapid stimulation

through multiple electrodes that is fine-tuned and adjusted

through closed-loop firing rate feedback reduces the bursting

behavior. In [7], a model is developed to describe thalamic deep

brain stimulation (DBS) for patients with essential tremor,

and the authors present experimental results that support

the idea that for high frequency pulsatile stimulation of the

ventral intermediate nucleus of the thalamus there is an

optimal voltage for maximum tremor suppression. In [12], the

authors have applied pallidal and corticopallidal closed-loop

stimulation on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

primates of Parkinson’s disease to modulate the pathological

oscillatory activity of the basal ganglia-cortical networks.

They have suggested that the closed-loop DBS may provide

more effective management of advanced Parkinson’s disease.

In [15], it is demonstrated that a seizure-triggered, feedback

transcranial electrical stimulation can reduce spike-and-wave

episodes in a rodent model of generalized epilepsy. On single

neuron level, the stabilization of the ISI of periodically firing in

vitro neurons is tested in [21] by designing and implementing

a feedback proportional-integral (PI) controller that changes

the input current to the neuron based on the history of previous

ISIs. Also, in [24], a model-independent control algorithm is

considered that regulates an in vitro neuron’s ISI by inputting

an appropriately sized and timed pulse.

The algorithm that we present in this paper utilizes

a neuron’s PRC to design charge-balanced optimal (i.e.,

minimum energy) stimulus waveforms that can control the

spiking of neurons. The method is tested both computationally

and experimentally. In computations, a model of a cortical

pyramidal neuron is used [26]. The PRC for the model

is obtained using the direct method (see section 2.4). The

minimum energy waveforms are tested against conventional

pulsatile controls as well as phase shuffled surrogate

waveforms and variants of the minimum energy waveforms

obtained from suboptimal PRCs. In experiments, the method

is tested on in vitro CA1 hippocampal neurons. Here, the PRC

for each neuron is measured through the direct method, and the

minimum energy waveforms are designed and implemented in

real-time. The performance of the minimum energy controls

in experiments is compared with pulsatile control results of

[24], and it is shown that the new charge-balanced waveforms

achieve the same level of control, but with at least an order of

magnitude less energy.

2. Methods

2.1. GA model

We use a model of a pyramidal neuron introduced by Golomb

and Amitai [26], hereafter referred to as the GA model, to

design and test the performance of the minimum energy

control in simulations. The GA model is a conductance-based

Hodgkin–Huxley [27] type model with five dimensions that

incorporates three potassium currents (IKdr, IKA, IK,slow), two

sodium currents (INa, INaP), one leak current (IL), and an

externally applied current (Iapp). The specifics of this model

can be found in [26]. We present a slightly modified version

for the voltage equation where a noise term is added and the

external current stimulus in the original equations, Iapp(t), is

split into two parts, Ib and Ic(t), as indicated below:

V̇ =
1

c
(−IKdr(V, n) − IKA(V, b) − IK,slow(V, z) − INa(V, h)

− INaP(V ) − IL(V ) + Ib + Ic(t)) + η(t), (1)

where V is the voltage difference across the neuron’s

membrane in mV, c = 1 μF cm−2 is the membrane

capacitance, and Ib is a constant baseline current that induces

stable periodic spiking of the neuron in the absence of any

control current Ic and any noise η(t). For Ib ≈ 0.94 μA cm−2,

the neuron spikes with a period of Ts = 100 ms which gives

ω = 2π
Ts

= 0.0628 rad ms−1. The noise process η(t) is added

to generate variability in the ISI as seen in real neurons. We

take η(t) to be a zero-mean Gaussian white noise process

with standard deviation (std) 0.15, i.e., η(t) = N (0, 0.15),

to generate approximately 10% variability in the ISI for the

GA model. The value of Ib and the noise characteristics are

chosen to approximate the behavior of the in vitro neurons

under study.

2.2. Experimental preparation

The experiments were performed on brain slices prepared

from Long-Evans rats post-natal age 14–21 days old. The rats

were deeply anesthetized using isoflurane before extraction

of the brain. Once extracted, the brain was bathed in chilled

artificial cerebral spinal fluid (aCSF) composed of 124 mM

NaCl, 2 mM KCl, 2 mM MgSO4, 1.25 mM NaH2PO4,

2 mM CaCl2, 26 mM NaHCO3, and 10 mM D-glucose at

pH 7.4, 295 mosM [24]. Transverse slices of the ventral horn
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of the hipocampal region were sectioned 350 μm thick on

a vibratome (Leica Microsystems, Bannockburn, IL). The

slices were placed under the microscope with circulating aCSF

and neurons were visualized using differential interference

contrast optics (Olympus, Center Valley, PA). Whole cell

patch-clamp recordings were performed in the CA1 region of

the hipocampus using pyramidal cells. Borosilicate capillary

pipettes were pulled to 8 M� and filled with intracellular

recording fluid composed of 120 mM K-gluconate, 10 mM

HEPES, 1 mM EGTA, 20 mM KCl, 2 mM MgCl2,

2 mM Na2ATP, and 0.25 mM Na3GTP at pH 7.3, 290 mosM.

