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Abstract By injecting an electrical current control stimulus into a neuron, one can
change its inter-spike intervals. In this paper, we investigate the time optimal con-
trol problem for periodically firing neurons, represented by different one-dimensional
phase models, and find analytical expressions for the minimum and maximum values
of inter-spike intervals achievable with small bounded control stimuli. We consider
two cases: with a charge-balance constraint on the input, and without it. The analyt-
ical calculations are supported with numerical results for examples of qualitatively
different neuron models.
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1 Introduction

Oscillatory neurons periodically emit action potentials in the form of voltage spikes.
Various mathematical models have been developed to capture the essentials of such
oscillatory behavior (Hodgkin and Huxley 1952; Keener and Sneyd 1998; Rose
and Hindmarsh 1989; Rinzel and Ermentrout 1998; Izhikevich 2007). A powerful
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982 A. Nabi, J. Moehlis

technique for analyzing these mathematical models is phase reduction, in which the
multi-dimensional model is reduced to a one-dimensional phase model. Here the oscil-
latory behavior of the neuron is represented by the evolution of this single phase vari-
able (Kuramoto 1984; Brown et al. 2004b; Izhikevich 2007). Phase models of neurons
have been used to investigate the patterns of synchrony that result from the type
and architecture of coupling (Brown et al. 2003; Ghigliazza and Holmes 2004; Cohen
et al. 1982; Kopell and Ermentrout 1990; Ashwin and Swift 1992; Hansel et al. 1993;
Gerstner et al. 1996), and the response of large groups of oscillators to external stimuli
(Brown et al. 2004a,b; Tass 1999; Forger and Paydarfar 2004).

Phase models of neurons have also been employed in the context of controlling
neurons to give a prespecified behavior (Tass 1999; Moehlis et al. 2006; Danzl et al.
2010; Nabi and Moehlis 2010). Much of the motivation for controlling neurons comes
from the desire to treat certain neurological diseases such as epilepsy and Parkinson’s
disease. In Parkinson’s disease, for instance, the patient experiences involuntary trem-
ors that have been associated with the synchronization of a cluster of neurons in the
thalamus and basal ganglia (Pare et al. 1990). For a surgical treatment referred to as
electrical deep brain stimulation (EDBS), a neurosurgeon guides a small electrode
into the motor-control region of the brain through which high-frequency (≥100 Hz)
electrical current pulses are sent directly into the brain tissue, which empirically has
been found to reduce tremors for some patients (Benabid et al. 1991).

An area of recent research interest has been to find control stimuli, in the form
of electrical currents, that can effectively break this pathological synchrony; see, for
example, Tass (1999) and Danzl et al. (2009). On a single neuron level, this objec-
tive reduces to controlling the spiking time of a single neuron. Here, upon detection
of a voltage spike (or a firing event), a precomputed input stimulus is injected into
the neural system that would shift the next spike time to a certain prespecified value.
This input stimulus may be computed under different criteria and/or constraints. For
example in Moehlis et al. (2006), the control law which minimizes the input energy
is calculated.

In this paper, we instead investigate the time optimal control for a single neuron
described by a phase model, and in particular find the extreme values of the next firing
time when the input is constrained between some prespecified upper and lower bounds.
In such time optimal control problems, which give what is known as bang-bang con-
trol, the objective is to find an input that would take the system to the target point in
minimum or maximum time, without a constraint on the amount of energy needed.
From this analysis, one can gain insight about the maximum capability of treatment
procedures like deep brain stimulation when input stimuli are bounded. The main
focus here will be on charge-balanced input stimuli, a nontrival extension of the time
optimal control calculations in Moehlis et al. (2006) which did not require charge-
balance. The analysis also differs from the work in Nabi and Moehlis (2009) and
Danzl et al. (2010), which considered energy optimal control with a charge-balance
constraint.

The charge-balance constraint ensures that the total electrical charge that is trans-
ferred to the neural tissue is zero over the course of one cycle of control input. This is
important to prevent neural tissue damage. Applying charge-imbalanced inputs, espe-
cially uni-sign inputs, to the neuron causes irreversible Faradaic chemical reactions
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to take place in the environment immediate to the electrode, which results in per-
manent damage to the tissue. With charge-balanced inputs, one prevents this dam-
age, although this is likely to cause corrosive damage to the electrode, something
that can be mitigated by modifying the material and design of the electrode (Merrill
et al. 2005).

There may be other applications of deep brain stimulation for which the results
presented in this paper are relevant, in particular treatments of disorders for which
the increase in the neurons’ firing rate is desireable; this might also be useful for
enhancing a person’s performance, for example by heightening their attention through
targeted stimulation. The results might also be relevant for other stimulated oscillators
for which a phase reduction can be performed. In the biological context, this could
include the heart as stimulated by an artificial pacemaker, or an organisim’s circadian
rhythm as stimulated by light or chemicals (Forger and Paydarfar 2004; Revell 2005;
Shaik et al. 2008).

The organization of this paper is as follows. In Sect. 2, we first introduce the dynamic
phase equation and then we develop and provide solution to the time optimal control
problem formulation in its general format. In Sect. 3, we present four different neu-
ral models and solve the control problem for each of these models. We give detailed
analytical results for three of these models, and numerical results for all four. We
summarize and discuss the results in Sect. 4.

2 Model equations

A periodically firing or spiking neuron can be considered to be a periodic oscillator
with the general dynamical equation (Winfree 2001; Moehlis et al. 2006; Brown et al.
2004b)

dθ

dt
= f (θ) + Z(θ)u(t). (1)

This equation is referred to as the phase model for the neuron. Here, f (θ) represents
the neuron’s baseline dynamics, Z(θ) is called the Phase Response Curve (PRC) of the
neuron, and u(t) is the control input which is an electrical current divided by the capac-
itance of the neural membrane (Moehlis et al. 2006; Brown et al. 2004b). θ(t) ∈ R

≥0,
is the neuron’s phase, where by convention {θ |θ mod 2π = 0} corresponds to the
spiking of the neuron. We note that the typical definition of phase for neurons is such
that for realistic neuron models it yields f (θ) = constant. However, there are models
in the literature (like the theta neuron model that we consider later) that have non-con-
stant f (θ) functions; in the excitable region, where the neuron periodically fires, we
have f (θ) > 0. The PRC for a neuron characterizes a measure of how sensitive the
phase of the neuron is to external stimuli. The timing of the external input plays an
important role in the amount of phase shift in the neuron. It is very unlikely to have
a case where the neuron would be insensitive to the time of the input stimulus. This
means that the PRC does not usually have a constant flat part.