The neuron’s membrane potential was amplified and low-

pass filtered at 2.4 kHz (Axon 700B; Molecular Devices,

Sunnyvale, CA) and digitized on a real-time Linux computer

(NiDAQ 6259; National Instruments, Austin, TX).

2.3. Dynamic clamp

Dynamic clamp is a low latency closed-loop control system

that connects a computer or an analog device to one or several

(virtual or in vitro) neurons. In this setting, a patch-clamp

amplifier is connected to a data acquisition card (DAQ) and in

turn to a computer through a real-time interface [28]. We use

the Real-Time eXperiment Interface (RTXI) software, an open

source program for real-time experiments (www.rtxi.org).

RTXI can be used with a variety of DAQ cards through

Comedi project (www.comedi.org) which runs on the real-time

Linux nanokernel (www.rtai.org). RTXI is a modular software

with a freely available software repository. We carried out

experiments at a rate of 5 kHz, which corresponds to a time

step of 0.2 ms. The dynamic clamp is used for measuring

PRCs in both the virtual neuron and the in vitro neurons. It

is also used when the minimum energy waveforms calculated

using MATLAB (Mathworks, Natick, MA) are applied to the

neurons.

2.4. Estimation of PRC

The so-called direct method [29, 30] is implemented to obtain

the PRC in both the simulations and the experiments. In the

direct method, a short-duration pulse with charge Qp is injected

into the periodically spiking neuron at various times for which

the resulting change in the next spike time is measured. This

change, referred to as the spike advance (SA), is recorded as

a function of the time at which the stimulus was applied (see

figure 1). For the results shown in this paper, the pulsatile

input has been applied once every sixth cycle of the neuron’s

oscillation to allow time for the neuron to settle back on

its periodic orbit before the next pulsatile input; this is to

minimize interactions between stimuli which could affect the

estimate of the PRC. Also the pulse duration is fixed at 1 ms.

Once the data points for the SA values are collected, a sixth

order polynomial is fitted to the data which is constrained

to be zero at both ends of the spiking interval [31, 30]. The

reason for constraining the PRC to be zero at both ends is

to account for the fact that biological neurons generally show

little or no sensitivity to inputs right at their spiking point [31].

It is noted that constraining the fit at both ends leaves only
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Figure 1. Measuring the PRC with the direct method. Every sixth
cycle, a pulse stimulus (blue) is applied at a random time tst,
equivalent to a random phase θst, in the neuron’s cycle which
changes the next spiking time of the neuron from its natural ISI, Ts

to a stimulated ISI, Tst. The spike advance, SA = (Ts − Tst), is
measured and recorded.

four coefficients for the fit, which is necessary to reasonably

capture the features and possible sharp changes in the data.

Assuming linearity, the SA data are normalized by Qp to

emulate the effect of an impulsive input with unit charge.

These normalized time data are then scaled according to

the relationship θ = 2π
Ts

t to yield the (infinitesimal) PRC,

Z(θ ). This is used to find the minimum energy waveforms as

explained in the following section.

In measuring the PRC with the direct method, it is

necessary to choose pulse amplitudes that are high enough

to produce spike perturbation values beyond those due to the

neuron’s intrinsic noise. However, if the pulse amplitudes

are too high, they can induce instantaneous spikes, which

means that the neuron has been perturbed too far off of its

periodic orbit to the point where the linearity assumption

of the PRC analysis does not hold. This is usually seen

when the unperturbed neuron is close to threshold. At these

instances, the amount of remaining time to advance the spike,

SA (ms) may be less than what the pulse stimulus could

achieve given the sensitivity of the neuron in that phase:

SA = Ts − Tst � Ts − tst, with tst being the time at which

the stimulus is applied (see figure 1). The effect is that the

data points in the last 20%–30% of the period may fall along a

straight line of slope −1, that passes through the (100, 0)

(ms) point in the spike advance graph (see, for example,

figure 4(A)). This line is referred to as the causality line (see

[31]) and indicates the upper limit for the spike advance for

the neuron. Although some points will inevitably be near or

on the line of causality towards the end of the time cycle, a

pronounced causality line is an indicator that the stimulation

has reached saturation, and thus has induced nonlinearities in

the computation of the PRC. In practice, the pulse amplitudes

are set by trial and error and on a case by case basis.

To measure the level of induced nonlinearity for the PRCs,

a nonlinearity coefficient, CNL, is defined as the percentage

of the data points that fall in a band neighborhood of the

causality line. The width of the band neighborhood is set to

be 0.03 which means that if a stimulus causes an advance

that is equal to or greater than 97% of the maximum possible

advance, then it is considered to have induced nonlinearities in

the neuron dynamics. Therefore, any data point that satisfies

(tst − Tst) � 0.03 is considered to be under the effect of

3

http://www.rtxi.org
http://www.comedi.org
http://www.rtai.org


J. Neural Eng. 10 (2013) 036005 A Nabi et al

induced nonlinearity. This way, the more pronounced the

causality line, the higher the CNL.

It is noted that for computational models of periodically

spiking neurons, the PRC and hence the phase model,

can be obtained either by implementing the direct method

or by solving the appropriate adjoint equation [32, 33]. For

biological neurons however, one can only use the direct method

to obtain the PRC experimentally.

2.5. Minimum energy control

The phase model for a neuron under an arbitrary, small external

stimulus u(t) is written as [32, 33]

θ̇ = ω + Z(θ )u(t), (2)

where θ ∈ [0, 2π) is the neuron’s phase. By convention, θ = 0

is associated with the onset of a spike for the neuron and the

neuron is periodically spiking in the absence of external input

with period Ts = 2π
ω

. The natural frequency of the neuron is

determined by ω, and Z(θ ) is its PRC.

The objective is to find a bounded input stimulus (|u(t)| �

umax) that is charge-balanced and uses minimum energy to steer

the neuron (2) from θ (0) = 0 to θ (Ttarg) = 2π , where Ttarg

is the desired next spiking time for the neuron. The value of

umax is determined by the maximum allowable current that

could be injected into the neuron. This is set by considering

the tolerance of the tissue and possible hardware limitations.

For this study the value of umax was set to 1 nA/μF. In order to

ensure charge-balance for the input, one can define the variable

q(t) : R → R as the total accumulated charge in the neuron at

time t due to the external input u(t). Then one can write

q̇ = u(t), (3)

with the boundary conditions q(0) = q(Ttarg) = 0. Minimizing

the total input energy is equivalent to minimization of the cost

function

C =

∫ Ttarg

0

u2(t) dt. (4)

Following standard optimal control theory [34], one can

write the Hamiltonian for this optimal control problem as

H(�) = u2(t) + λ1(t)(ω + Z(θ )u(t)) + λ2(t)u(t), (5)

where � = [θ, q, λ1, λ2, u], and λ1(t) and λ2(t) are

the Lagrange multipliers (or co-states) associated with the

θ -dynamics (2) and the q-dynamics (3), respectively. Using

this Hamiltonian, the necessary conditions for optimality are

written as

θ̇ =
∂H

∂λ1

⇒ θ̇ = ω + Z(θ )u(t), (6)

λ̇1 = −
∂H

∂θ
⇒ λ̇1 = −λ1(t)Z

′(θ )u(t), (7)

q̇ =
∂H

∂λ2

⇒ q̇ = u(t), (8)

λ̇2 = −
∂H

∂q
⇒ λ̇2 = 0, (9)

where prime represents differentiation with respect to θ

[34, 35]. From Pontryagin’s minimum principle, an optimal

control stimulus is one that minimizes the Hamiltonian (5)

u∗(t) = arg min
|u(t)|�umax

(

u(t)2 + λ∗
1(t)(ω + Z(θ∗)u(t))

+ λ∗
2(t)u(t)

)

,

where the search for the control stimulus is constrained

to values bounded in magnitude by umax and the asterisk

superscript denotes optimal values. This equation yields

u∗(t) = − 1
2
ψ(t), |ψ(t)| � 2umax,

u∗(t) = −sign(ψ(t))umax, |ψ(t)| > 2umax. (10)

where ψ(t) = λ1(t)Z(θ (t))+λ2. We note that λ2 is a constant

according to (9).

By substituting (10) in the system of equations (6)–(9) we

arrive at a two point boundary value problem (TPBVP) which

we solve using a shooting method. The boundary values for

this system are θ (0) = q(0) = q(Ttarg) = 0 and θ (Ttarg) = 2π .

This formulation can be solved to yield the minimum energy

control stimulus for any oscillatory system for which a PRC

can be obtained.

2.6. Surrogates of minimum energy control

In order to better evaluate the performance of the minimum

energy control waveforms, a set of surrogate waveforms is

devised that use the same amount of energy, but will be shown

to perform less efficiently. These are phase shuffled surrogates,

where the Fourier transform of the PRC is calculated, the

phases are randomized and then an inverse Fourier transform

is performed. This preserves all the linear statistics, mean,

standard deviation and autocorrelation of the data, but the

resulting waveform does not have the correct phases [36].