For intrinsically oscillatory neurons with u(t) = 0, the neuron would fire (or
spike) at its natural period T , determined by f (θ). Without loss of generality, we
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assume that the initial time of firing is t = 0. By inputting a control stimulus u(t),
the next firing time of the neuron, or the Inter-Spike Interval (ISI), can be adjusted
to a desired target time t1 �= T . However, we note that |u(t)| must be sufficiently
small for the phase model to remain valid. Strictly speaking, the phase reduction
assumes that |u(t)| is infinitesimal, but in practice (1) is a good model for small
inputs. We will only consider inputs which are small enough that θ̇ > 0 for all times;
we view this as a necessary condition for the validity of the model. As is typical
for realistic neuron models, we also assume that Z(θ) has isolated roots and further-
more, we assume that there does not exist τ1, τ2 : 0 ≤ τ1 < τ2 ≤ t1 such that
Z(θ(t)) f ′(θ(t)) = Z ′(θ(t)) f (θ(t)), ∀t ∈ [τ1, τ2]. We use this assumption later in
Lemma 1 to prove that a particular function of Z(θ) that is of interest also has isolated
roots. We note that this assumption is valid for most realistic neuron models in the
literature.

The objective here is to find the control input u(t) that, when bounded to be less than
a certain value ū in magnitude, i.e. |u(t)| ≤ ū, would result in the minimum/maximum
value of t1. This is an optimization problem in which the next spike time t1 needs to
be extremized. This yields C(t1) = ∫ t1

0 1 dt as the cost function for this system. We
will solve this problem for two different cases: with and without a charge-balance
constraint imposed on the control input. The charge-balance constraint can be mathe-
matically expressed as

∫ t1
0 u(t)dt = 0. In order to simplify the upcoming calculations,

we restate this constraint as follows.
Let q̇ = u(t). Integrating both sides of this equation from 0 to t1, we obtain

q(t1) − q(0) =
t1∫

0

u(τ )dτ.

For the charge-balance constraint to hold we need the righthand side of this equa-
tion to be zero. This means q(t1) = q(0), and assuming that the input is being applied
from time t = 0, which implies q(0) = 0, we have q(t1) = q(0) = 0.

Summarizing, we seek a control input u(t), which extremizes

C(t1) =
t1∫

0

1 dt,

with the following constraints:

θ̇ = f (θ) + Z(θ)u(t), θ(0) = 0, θ(t1) = 2π,
(2)

q̇ = u(t), |u(t)| ≤ ū, q(0) = 0, q(t1) = 0.

The Hamiltonian associated with this system is

H(θ, q, λ1, λ2, u) = 1 + λ1( f (θ) + Z(θ)u(t)) + λ2u(t), (3)
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where λ1 and λ2 are the Lagrange multipliers or the co-states for this system. To obtain
the necessary conditions for optimality one can use the Hamiltonian in (3) and write

θ̇ = ∂ H

∂λ1
⇒ θ̇ = f (θ) + Z(θ)u(t), (4)

λ̇1 = −∂ H

∂θ
⇒ λ̇1 = −λ1( f ′(θ) + Z ′(θ)u(t)), (5)

q̇ = ∂ H

∂λ2
⇒ q̇ = u(t), (6)

λ̇2 = −∂ H

∂q
⇒ λ̇2 = 0, (7)

where prime represents differentiation with respect to θ (Kirk 1970; Lenhart and
Workman 2007).

The optimal control for this problem is obtained from Pontryagin’s minimum prin-
ciple (Kirk 1970; Lenhart and Workman 2007) as

u∗(t) = arg M|u(t)|≤ū
(
1 + λ∗

1

(
f (θ∗) + Z(θ∗)u(t)

) + λ∗
2u(t)

)
,

where M ∈ {min, max}. This yields the following equations for the optimal control
input, u∗(t), for the cases of minimizing the ISI (or t1) of the neuron and maximizing it:

u∗(t) = −sign[λ∗
1 Z(θ∗) + λ∗

2]ū for the min. problem, (8)

u∗(t) = +sign[λ∗
1 Z(θ∗) + λ∗

2]ū for the max. problem. (9)

The star superscript indicates the optimal trajectories or functions. Equations (8) and
(9) indicate that the magnitude of the optimal control is always equal to its bound and
that only its sign changes with respect to time. This solution, known as bang-bang
control, is expected since the objective here is to achieve extreme final time, and thus
one expects maximum effort from the control stimulus. These equations hold because
(λ1 Z(θ) + λ2) only has isolated roots, as follows:

Lemma 1 Suppose Z(θ) has isolated roots and that there does not exist τ1, τ2 : 0 ≤
τ1 < τ2 ≤ t1 such that Z(θ(t)) f ′(θ(t)) = Z ′(θ(t)) f (θ(t)), ∀t ∈ [τ1, τ2]. Then, the
roots of λ1 Z(θ) + λ2 are isolated.

Proof By contradiction, assume that ∃ τ1, τ2 : 0 ≤ τ1 < τ2 ≤ t1 such that λ1 Z(θ) +
λ2 ≡ 0 ∀t ∈ [τ1, τ2]. Taking the derivative of this with respect to time, one gets
λ̇1 Z + λ1 Z ′θ̇ ≡ 0. Substituting for λ̇1 from (5) and θ̇ from (4), dividing both sides
by λ1, and simplifying the results, we get Z f ′ = Z ′ f which contradicts the prior
assumptions. �

Minimizing the ISI corresponds to speeding up the neuron dynamics, whereas
maximizing it corresponds to slowing it down. Equations (4)–(7) are ordinary dif-
ferential equations that need to be solved in order to evaluate the optimal control
equations (8) and (9). When solving the system, we have these four ODEs along
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with one of the last two algebraic equations for u∗(t), depending on which optimi-
zation problem is being considered. This makes five equations with six unknowns:
θ∗(t), λ∗

1(t), q∗(t), λ∗
2(t), u∗(t), and the next spike time t1. So we need one more

equation to be able to solve this problem. This sixth equation is obtained from the fact
that in the absence of any end point cost on the states of the system, the final value of
the Hamiltonian evaluated along the optimal trajectories needs to be zero, regardless of
whether the minimization problem or the maximization problem is considered (Kirk
1970; Lenhart and Workman 2007). This can be stated mathematically as

H(θ∗(t1), λ∗
1(t1), q∗(t1), λ∗

2(t1), u∗(t1)) = 0. (10)

Equations (4)–(8)/(9) together with (10) comprise a two point boundary value problem
(TPBVP) where the boundary values for θ(t) and q(t) are given in (2). We note that
since (4)–(7) are a Hamiltonian system, (10) holds for all t ∈ [0, t1]. The total input
energy associated with the optimal control can be obtained by

E(u∗, t1) =
t1∫

0

[u∗(t)]2dt = t1ū2.