2.7. Variants of minimum energy control

To further evaluate the performance and robustness of the

minimum energy waveforms, variants of these waveforms

are computed from variations of the PRC. These variant

waveforms are shown to achieve less accurate control with

comparable energy levels to those of the minimum energy

waveforms. The variations of the PRC are found by fitting

sixth order polynomials to positive and negative one standard

deviations of the PRC. The fits are constrained to zero at both

ends of the ISI.

2.8. Single pulse control

The single pulse control method is adopted from [24]

to provide another comparison for the results of the

minimum energy method. In [24], a model-independent

control algorithm is introduced that regulates in vitro neurons’

ISI by inputting appropriately sized and timed pulses. Here,

the pulses’ durations have been fixed at 0.2 ms and are

always applied at the point of maximum PRC. By applying

pulses of different amplitudes and measuring the resulting

spike advances, a mapping is found that gives a prediction of
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the needed amplitude for a given advance. This mapping is

characterized by an inverse sigmoidal function of the form

upls = C − D log

(

B − A

SA − A
− 1

)

, (11)

where upls gives the pulse amplitude (in A) for a given desired

spike advance SA (in s). The constant parameters A, B, C and

D are found from fitting the sigmoidal function to the raw data.

In this method, the pulses are timed to occur at the point

of maximum PRC, where they would be most effective. This

yields the lowest pulse amplitude and thus, highest energy

efficiency for the family of all single pulse controls of width

0.2 ms. In fact, one can even argue that this results in higher

energy efficiency than any other single pulse protocol with

pulse durations less than 1 ms. This is because if one decreases

the pulse duration, one has to increase the amplitude to

deliver the same amount of stimulating charge which, loosely

speaking, is needed to achieve the same amount of spike

advance. However, this results in an increase in the total input

energy. For example, decreasing the pulse duration by a factor

of 5 necessitates an increase of the amplitude by a factor of

5, which in turn, amounts to five times more energy according

to the fact that energy is proportional to the square of the

amplitude multiplied by the time duration: E ∝ u2
pls�t. We

have tested and verified this in simulations as can be seen in

figures 4(E) and (F).

2.9. Application of the control

A set of seven different target ISI values around the neuron’s

nominal ISI, Ts = 100 ms, were considered: ISIT =

[80, 85, 90, 95, 100, 105, 110] ms. For the simulations, the

calculated minimum energy waveforms were applied to the

full five dimensional GA model (1) in the following manner.

At the onset of an action potential, a target ISI, Ttarg ∈ ISIT
is randomly selected and its corresponding minimum energy

waveform is applied to (1) as Ic(t) = c u(t) for t ∈ [0, Tend],

where Tend is the minimum of Ttarg and the time of next neuron

spiking. In other words, the control input is reset to zero at

the onset of the next action potential or when it has been

applied fully for one cycle. Once reset to zero, the input will

remain zero for five cycles of the neuron firing before it comes

back on at the onset of the sixth action potential with another

randomly selected Ttarg. The reason for using five interleave

cycles is to allow the neuron to return to its original periodic

orbit for which the PRC was originally computed. Figure 2

shows an example of how the minimum energy waveforms

are applied to the neuron. The surrogate waveforms, the

pulse control inputs, and the variants of the minimum energy

waveforms are applied in a similar manner. As shown in the

figure, first a target ISI (of, in this case, Ttarg = 90 ms) is

set and its corresponding minimum energy input is applied.

The measured ISI (for this case, Tact = 87.2 ms) is labeled

below, indicating that the neuron spiked earlier than desired.

Then, the input is set to zero for five cycles before turning

back on for another randomly selected target ISI of, in this

case, 105 ms, for which Tact = 108.8 ms. Note that for the first

application of the input shown, the input is reset to zero at the

onset of the next spike, whereas for the second application,
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Figure 2. Method of stimulus administration for both the PRC
measurements and the control. The figure shows an example for the
minimum energy waveforms applied to the noisy GA model. The
surrogate and the pulsatile inputs are applied similarly in the
simulations. In the experiments, different number of interleave
cycles were tested for the minimum energy inputs.

the input has been reset to zero when the full cycle of the
input is applied. Also, it is seen that due to the presence
of noise, during the middle resetting period the actual ISIs
fluctuate around the nominal 100 ms spiking period. In the
physiological experiments, the minimum energy waveforms
were applied in the same way, except that different interleave
cycles were tested. Since the minimum energy waveforms
are continuous in time and have low amplitudes, the neurons
remain close to the periodic orbit at all times, and so it is not
necessary to have five interleave cycles between every two
consecutive administrations of the control. This allows for
more data recording without compromising the accuracy too
much. We have tested zero, three, and five interleave cycles
for the control studies in the experiments and have found that
with small amplitudes, little control is lost when the interleave
cycles are reduced to three.

2.10. Measure of efficiency

To show the performance of the minimum energy control
protocol, a measure of the input energy is used that is of the
form of the cost function written in (4). To find an average input
energy for each of the target ISI values Ttarg,i, (i = 1, . . . , 7),
the quantity

Ei = Ēi j, where Ei j =

∫ Tend, j

0

u2
i dt, (12)

is calculated, where Ēi j is the average of Ei j which is the input
energy for ui, the control corresponding to Ttarg,i, at its jth
application.

To characterize the efficiency of the control, the following
error measures are defined:

erms =

√

∑7
i=1 |Ttarg,i − T act,i|

2

7
, (13)

p =

∑7
i=1 σi

7
, (14)

where, T̄act,i and σi are the average actual ISI and its standard
deviation achieved for the target Ttarg,i, respectively. The
quantities erms and p give an overall performance measure
for each recording across all target ISIs of interest. The lower
the values of these parameters, the better the performance of
the controller.

5
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2.11. Electrophysiology experiments

Neurons in the CA1 region of hippocampus from Long-Evans

rat brain slices were stimulated and recorded using whole

cell patch-clamp recording techniques. The applied current for

achieving periodicity in firing for the neurons was determined

using a dynamic clamp and implemented using the RTXI

platform. The implementation consists of three parts. In the

first part, the neuron was controlled to spike periodically at an

average period of 100 ms. This was done by implementing an

auxiliary closed-loop PI controller that regulates the baseline

current Ib for the neuron. It is important to have stable periodic

spiking behavior in the neuron, as the underlying assumption

in the formulation developed previously is that the system is

on a stable limit cycle. The necessity for having a controller

to maintain the periodicity of the neuron comes from the

empirical fact that the dynamics of in vitro neurons change

slowly over time when patched [21]. To compensate for this

slow change, a PI controller that makes small perturbations to

the DC Ib value at each spike time was used; this was previously

designed and tested in [21]. The DC Ib value is typically around

100 pA cm−2, and the amount of perturbation from the PI

controller is less than 1 pA cm−2 per action potential. The PI

controller runs throughout the experiment.

In the second part, the PRC of the neuron was obtained

from the direct method. Once the neuron had stabilized around

a baseline firing rate, it was stimulated with a 1 ms pulse

stimulus every sixth cycle to obtain the PRC. The stimulation

phase for the pulse was randomly chosen every time. Although

pulses with amplitude 150 pA cm−2 were used for most of the

experiments, the effect of other pulse amplitudes were also

investigated in terms of the amount of induced nonlinearity

that is characterized by CNL. The spike advance measurements

were stored and transferred to MATLAB, from which the PRC

was estimated for each neuron under study.

In the third part, the PRC was used to find the

minimum energy waveforms using MATLAB. The optimal

input waveforms were then fed back into RTXI where, at the

onset of a spike, a target ISI value from ISIT was randomly

chosen and its corresponding optimal waveform was applied

to the neuron for one cycle. The actual ISI of the neuron for

that cycle was measured to evaluate the performance of the

controller. Since a unit membrane capacitance, c, is assumed,

and since u = Ic/c, the resulting optimal control inputs u(t)

can be viewed as electrical current stimuli. The method was

applied to a total of 9 different neurons from four different

rats, and a total of 15 recordings were made.

3. Results

3.1. Simulation results

Figure 3 shows the interaction of the minimum energy

waveforms and the stabilizing PI controller. As it can be seen,

the PI controller’s input remains constant through every ISI

and only changes at the spike times. For the computational

simulations the change in the PI controller input current

is recorded to be of order 10 pA cm−2 (as opposed to

<1 pA cm−2 in the electrophysiology experiments) with
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Figure 3. Stimulation of the noisy GA model. Membrane voltage
changes (top), application of minimum energy waveforms (middle),
and electrical current input change for the stabilizing PI controller
per action potential (bottom). The inputs in (B) and (C) are in
μA cm−2.

most changes occurring almost always immediately after the

application of the minimum energy waveform for Ttarg =

80 ms, aiming to restabilize the neuron to its nominal 100 ms

firing rate.

Figure 4 shows results for the spike advance, PRC and its

variations, minimum energy waveforms, their surrogates, their

positive and negative variants, and amplitude-spike advance

mappings for the pulse control methods for the noisy GA

model. The minimum energy waveforms, uminE, are obtained

from the PRC shown with blue in figure 4(B) and solving

equations (6)–(10) for a given target ISI. Similarly, the

variants of the minimum energy waveforms, u+σ and u−σ , are

computed using equations (6)–(10) with respective variations

of the PRC (magenta and cyan curves in figure 4(B)). The

target ISI value for each waveform corresponds to the time at

which it terminates.

Figure 5 shows results of applying the minimum energy

waveforms, the surrogates, the minimum energy waveform

variants, and the pulse control inputs to the noisy GA model.