In order to solve this problem we substitute (8) and (9) into (4) and (5) to get

θ̇ = f (θ) ∓ Z(θ)sign[λ1 Z(θ) + λ2]ū, (11)

λ̇1 = −λ1
(

f ′(θ) ∓ Z ′(θ)sign[λ1 Z(θ) + λ2]ū
)
, (12)

where, here and elsewhere, the top signs are for the minimization problem and the
bottom signs are for the maximization problem. In the minimization (resp., maximi-
zation) problem, the average angular velocity of the system with external stimulus
has to be larger (resp., smaller) than that of the system running without any external
stimuli. In other words, when the system is stimulated, θ(t) goes from zero to 2π in
time t1 < T (resp., t1 > T ), where T is the natural period of the system without any
stimuli. So if we integrate both the stimulated and the unstimulated systems from t = 0
to t = t1, while the stimulated system reaches θ(t1) = 2π , the unstimulated system
reaches θ(t1) < 2π in the minimization problem and θ(t1) > 2π in the maximization
problem. Therefore, from (11) we can write

1

t1

t1∫

0

{ f (θ) − Z(θ) sign[λ1 Z(θ) + λ2] ū} dt >
1

t1

t1∫

0

f (θ) dt ≥ 0

for the minimization problem, and

0 ≤ 1

t1

t1∫

0

{ f (θ) + Z(θ)sign[λ1 Z(θ) + λ2] ū} dt <
1

t1

t1∫

0

f (θ) dt
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for the maximization problem. In the limit as ū → 0, i.e., external stimulus vanishes,
t1 → T and the strict inequalities become equalities. For ū �= 0, these equations yield

t1∫

0

Z(θ)sign[λ1 Z(θ) + λ2]dt ≤ 0. (13)

When the charge-balance constraint is imposed, we require that

t1∫

0

u(t) dt = ∓ū

t1∫

0

sign[λ1 Z(θ) + λ2]dt = 0,

which yields
∫ t1

0
sign[λ1 Z(θ) + λ2]dt = 0 (14)

Also, Eqs. (3) and (10) in this case yield

λ1(t1) = − 1 + λ2u(t1)

f (2π) + Z(2π)u(t1)
. (15)

When the charge-balance constraint is not imposed, λ2 and q are eliminated from
the system equations. Then (13) becomes

t1∫

0

Z(θ)sign[λ1 Z(θ)] dt ≤ 0. (16)

We note that, from (5), λ1 = 0 defines an invariant surface, so if λ1(0) < 0 then
λ1 will remain negative, or if λ1(0) > 0 then λ1 will remain positive, i.e., λ1 is a uni-
sign function. Therefore, in (16), sign[λ1 Z(θ)] is either +sign[Z(θ)] or −sign[Z(θ)],
where the plus and the minus signs represent the sign of λ1(t). In order to have (16)
satisfied, necessarily, we must have λ1(t) < 0 for all t . This simplifies (8) and (9) to

u∗(t) = ±sign
[
Z [θ∗(t)]] ū, (17)

for the case where charge-balance is not considered. This is in accordance with the
argument made in Moehlis et al. (2006) which shows that the time-optimal control
(17) extremizes the right hand side of (1) and so is a sufficient condition for achieving
the extremum of ISI.

3 Examples

We now solve this time optimal control problem for examples of Type I and Type II
neurons (Hansel et al. 1995). Type I neurons are those that have a non-negative PRC
for all phases, i.e., Z(θ) ≥ 0 for all θ . For these neurons, any positive (resp., negative)
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Fig. 1 SNIPER PRC with Zd = 1

impulsive input stimulus will advance (resp., retard) the phase regardless of the time
at which the stimulus is applied. For Type II neurons, on the other hand, the PRC
takes both positive and negative values. Therefore, an impulsive input stimulus could
advance or retard the phase depending on the time at which it is applied. The PRC for
a neuron can be obtained experimentally, numerically, or in some cases, analytically.

Specifically, we consider four different neuron models: the SNIPER model, theta
neuron model, sinusoidal model, and phase-reduced Hodgkin–Huxley model. The
SNIPER model arises when the periodic orbit corresponding to periodic firing of
the neuron comes from a Saddle-Node bifurcation of two fixed points on an Infinite
PERiod orbit (SNIPER bifurcation). Close to the bifurcation point one can analytically
approximate the associated PRC; since this turns out to be non-negative, it is a Type I
PRC (Ermentrout 1996; Brown et al. 2004b). The theta neuron model generalizes the
SNIPER model to include the non-oscillatory regime (Ermentrout 1996). On the other
hand, if the bifurcation which gives the periodic orbit corresponding to periodic firing
of the neuron is a saddle-node bifurcation of periodic orbits, then one can approximate
the PRC as sinusoidal, giving the sinusoidal model (Brown et al. 2004b); this corre-
sponds to a Type II PRC. Finally, the phase-reduced Hodgkin–Huxley model uses
the PRC for the Hodgkin–Huxley equations calculated numerically using XPPAUT,
which solves the appropriate adjoint equations (Ermentrout 2002; Brown et al. 2004b).

3.1 SNIPER model

In this model, Z(θ) = Zd(1 − cos(θ)) (see Fig. 1) and f (θ) = ω = constant, where
Zd > 0 is a constant (Ermentrout 1996; Brown et al. 2004b). Equations (11) and (12)
become

θ̇ = ω ∓ Zd(1 − cos(θ))sign[λ1 Zd(1 − cos(θ)) + λ2]ū, (18)

λ̇1 = ±λ1 Zd sin(θ)sign[λ1 Zd(1 − cos(θ)) + λ2]ū, (19)

where, as before, the signs on top are for the minimization problem, and those on the
bottom are for the maximization problem. We consider two cases, namely, with the
charge-balance constraint and without it.