The pulse amplitudes used for this simulation are indicated

by dashed lines in figures 4(G) and (H). Performance of

control is measured by reporting the Pearson Rcont value for

correlating target ISI against the measured actual ISI, erms and

p values, and the mean and standard deviation statistics for

each target ISI. The surrogate waveforms, which use the same

amount of energy as the minimum energy waveforms, perform

considerably worse, as expected. Also, the variants of the

minimum energy waveforms perform less efficiently both in

control and the amount of their average energy for achieved ISI.

The efficiency of control for the minimum energy waveforms

and the pulse control inputs are comparable. However, the

minimum energy waveforms use considerably less energy, as

shown in figure 5(G). We see that the minimum energy method

can reduce the level of the input energy by at least an order of

magnitude with respect to the pulsatile method.

3.2. Experimental results

In figure 6, the measured spike advances, the PRC, and the

calculated minimum energy waveforms for an in vitro neuron

are shown. The correlation factor for the spike advance fit is
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Figure 4. Results for the noisy GA model. (A) Spike advance data and fit for the PRC measurement using a 2 μA cm−2, 1 ms pulse
stimulating at randomly selected times every sixth cycle of the neuron’s firing. Error bars indicate the standard deviation of the data at
different stimulation times. The magenta and cyan curves are, respectively, sixth order fits to plus and minus one std points of the PRC data,
constrained to zero at both ends. The diagonal black and dashed gray lines on the right indicate the line of causality and the boundary of its
3% band neighborhood used to calculate CNL. (B) The PRC in terms of phase (blue), its surrogate (red), and its positive (magenta) and
negative (cyan) stds. (C)–(F) Charge-balanced minimum energy stimuli computed from each PRC of corresponding color in (B). The target
ISI value for each waveform corresponds to the time at which it terminates. (G) and (H) Pulse amplitude data and (inverse sigmoidal) fit for
the pulse method with 1 ms and 0.2 ms pulses, respectively. Pulse amplitudes of target ISIs of interest are marked with dashed lines. From
(A) and (B), it is seen that the PRC is maximum at 70% of the full cycle.

found to be Rprc = 0.350. One can see the formation of the

causality line in figure 6(A). For the example shown in this

figure, CNL = 11.0%. We recall that to ensure reliable PRCs,

one must choose pulse amplitudes that are small enough to

avoid large nonlinear responses, while at the same time being

large enough that they can produce a notable variability in the

spike time of the neuron. The PRC for this neuron is shown in

figure 6(B).

When the minimum energy waveforms, shown in

figure 6(C), are applied to the in vitro neuron, the results shown

in figure 7 are obtained. We note that in the results presented in

this figure, we have eliminated any Tact value less than 30 ms

and greater than 200 ms, which amount to less than 1% of the

data, as outliers. The first subplot in this figure summarizes the

target ISI versus actual ISIs achieved in each case, while the

others are the histograms for each of the target ISI values of

interest. The statistics of the actual ISIs achieved by the neuron

are reported in each case in the form of a mean and standard
deviation: Tact = mean ± std. It is seen that for the case with
Ttarg = 100 ms, the mean is 100.7 ms and the standard deviation
is 8.6 ms. Considering the minimum energy waveform for this
case, which is practically zero according to figure 6(C), we
conclude that the standard deviation is a result of the intrinsic
noise in the neuron. The standard deviation in all of the other
cases is seen to be of the same order as in this case, which is
indicative of consistency across the different cases. By looking
at the mean values, however, one observes that in general, as
the target ISI is moved away from the nominal (unstimulated)
ISI of Ts = 100 ms, the error in the mean values tends to
increase. Arguably, one reason for this is that by targeting ISIs
that are further away from Ts, the magnitude of the minimum
energy waveforms increases, which in turn pushes the phase
model of the neuron toward the edge of the range for which it
is valid. A total of 15 recordings were made, as summarized
in table 1.
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Figure 5. Results for the noisy GA model stimulated with (A) the minimum energy waveforms, (B) the surrogate waveforms, (C) and (D)
the respective positive and negative variants of the minimum energy waveforms, (E) and (F) respective 1 ms and 0.2 ms single pulses of
select amplitudes applied at 70% of the full cycle. The mean values of the actual ISIs are shown with gray markers along the straight unit
slope black line. The statistics of control efficiency for each case are reported as mean ± std. (G) Input energy as a function of actual SA
achieved for the minimum energy waveforms (blue), surrogates (red), minimum energy positive (magenta) and negative (cyan) variants, the
pulse method with 1 ms pulses (black), and the pulse method with 0.2 ms pulses (dashed). The energy curve for the surrogate inputs are not
shown, due to very low performance. Markers show the energy associated with the mean actual ISI values from (A) to (F). In fitting the
magenta data, the point plotted with a square was considered an outlier and was excluded from the fit. The energy curves have been shifted
horizontally by a bias value to yield a minimum at zero for ease of comparison. The biases were 0.7, 1.3, 0.7, −2.2, and −1.0 ms for the
blue, magenta, cyan, solid black, and dashed curves, respectively.