123



Time optimal control of spiking neurons 989

Fig. 2 Evolution of θ in time for ū ≡ 0 (solid gray line) corresponding to the neuron’s intrinsic firing and
ū = 0.2 for both the minimization (solid black line) and the maximization (dashed line) problems. We see
that at t = t1

4 , marked as π/2 on the scaled horizontal axis, when ū ≡ 0, θ(
t1
4 ) = π

2 , when ū �= 0, for the

minimization problem θ(
t1
4 ) < π

2 and for the maximization problem θ(
t1
4 ) > π

2

With charge-balance constraint: When the charge-balance constraint (14) is
imposed, Eq. (13) becomes

t1∫

0

cos(θ)sign[λ1 Zd(1 − cos(θ)) + λ2] dt > 0. (20)

The solution that satisfies (20) and maximizes (resp., minimizes) the average angu-
lar velocity in the righthand side of (18) subject to (14), is one that the function sign[·]
varies according to the following:

sign[λ1(1 − cos(θ)) + λ2] = −1, t1
4 ≤ t ≤ 3t1

4 ,

sign[λ1(1 − cos(θ)) + λ2] = 1, otherwise.
(21)

To see this, we point out that maximizing (resp., minimizing) the average angular
velocity in (18) amounts to minimizing the function

∫ t1
0 (1 − cos(θ))sign[·]dt . Con-

sidering the graph of (1 − cos(θ)) in Fig. 1, it is readily inferred that the value of this
integral is most effectively reduced if the sign[·] function is −1 when (1 − cos(θ))

has largest area under curve, that is for intermediate values of θ . Since we also require
(14), the sign[·] function has to change as indicated in (21) to achieve most effective
minimization. Note that in the presence of external stimuli, even though θ(0) = 0 and
θ(t1) = 2π , but θ( t1

4 ) �= π
2 and θ( 3t1

4 ) �= 3π
2 as shown in Fig. 2. Equations (21) yield

u∗(t) = ±ū, t1
4 ≤ t ≤ 3t1

4 ,

u∗(t) = ∓ū, otherwise.
(22)
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From (21), (18) and (19) become

θ̇ = ω ± Zd(1 − cos(θ))ū, t1
4 ≤ t ≤ 3t1

4 ,

θ̇ = ω ∓ Zd(1 − cos(θ))ū, otherwise,
(23)

λ̇1 = ∓λ1 Zd sin(θ)ū t1
4 ≤ t ≤ 3t1

4 ,

λ̇1 = ±λ1 Zd sin(θ)ū otherwise.
(24)

These equations are symmetric about t = t1
2 , meaning that the (θ, λ1) trajectories take

on identical values for t = t1
2 − δ and t = t1

2 + δ for all δ ∈ [0, t1
2 ], which implies

θ( t1
2 ) = π and λ1(0) = λ1(t1). Since λ1 = 0 is an invariant set, λ1 is either always

positive or always negative. In order to determine the sign of λ1 we note that we want
to satisfy (21). Considering the shape of the PRC function in Fig. 1, one can verify that
the only way to arrive at (21) is to have a negative λ1(t) to flip and scale (1 − cos(θ))

function and a positive scalar value λ2 to shift the product λ1(1− cos(θ)) up along the
vertical axis just enough for (21) to be satisfied. This amounts to having λ1(0) < 0
with λ2 = −λ1(

t1
4 )Zd(1−cos(θa)) > 0, where θa = θ( t1

4 ), for both the minimization
and maximization problems.

From (15), we get

λ1(0) = − 1

ω
(1 ∓ λ2ū), (25)

where we have used the facts that Z(2π) = 0 and λ1(0) = λ1(t1). In order to have
λ1(0) < 0, from (25), we conclude that we must have λ2 < 1

ū , which gives an upper
bound for λ2 for the minimization problem.

By symmetry, θ( t1
2 ) = π . Thus, from (23), provided θ̇ > 0 for all times,

t1/2∫

0

dt =
θa∫

0

dθ

ω ∓ Zd(1 − cos(θ))ū
+

π∫

θa

dθ

ω ± Zd(1 − cos(θ))ū
, (26)

where θa = θ( t1
4 ). In order to solve Eq. (26) in terms of t1, first θa needs to be deter-

mined. We realize that by construction, the first integral in (26) is valid for t ∈ [0, t1
4 )

and the second integral is valid for t ∈ [ t1
4 , t1

2 ]. So solving the first integral in (26),
setting the result equal to t1

4 in the limit, and solving for θa , one gets

θa = 2 arctan
[√

ω
ω−2Zd ū tan

( t1
8

√
ω(ω − 2Zd ū)

)]
, 0 ≤ ū < ω

2Zd

θa = 2 arctan
[ t1

8 ω
]
, ū = ω

2Zd

θa = 2 arctan
[√

ω
2Zd ū−ω

tanh
( t1

8

√
ω(2Zd ū − ω)

)]
, ū > ω

2Zd
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for the minimization problem and

θa = 2 arctan
[√

ω
2Zd ū+ω

tan
( t1

8

√
ω(2Zd ū + ω)

)]
, 0 ≤ ū < ω

2Zd

for the maximization problem. In both of these cases, when ū ≡ 0, t1 = T = 2π
ω

and θa = π
2 . However, when ū �= 0, 0 < θa < π

2 for the minimization problem and
π
2 < θa < π for the maximization problem. Figure 2 shows the evolution of θ in time
for when ū ≡ 0 (intrinsic firing) and for when ū = 0.2 for both the minimization and
the maximization problems. Note that the time axis in scaled so that 0, π

2 , π, 3π
2 , and

2π points on the horizontal axis correspond to t = 0, t1
4 , t1

2 , 3t1
4 , and t1, respectively.

Now solving the second integral in (26) with these θa values results in the following
implicit expressions for t1:

t1
8

√
ω(2Zd ū + ω) = π

2 − arctan
[√

2Zd ū+ω
ω−2Zd ū tan

(
t1
8

√
ω(ω − 2Zd ū)

)]
, 0 ≤ ū < ω

2Zd√
2

8 t1ω = π
2 − arctan

[√
2

8 t1ω
]
, ū = ω

2Zd
t1
8

√
ω(2Zd ū + ω) = π

2 − arctan
[√

2Zd ū+ω
2Zd ū−ω

tanh
(

t1
8

√
ω(2Zd ū − ω)

)]
, ū > ω

2Zd

(27)

for the minimization problem and

t1
8

√
ω(ω−2Zd ū)= π

2
−arctan

[√
ω−2Zd ū

ω+2Zd ū
tan

(
t1
8

√
ω(ω+2Zd ū)

)]

, 0≤ ū <
ω

2Zd

(28)

for the maximization problem.
In order to find an explicit formula for t1, we Taylor expand (27) and (28) for small

ū and solve for t1 to obtain

t1 = 2π

ω
∓ 4Zd

ω2 ū + π Z2
d

ω3 ū2 + O(ū3), (29)

where the top sign is for the minimization problem and the bottom sign for the maxi-
mization problem.