4. Discussion

For a periodically firing neuron, the optimal control method

presented here uses the neuron’s phase model and PRC to

compute minimum energy waveforms for specific target ISIs

that are charge-balanced, continuous-time, low frequency and

low amplitude. The minimum energy waveform for each Ttarg

is computed independently. It is seen that these waveforms

resemble the shape of the PRC in their respective time spans.

The inputs that are designed to decrease the ISI (i.e., those with

Ttarg < 100 ms) reach their maximum positive value at a time

around 70% of their respective value of Ttarg. This matches

the location at which the PRC is maximally positive, hence

increasing the dynamics of the neuron due to (1). Charge-

balance is achieved by these waveforms assuming negative

values in the first part of their time span where the PRC is

close to zero and hence least effective. A similar argument

could also be made for those waveforms that are designed to

increase the ISI (i.e., those with Ttarg > 100 ms). They start

positive at first, but take negative values as the time progresses

and the PRC becomes increasingly positive. It is also noted

that the accuracy of the controller could be slightly affected by

the target ISI. This is because the phase model is only valid for

small inputs. Therefore, by demanding larger changes in the
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Figure 6. (A) Spike advance, (B) PRC and (C) minimum energy
control inputs for an in vitro neuron. For the PRC measurements, the
neuron was stimulated with a 150 pA cm−2, 1 ms pulse every sixth
cycle.

Table 1. Results for a total of 15 different recordings from 9
different in vitro neurons. PlsAmp gives the pulse amplitude in
pA cm−2 that was used to obtain the PRC. ILC indicates the number
of interleave cycles that was allowed between every two consecutive
control applications.

Cell/Rec. PlsAmp Rprc %CNL Rcont erms p ILC

1 1/1 200 0.559 21.1 0.160 9.9 7.3 0
2 1/2 100 0.352 13.2 0.594 4.9 9.1 0
3 1/3 150 0.325 17.8 0.717 2.4 11.3 0
4 2/1 200 0.573 17.4 0.697 5.0 6.5 0
5 2/2 100 0.312 7.6 0.666 3.4 8.9 0
6 2/3 150 0.404 15.5 0.650 8.0 12.0 0
7 3/1 200 0.467 22.3 0.478 3.6 12.0 0
8 3/2 100 0.330 13.4 0.644 1.9 10.5 0
9 4/1 150 0.412 7.8 0.559 5.7 7.3 5
10 5/1 150 0.645 37.8 0.423 4.0 14.9 5
11 5/2 100 0.419 25.6 0.214 8.3 16.9 3
12 6/1 150 0.350 11.0 0.820 2.0 8.0 3
13 7/1 150 0.368 24.1 0.404 6.2 12.7 0
14 8/1 150 0.373 7.8 0.773 2.5 6.7 3
15 9/1 150 0.418 11.1 0.599 3.4 10.8 3

neuron’s ISI, thus requiring larger stimuli, the phase model is

pushed beyond the local region for which it is valid, resulting

in less accurate results.
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Figure 7. Results for an in vitro neuron. The upper left subplot
summarizes the control outcome, where the data points are the
actual ISI values Tact, achieved for each of the target ISI values Ttarg.
The mean values of the actual ISIs are shown with gray markers
around the straight unit slope black line. Other subplots show
histograms and statistical results for control to each of the target
ISIs. The actual ISIs achieved for each case are reported in the form:
Tact = mean ± std.

In view of figure 5(G), it should be noted that although

the surrogate inputs are designed to have the same energy

content as the minimum energy waveforms, i.e., same value

of C in (4), when applied to the model, their average input

energy measure for the actual ISI that they achieve is different

from that of the minimum energy waveforms, i.e., different

values for Ei in (12). A similar argument can also be made

for the variants of the minimum energy waveforms. If one

compares the energy content of the variants to that of the

actual minimum energy waveforms using (4), one finds that

the variant waveforms’ energy content is slightly less than

that of the minimum energy ones. However, when applied to

the noisy model, their average input energy measure for a

given actual ISI is slightly higher. This, together with their

lower performance in control, illustrates the robustness of the

designed minimum energy waveforms. The performance of the

variants of the minimum energy waveforms are also slightly

lower than that of the pulsatile methods. However, considering

the amount of difference in their respective energy levels, one

may favor using the optimal control methodology, even with

rough PRC estimates, over conventional pulsatile methods in

regulating the ISI for a neuron.

Results in table 1 suggest that in finding the PRC, there

is a direct relationship between the pulse amplitude and the

nonlinearity coefficient CNL: the higher the pulse amplitude,
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Figure 8. Analysis of the experimental results for in vitro neurons.
(A) and (B): Respective correlation coefficients for the PRC and the
control versus the nonlinearity coefficient. (C) Root mean square
error and (D) average stds of the actual ISIs for the data in each
recording versus CNL. The fitted lines are least squares fits excluding
the solid marker as an outlier. It is seen that better results are
achieved when CNL values are less than 20%. (E) The PRC of an
overstimulated neuron corresponding to the solid marker in A–D. In
this experiment, the PRC measurement has been done with pulse
amplitudes of 200 pA cm−2.

the higher the value of CNL. The reason for this is that larger

amplitude pulses are more likely to induce immediate spikes in

the last 20%−30% of the phase resulting in higher CNL values.

It is also seen from table 1 that the PRC correlation

coefficient (Rprc), the control correlation coefficient (Rcont), the

root mean square error between the target ISIs and actual ISIs

(erms), and the average std (p) for each neuron show a direct

relationship with CNL, as seen in figure 8. When CNL is high,

i.e., when the pulse amplitude is high (e.g., 200 pA cm−2), Rprc

values are also higher (see figure 8(A)). This is because the

PRC fit function is a least squares fit to the data and, by design,

approaches zero at 2π . This produces a higher Rprc value

as the fit becomes close to the dense causality line resulting

from overstimulation. A PRC that is affected by nonlinearities

is not reliable and oftentimes results in inefficient control

characterized by lower Rcont, larger erms, and larger p values.

This is better illustrated in figures 8(B), (C) and (D). Higher

Rcont values are obtained for CNL values less than 20%. These

values of CNL correspond to Rprc values that are mostly less
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Figure 9. Input energy comparison for the method presented in this
paper (markers with solid fit) with that of [24] (dashed). The x-axis
presents the spike time advance (Ts–Tst in figure 1). The data points
for the recording of figure 7, the corresponding least squares
quadratic fit, and the energy curve form [24] have been shifted
horizontally to yield a minimum at zero for ease of comparison. We
see that the method presented in this paper can reduce the input
energy by at least an order of magnitude.

than 0.5. Also, the erms and p are smaller when CNL is smaller.

The data point with CNL = 37.8% in this figure (shown with

solid marker) indicates overstimulation in measuring the PRC,

shown in figure 8(E). Although this recording gives a high

value of Rprc = 0.645, the resulting Rcont = 0.423 value is

not very high, proving the unreliability of the PRC. We did

not observe a notable effect from changing the number of

interleave cycles in the last column of the table. The results

shown in figures 6 and 7 are for the 12th row in the table.

To evaluate the performance of the minimum energy

control method on in vitro neurons, we compare the input

energy obtained for this method with that of the pulse method

presented in [24]. The pulse method in [24] was implemented

on the same type of in vitro neurons, prepared in exactly

the same manner. The result of this comparison is shown in

figure 9. We note that implementing both methods on the

same biological neuron may not give accurate results as the

dynamics of these cells change slowly over time when patched.

Therefore, for a direct comparison of energy and control,

these experiments were done in-silico where experimental

conditions will not confound the findings.

Even though the timing of the pulse control method is

carefully chosen to yield minimum pulse amplitudes, we find

that the (continuous-time) minimum energy control method

presented here achieves the same task with an order of

magnitude less energy. This is a significant achievement,

especially since the designed minimum energy waveforms, in

contrast to the pulse control inputs, are charge-balanced. This

matches the simulation results in figure 5(D). It is important

to point out that for the CA1 hippocampal neurons that

mostly have Type I PRCs, the minimum energy protocol uses

significantly less energy if the charge-balance constraint is

lifted [1].

It is worth mentioning that if one can obtain an estimate of

the oscillatory dynamics model for in vitro cells, for example

if one uses estimation techniques such as Kalman filtering

to characterize the ion channels for the cell, then one can

numerically solve the appropriate adjoint equation to find the

PRC for the estimated model [32, 33]. Of course, in doing this,
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one has to tolerate the potential errors in the estimation of the

model.

In our approach to stimulus waveform design, maximum

stimulus amplitude was taken into account as a safety

constraint [37]. Other safety factors could also be added.

One advantage of a smooth and low amplitude waveform

is that the charge densities are much lower and control can

be achieved much easier within safety bounds. However, we

did not take into account physical properties of the electrode

and the electrode–tissue interface, which should be taken

into consideration for an implanted device [38]. One also

needs to account for the location of stimulation and potential

correlations between the frequency and the amplitude of the

input waveform to ensure an effective input (see [7]). Adding

more realism to the consideration of the stimulus waveform is

a direction in which we would like to continue this research.
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