It is worth pointing out that in writing (26), we have assumed that θ̇ > 0 for all
times. Considering (23), we see that for the minimization problem, θ̇ > 0 implies that
when t /∈ [ t1

4 , 3t1
4 ], we must have ū < ω

Zd (1−cos(θa))
for all ū. Lemma 2 proves that

regardless of ū this statement, which is equivalent to saying θ̇ > 0, is always true,
although we recall that the phase model is only valid for sufficiently small ū. For the
maximization problem, when t /∈ [ t1

4 , 3t1
4 ], θ̇ is positive, but when t ∈ [ t1

4 , 3t1
4 ], θ̇

would be positive provided ū < ω
Zd (1−cos(π))

= ω
2Zd

.
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Lemma 2 Consider (23). For the minimization problem, we have

θ̇ > 0 ∀ū for 0 ≤ t ≤ t1
4

and
3t1
4

≤ t ≤ t1. (30)

Proof First consider 0 ≤ t ≤ t1
4 . We consider three cases: ū < ω

Zd
, ū = ω

Zd
, and

ū > ω
Zd

. If ū < ω
Zd

, then min θ̇ = θ̇ ( t1
4 ) = ω − Zd(1 − cos(θa))ū > ω − Zdū > 0

since 0 < θa < π/2. The last inequality follows from the fact that the input over this
time interval slows down the phase evolution of the neuron, so it does not reach a quar-
ter of its total desired phase change of 2π in a quarter of the total time t1. If ū = ω

Zd
, then

min θ̇ = θ̇ ( t1
4 ) = ω cos(θa) > 0 as θa < π

2 for the minimization problem. If ū > ω
Zd

,

then let θ̄ = min(arccos(1 − ω
Zd ū ), θa), where arccos(1 − ω

Zd ū ) is where θ̇ becomes

zero first and θa is where the control switches (before θ̇ becomes negative). This way,
we can say that for 0 < θ ≤ θ̄ , we have θ̇ ≥ 0 and min θ̇ = ω − Zd(1 − cos(θ̄))ū.
We can write

t̄∫

0

dt =
θ̄∫

0

dθ

ω − Zd(1 − cos(θ))ū
,

which yields

t̄ = 2√
ω(2Zdū − ω)

arctanh

[√
2Zdū − ω

ω
tan

(
θ̄

2

)]

, (31)

where t̄ is the time at which θ = θ̄ . Now if θ̄ = θa , meaning t̄ = t1
4 < +∞ then

we must have 0 <

√
2Zd ū−ω

ω
tan( θa

2 ) < 1 for the arctanh(·) function to be real, which

from (47) implies θ̇ ( t1
4 ) = ω − Zd(1 − cos(θa))ū > 0.

However, if θ̄ → arccos(1 − ω
Zd ū ) then it is inferred that t̄ < t1

4 < +∞. From (31)

we see that as θ̄ → arccos(1 − ω
Zd ū ), t̄ → +∞ which contradicts t̄ < t1

4 < +∞. So

t always reaches t1
4 before θ̇ becomes negative. We remark that by symmetry, these

results also imply that θ̇ > 0 for 3t1
4 ≤ t ≤ t1. �

Without charge-balance constraint: When the charge-balance constraint is not
imposed the optimal current is given by (17). For the SNIPER PRC, this optimal
current further simplifies to

u∗(t) = ±ū, (32)

resulting in

θ̇ = ω ± Zd(1 − cos(θ))ū. (33)
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Since the PRC is symmetric about θ = π , one can integrate this equation and write

t1/2∫

0

dt =
π∫

0

dθ

ω ± Zd(1 − cos(θ))ū
,

which yields

t1 = 2π√
ω(ω ± 2Zdū)

. (34)

It should be noted that in order to make sure θ̇ in (33) is always positive, for the
maximization problem, we must have ū < ω

2Zd
.

Figure 3a shows the extreme values for the ISI (or t1) as a function of ū for this
model. As can be seen in this figure, applying the charge-balance constraint has a
notable effect on the value of the extreme t1. This is due to the fact that the optimal
control inputs that we achieve with this model without imposing the charge-balance
constraint are always either positive or negative, and thus very different from the
charge-balanced control inputs.

3.2 Theta neuron model

In this model, Z(θ) = 1 − cos(θ) and f (θ) = 1 + cos(θ) + Ib(1 − cos(θ)). In the
absence of control input, the dynamics of this neuron model are such that for Ib > 0
the neuron fires periodically with a natural angular velocity of ω = 2

√
Ib. However,

when Ib < 0, the neuron is said to be excitable, i.e., upon injection of some appro-
priate input stimuli it would start to fire periodically; otherwise it would not fire at all
(Ermentrout 1996; Moehlis et al. 2006).

In order to investigate the effect of a control input on the firing time of the neuron,
we again consider two cases, namely, a control input with charge-balance constraint
and one without it.

With charge-balance constraint: Since this model has the same PRC as the SNIPER
model (with Zd = 1), similar arguments can be used to arrive at (21) and (22), giving

θ̇ = (1 + Ib ± ū) + cos(θ) (1 − (Ib ± ū)) , t1
4 ≤ t ≤ 3t1

4 ,

θ̇ = (1 + Ib ∓ ū) + cos(θ) (1 − (Ib ∓ ū)) , otherwise,
(35)

λ̇1 = −λ1 sin(θ)(Ib ± ū − 1), t1
4 ≤ t ≤ 3t1

4 ,

λ̇1 = −λ1 sin(θ)(Ib ∓ ū − 1), otherwise.
(36)

As in the case of SNIPER model, due to the symmetry that these equations have
about t = t1

2 , we have θ( t1
2 ) = π and λ1(0) = λ1(t1). Also λ1 is either always negative

or always positive. By considering the shape of the PRC, one can easily verify that we
need λ1(0) < 0 together with λ2 = −λ1(

t1
4 )(1 − cos(θa)) > 0, where θa = θ( t1

4 ), in
order to satisfy (21) for both the minimization and maximization problems.
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Fig. 3 Extreme ISI (or t1) values as functions of the control bound ū. a–c Results for the SNIPER, theta
neuron, and sinusoidal models, respectively. For these results, ω = 1 rad/s, Zd = 1, and Ib = 0.5 have
been chosen where applicable. The solid lines are the extreme t1 for the charge-balanced optimal control
case for the maximization (top solid line) and minimization (bottom solid line) problems obtained from
the analytical formulas provided in the text. The dashed lines are the results without the charge-balance
constraint. (For the sinusoidal model, since the results with or without the charge-balance constraint are
identical, the dashed lines have not been shown.) The dotted lines are the second order approximations
for t1 while the star and circle markers are the results obtained from numerical simulation for the cases
with and without the charge-balance constraint, respectively. d Numerical results for the phase-reduced
Hodgkin–Huxley model with standard parameters given in Appendix, where again the solid lines and the
star markers are for the case with the charge-balance constraint and the dashed lines and the circle marks
are for the case without the constraint. We see that the constraint has negligible effect on the results for this
model

Furthermore, we want to make sure that θ̇ > 0 for all 0 < t < t1. Considering
(35), for the minimization problem, when t ∈ [ t1

4 , 3t1
4 ], θ̇ would be positive provided

(Ib + ū) > − 1+cos(π)
1−cos(π)

= 0. For t /∈ [ t1
4 , 3t1

4 ], we need (Ib − ū) > − 1+cos(θa)
1−cos(θa)

in order

to guarantee a positive θ̇ . Lemma 3 proves that for arbitrary (Ib − ū) this criterion is
always satisfied. In summary, for the minimization problem, taking Ib + ū > 0 will
guarantee that θ̇ > 0 for all times.

Similarly, for the maximization problem, one arrives at the requirement that
Ib − ū > 0 (which means Ib + ū > 0 since ū > 0) for a positive θ̇ .
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Lemma 3 For the minimization problem of the theta neuron model, when 0 ≤ t ≤ t1
4 ,

for arbitrary Ib − ū we have

θ̇ = (1 + Ib − ū) + cos(θ)(1 − (Ib − ū)) > 0 ∀ ū ≥ 0. (37)

Proof For Ib − ū > 0, this is trivial, because one can easily rearrange (37) and write
θ̇ = 1 + cos(θ) + (Ib − ū)(1 − cos(θ)), which is exactly the equation for a non-
stimulated theta neuron model with (Ib − ū) substituted for Ib.

For Ib − ū ≤ 0, when θ = 0 we have θ̇ = 2 > 0. So, for θ̇ to become negative,

it has to become zero first. Assume at t = t̄ < +∞, θ(t̄) = θ̄ = arccos( Ib−ū+1
Ib−ū−1 ) for

which θ̇ vanishes. Integrating the system in (37), we obtain

t̄ = 1√
ū − Ib

arctanh

[√
ū − Ib tan

(
θ̄

2

)]

. (38)

Now if θ(t̄) → arccos( Ib−ū+1
Ib−ū−1 ) then, using the identity cos(θ) = 2 cos2( θ

2 ) − 1, one

can easily verify that tan( θ̄
2 ) →

√
1

ū−Ib
, implying t̄ → +∞, which in turn contradicts

the assumption of t̄ being finite. Thus, θ̇ > 0 for 0 ≤ t ≤ t1
4 and θa < θ̄ regardless of

how negative (Ib − ū) is. �
In order to obtain an analytical solution for t1, one can perform similar calculations

as for the SNIPER model case by writing

t1/2∫

0

dt =
θa∫

0

dθ

(1 + Ib ± ū) + cos(θ) (1 − (Ib ± ū))

+
π∫

θa

dθ

(1 + Ib ∓ ū) + cos(θ) (1 − (Ib ∓ ū))
,

where θa = θ( t1
4 ), giving the following implicit formulas for t1:

t1
4

√
Ib + ū = π

2 − arctan
[√

Ib+ū
Ib−ū tan

( t1
4

√
Ib − ū

)]
, Ib − ū > 0

t1
4

√
2Ib = π

2 − arctan
[ t1

4

√
2Ib

]
, Ib = ū

t1
4

√
Ib + ū = π

2 − arctan
[√

ū+Ib
ū−Ib

tanh
( t1

4

√
ū − Ib

)]
, Ib − ū < 0

(39)

for the minimization problem, where Ib + ū > 0, and

t1
4

√
Ib − ū = π

2 − arctan
[√

Ib−ū
Ib+ū tan

( t1
4

√
Ib + ū

)]
, Ib − ū > 0 (40)

for the maximization problem.
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In order to find an explicit formula for t1, we Taylor expand the first equation in
(39) and (40) for small ū and solve for t1 to obtain

t1 = π√
Ib

∓ I
− 3

2
b ū + π

8
I
− 5

2
b ū2 + O(ū3), (41)

where the top sign is for the minimization problem and the bottom sign for the max-
imization problem. We note that, for the minimization problem, for Ib − ū ≤ 0, we
do not have an approximation for t1. We cannot use the second and third equations in
(39) for small ū as they lead to Ib + ū ≤ 0 in the limit ū → 0, violating the validity
domain for (39).

Without charge-balance constraint: Since the theta neuron model has a PRC with
the same shape as for the SNIPER model, when the charge-balance constraint is not
imposed the optimal control input would be the same as (32), resulting in:

t1
2

=
π∫

0

dθ

1 + cos(θ) + (1 − cos(θ))(Ib ± ū)
.

This yields

t1 = π√
Ib ± ū

, Ib ± ū > 0. (42)

We point out that when the charge-balance constraint is not imposed, we need to have
Ib + ū > 0 for the minimization problem, and Ib − ū > 0 for the maximization
problem in order to have oscillatory motion; this is analogous to the requirement for
Ib in the absence of a control input.

Figure 3b shows the extreme values for ISI (or t1) as a function of ū for this model.
We see that applying the charge-balance constraint has a notable effect on the value of
the extreme t1. This is due to the fact that the optimal control inputs that we achieve
with this model when the charge-balance constraint is not imposed are, similar to the
SNIPER model case, always either positive or negative and thus very different from
the charge-balanced control inputs.

3.3 Sinusoidal model

In this model, Z(θ) = Zd sin(θ) and f (θ) = ω = constant, where Zd > 0 is a
constant. The PRC for this model is perfectly symmetric with respect to the point
θ = π . If one attempts to solve the time optimization problem without considering
the charge-balance constraint, one would use (17) for the optimal control input. This
yields

θ̇ = ω ± Zd sin(θ)ū, 0 ≤ θ < π,

θ̇ = ω ∓ Zd sin(θ)ū, π ≤ θ < 2π.
(43)
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In addition, considering the symmetry of the PRC about θ = π , it follows that if the
system is to evolve from θ(0) = 0 to θ(t1) = 2π , then it would satisfy θ( t1

2 ) = π . This
means that the optimal current in (17) changes sign at t = t1

2 , which implies that it is
actually charge-balanced. If one solves the Euler-Lagrange equations in (4)–(8)/(9),
one would get λ2 ≡ 0 for this model, which implies that the optimal control inputs are
always charge-balanced regardless of imposing the charge-balance constraint or not.

In this model, when 0 ≤ θ ≤ π, θ̇ takes on identical values with respect to θ = π
2 ,

i.e., θ̇ ( π
2 − δ) = θ̇ ( π

2 + δ) for δ ∈ [0, π
2 ]. This means that θ evolves from 0 to π

2 in
exactly the same time as it evolves from π

2 to π , which implies that θ(t = t1
4 ) = π

2 .
Also, we want to make sure that θ̇ > 0 for all times. This is always the case for the
minimization problem, but for the maximization problem it will only hold if ū < ω

Zd
.

One can now calculate the optimal spiking time by integrating (43):

t1/4∫

0

dt =
π/2∫

0

dθ

ω ± Zd sin(θ)ū
.

This yields

t1 = 8
√

ω2 − Z2
d ū2

arctan

[√
ω − Zdū

ω + Zdū

]

, 0 ≤ ū < ω
Zd

t1 = 4

ω
, ū = ω

Zd

t1 = 8
√

Z2
d ū2 − ω2

arctanh

[√
Zd ū − ω

Zd ū + ω

]

, ū > ω
Zd

(44)

for the minimization problem, and

t1 = 8
√

ω2 − Z2
d ū2

arctan

[√
ω + Zd ū

ω − Zd ū

]

, 0 ≤ ū < ω
Zd (45)

for the maximization problem.
In order to find an approximation to t1, we Taylor expand (44) and (45) for small ū

and solve for t1 to obtain

t1 = 2π

ω
∓ 4Zd

ω2 ū + π Z2
d

ω3 ū2 + O(ū3). (46)

Figure 3c shows the extreme values for the ISI (or t1) as a function of ū for this
model. As mentioned before, applying the charge-balance constraint here has no effect
on the value of the extreme t1. This is due to the fact that the optimal control inputs that
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Fig. 4 Hodgkin–Huxley PRC, obtained numerically using XPPAUT with Ib = 10. Dots indicate where
Z = 0

we achieve with the sinusoidal model without imposing the charge-balance constraint
are exactly charge-balanced themselves.

3.4 Phase-reduced Hodgkin–Huxley model

The Hodgkin–Huxley equations are a conductance-based model for neurons proposed
in 1952 as a result of a series of experiments on the giant axon of a squid (Hodgkin
and Huxley 1952). This model has become the prototypical model for neuronal
membrane dynamics. Although not representing human brain neurons, the Hodgkin–
Huxley model exhibits oscillatory behavior, as do human motor control neurons in the
thalamus and basal ganglia regions of the brain. The equations and parameters of this
model are presented in the Appendix.

The PRC for this model has been calculated numerically using XPPAUT
(Ermentrout 2002) with time steps of 0.005 ms, see Fig. 4. The specifics of this
PRC are:

Z(0) = Z(2π) = 7.7 × 10−5,

Z(0.354) = Z(4.120) = 0,

Z(θ) < 0 0.354 < θ < 4.120,

Z(θ) > 0 otherwise.

Due to the complex shape of this PRC, very little can be said analytically. Thus, we
present numerical results for the time optimal problem for this neuron model. In this
model, for the parameters that we use, f (θ) = ω = 0.429 rad/ms = constant which
results in T = 14.63 ms.

With charge-balance constraint: To solve the TPBVP in this case, given a ū, we ini-
tially guess arbitrary values forλ1(0) and t1. We calculateλ2 from (15) with u∗(t1) = ū,
and we solve the system of ODE’s (4)–(7) for 0 ≤ t ≤ t1 using a shooting method.
In this shooting method, we solve the system and if θ(t1) < 2π , we increase t1 by a
certain dt and if θ(t1) > 2π we decrease t1 by dt until |θ(t1) − 2π | < ε1 where ε1 is
a predefined tolerance. In other words, we keep shooting the system with different t1
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Fig. 5 Optimal control for the Hodgkin–Huxley model with the charge-balance constraint imposed for the
minimization problem (top) and the maximization problem (bottom). The control bound was set ū = 0.2.
In the case of the maximization problem, the optimal control has a spike at (2π/t1)t ≈ 0.66 which is due
to a small dent in the PRC for this model at the corresponding location

values until we reach the t1 that would satisfy this inequality. We note here that in this
process, when an upper bound and a lower bound for t1 is found, the actual value of
t1 is then found by employing the bisection method. Now if q(t1) �= 0, we conclude
that the original guess for λ1(0) had been incorrect. So we perform another shooting
process for λ1(0) exactly like the one for t1, until we find the upper and lower bounds
of λ1(0). We then employ the bisection method to converge to the correct λ1(0) for
which |q(t1)| < ε2, where ε2 is a predefined tolerance. Figure 5 shows the results for
this model for ū = 0.2. We used fourth order Runge-Kutta for numerical integration.

Without charge-balance constraint: In this case, λ2 ≡ 0 and the optimal control is
simply given by (17).

Figure 3d shows the extreme values for the ISI (or t1) as a function of ū for this
model. We see that applying the charge-balance constraint has little effect on the value
of the extreme t1. This is due to the fact that the optimal control inputs that we achieve
with the phase-reduced Hodgkin–Huxley model without imposing the charge-balance
constraint are almost charge-balanced themselves.

In order to see the performance of the phase reduction technique and the phase-
reduced Hodgkin–Huxley model, we have solved the phase-reduced model for a num-
ber of different ū values and have obtained the optimal input for each of them. We
have then applied these inputs to the full Hodgkin–Huxley equations, given in the
Appendix, and have computed the resulting ISI values t1, f ull , to compare with those
for the phase-reduced model t1,prm . Figure 6 shows the results of this investigation.
Recall that the natural period of oscillation for this model is T = 14.63 ms. The
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Fig. 6 Comparison between the phase-reduced Hodgkin–Huxley model and the full Hodgkin–Huxley
model. δt = t1, f ull − t1,prm is the difference between the t1 value calculated from the full model and the
t1 value obtained from the phase-reduced model when the u∗(t) obtained from the phase-reduced model
is used as the input to both models. The solid lines with asterisk marks represent the case with the charge-
balance constraint and the dashed lines with circle marks represent the case without the constraint. Also, the
two top lines are for the maximization problem and the two bottom lines are for the minimization problem

phase-reduced model yields accuracy for δt to within one percent for ū ≤ 0.3 for the
maximization problem and for much larger ū for the minimization problem.

4 Discussion

We investigated the time optimal control problem for phase models of spiking neu-
rons for which the input is constrained between prespecified upper and lower bounds.
The dynamical equations were derived from the Hamiltonian for the system, and the
control inputs obtained from Pontryagin’s minimum principle, which gives bang-bang
control. The problem was considered for two cases: with a charge-balance constraint
imposed on the input, and without it. Here the charge-balance constraint ensures that
the total electrical charge that is transferred to the neural tissue is zero over the course
of one cycle of control input; this is important to prevent neural tissue damage. Ana-
lytical expressions for the ISI were derived for these two cases for the SNIPER, theta
neuron, and sinusoidal models.

We looked at the SNIPER model as a simplified version of the theta neuron model
and as a platform for describing the details of our control strategy. Specifically, we
found that in order to have θ̇ > 0 at all times, we need not to limit our control input if the
minimization problem is considered. However, when considering the maximization
problem, θ̇ > 0 implies that ū < ω

2Zd
. The ISI values are then found from (27)–(29)

when the charge-balance constraint is imposed and from (34) when the constraint is
not imposed.

In the theta neuron model, Ib ± ū > 0 guarantees θ̇ > 0 ∀t . The ISI values are then
found from (39)–(41) when the charge-balance constraint is imposed and from (42)
when the constraint is not imposed.

The sinusoidal model was considered as a simple, yet very insightful, Type II neu-
ron model. It was found that regardless of imposing the charge-balance constraint, the
optimal inputs always come out charge balanced. This is due to the symmetry of the
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PRC, Eq. (43), as well as the fact that the sinusoidal PRC has equal positive and nega-
tive intervals. Due to these specifications, the control input found from the bang-bang
optimal control method are always charge balanced. We note that to ensure θ̇ > 0 ∀t ,
we need to have ū < ω

Zd
for the maximization problem, but no such condition on ū

for the minimization problem. This yields (44)–(46) as the ISI values.
We also considered the phase-reduced Hodgkin–Huxley model as a more realis-

tic model for neuronal membrane dynamics and found out that the control input in
both cases of with and without the charge-balance constraint are very close to each
other. The results from the sinusoidal and Hodgkin–Huxley models suggest that con-
trol inputs found for Type II neurons can be almost charge balanced even when the
constraint is not imposed.

We also presented numerical results for the phase-reduced Hodgkin–Huxley model
as well as for the three other models mentioned. These numerical results agree well
with the analytical computations. The performance of the phase reduction method
was validated through the close agreement of the ISI values obtained by using the
same computed control input for both the phase-reduced and the full Hodgkin–Huxley
models.

The results for the ISI presented here are the minimum and maximum values that
one can achieve with bounded input stimuli for the aforementioned neuron models on
a single neuron level. However, one may consider the problem of finding the ū that
would achieve a prespecified ISI value t1. We note that depending on the t1, a ū may or
may not exist. If, for example, we consider a t1 significantly larger than the neuron’s
natural period T , then there would not be a ū that would result in t1 while satisfying
the condition θ̇ > 0. As another example, if t1 � T , the ū needed for this would be
large and hence outside of the range of validity of phase models as these models are
only valid for small inputs. If we choose t1 ≈ T , there will be a ū for the problem, but
determining the specific value is not trivial; in particular cases, one can use Eqs. (29),
(34), (41), (42), or (46) to find an estimate for or the exact value of the ū.

We note that one can use these results as a foundation for considering the control
of a population of neurons. In particular, one can gain insight about the maximum
capability of treatment procedures like deep brain stimulation when input stimuli are
bounded so as to account for potential practical limitations for the hardware in deliv-
ering the input stimulus, as well as the endurance of the biological tissue close to the
injection apparatus.

Appendix

Lemma 4 For the SNIPER model, for ω > 0, ū > ω
Zd

, and 0 < θ < π
2 ,

ω − Zd(1 − cos(θ))ū > 0 ⇔ 0 < tan

(
θ

2

)

<

√
ω

2Zdū − ω
. (47)

Proof Given the assumptions of the Lemma, one can write

ω − Zd(1 − cos(θ))ū > 0 ⇔ cos(θ) > 1 − ω

Zdū
⇔ θ < arccos

(

1− ω

Zdū

)

. (48)
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Let α = arccos(1 − ω
Zd ū ) < π

2 , then

cos2
(α

2

)
= 1

2
(1 + cos(α)) = 1

2

(

1 + 1 − ω

Zdū

)

= 1 − ω

2Zd ū
,

sin2
(α

2

)
= 1 − cos2

(α

2

)
= ω

2Zdū
,

tan
(α

2

)
=

√
ω

2Zd ū − ω
.

Now one can write

0 < θ < α <
π

2
,

⇔ 0 <
θ

2
<

α

2
<

π

4
,

⇔ 0 ≤ tan

(
θ

2

)

< tan
(α

2

)
=

√
ω

2Zdū − ω
< 1,

so, (47) holds. �
Hodgkin–Huxley equations

The full Hodgkin–Huxley model equations are given by:

V̇ = (Ib + I (t)

Ig(V,n)
︷ ︸︸ ︷
−ḡNah(V − VNa)m3 − ḡK (V − VK )n4 − ḡL(V − VL))/c,

ṁ = am(V )(1 − m) − bm(V )m,

ḣ = ah(V )(1 − h) − bh(V )h,

ṅ = an(V )(1 − n) − bn(V )n,

am(V ) = 0.1(V + 40)/(1 − exp(−(V + 40)/10)),

bm(V ) = 4 exp(−(V + 65)/18),

ah(V ) = 0.07 exp(−(V + 65)/20),

bh(V ) = 1/(1 + exp(−(V + 35)/10)),

an(V ) = 0.01(V + 55)/(1 − exp(−(V + 55)/10)),

bn(V ) = 0.125 exp(−(V + 65)/80),

where V ∈ R is the voltage across the membrane, [m, h, n]T ∈ R
3[0,1] is the vector

of gating variables which correspond to the state of the membrane’s ion channels,
c ∈ R

+ is the constant membrane capacitance, Ig : R × R
3 �→ R is the sum of the

membrane currents, and I : R �→ R is the stimulus current, which when divided by c
gives the control input u. Ib ∈ R is the baseline current, which represents the effect
of other parts of the brain on the neuron under consideration and can be viewed as a

123



Time optimal control of spiking neurons 1003

bifurcation parameter in the model that controls whether the neuron is in an excitable
or an oscillatory regime. The parameters of this model are

VNa = 50 mV, VK = −77 mV, VL = −54.4 mV, ḡNa = 120 mS/cm2,

ḡK = 36 mS/cm2, ḡL = 0.3 mS/cm2, Ib = 10 μA/cm2, c = 1 μF/cm2.
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