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Abstract We employ optimal control theory to design
an event-based, minimum energy, desynchronizing con-
trol stimulus for a network of pathologically synchro-
nized, heterogeneously coupled neurons. This works
by optimally driving the neurons to their phaseless
sets, switching the control off, and letting the phases
of the neurons randomize under intrinsic background
noise. An event-based minimum energy input may be
clinically desirable for deep brain stimulation treatment
of neurological diseases, like Parkinson’s disease. The
event-based nature of the input results in its admin-
istration only when it is necessary, which, in general,
amounts to fewer applications, and hence, less charge
transfer to and from the tissue. The minimum energy
nature of the input may also help prolong battery life
for implanted stimulus generators. For the example
considered, it is shown that the proposed control causes
a considerable amount of randomization in the timing
of each neuron’s next spike, leading to desynchroniza-
tion for the network.
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1 Introduction

Pathological synchronization among the spiking neu-
rons of the basal ganglia and the thalamus regions of
the brain is thought to be one cause for the involuntary
tremors that patients with Parkinson’s disease experi-
ence (Volkmann et al. 1996). Deep Brain Stimulation
(DBS), an FDA-approved surgical treatment proce-
dure, has shown success in alleviating these tremors
by administration of high frequency pulsatile stimuli
through an electrode implanted deep into the patient’s
brain which, hypothetically, desynchronizes the neu-
rons (Pare et al. 1990; Nini et al. 1995; Wilson et al.
2011). This has motivated researchers to adopt con-
trol theory and investigate alternative desynchronizing
stimuli with less possible side-effects such as tissue dam-
age or adaptation, and with less energy consumption.
Various control methods have been investigated and
applied to different models in the past. Among these
control methods, feedback control and optimal control
are more prominent. These methods are attractive from
a clinical perspective in that the control stimulus is
designed to be applied only when needed (character-
ized by the feedback signal) and in an optimal way
(characterized by the optimality criteria). For example,
in Tass (1999) a system of noisy coupled phase neurons
is studied and a demand-controlled deep-brain double-
pulse stimulation has been suggested, where a double-
pulse stimulus is administered when a feedback signal
indicates occurrence of synchronization. In Popovych
et al. (2006) and Kiss et al. (2007) nonlinear delay
feedback control has been considered that can achieve
desynchronization for systems of globally coupled
limit-cycle oscillators. In Feng et al. (2007a, b) the
authors used a genetic algorithm to optimally identify
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a brain region and design a model-independent op-
timal input specific to each patient’s brain. In Schiff
and Sauer (2008) and Schiff (2010), unscented Kalman
filtering has been shown to achieve success in opti-
mally estimating the unobservable states of a neuron
through the feedback information from the observ-
able state, which may be important for designing DBS
control. In Danzl et al. (2009), a Hamilton-Jacobi-
Bellman approach has been taken to design a minimum
time desynchronizing control law for a globally coupled
network. In recent work (Nabi and Moehlis 2011a),
we have considered the problem of desynchronization
for a deterministic system of coupled Hodgkin-Huxley
phase neurons driven by a single constrained input.
Dynamic programming was used to find a minimum
energy desynchronizing control. In addition to those
mentioned, a number of other studies have also shown
potential in desynchronizing a population of pathologi-
cally synchronized neurons (Schöll et al. 2009; Nabi and
Moehlis 2010). On a single neuron level, various event-
based optimal control ideas have been considered as
well (Schiff et al. 1994; Moehlis et al. 2006; Danzl et al.
2010; Nabi and Moehlis 2009; Dasanayake and Li 2011;
Stigen et al. 2011). In recent work (Nabi and Moehlis
2011b) we have considered the problem of controlling
the inter-spike-interval of different phase models of
neurons in minimum (and maximum) possible time
given a bounded input.

In this article, we present a non-trivial extension
of work done in Danzl et al. (2009) and design an
event-based, minimum energy, desynchronizing control
stimulus for a network of pathologically synchronized,
heterogeneously coupled neurons. We note that ap-
plying event-based minimum energy stimuli in a DBS
setting for treatment of Parkinson’s disease is clinically
desirable in that it could reduce the number of stimulus
applications and the amount of energy needed per
stimulation. The proposed design works by optimally
driving the neurons to their phaseless sets, switching
the control off, and letting the phases of the neurons
randomize under the intrinsic background noise (cf.,
Winfree 2001). We find that with the method of the
present study, the amount of energy that is needed to
effectively achieve desynchronization can be substan-
tially reduced when compared to the method of Danzl
et al. (2009).

For any stable oscillatory system, such as a neuron
in a periodic spiking regime, a phase variable can be
defined to characterize the evolution of the system
states on its periodic orbit. This way, a one-to-one
relationship is established between the states on the
periodic orbit and the value of the phase variable. The
concept of phase can be extended from the periodic

orbit to its entire basin of attraction with the idea of
asymptotic phase (Guckenheimer 1975; Brown et al.
2004), defined so that all the points in the basin of
attraction of a stable periodic orbit that converge to
the same point on the periodic orbit as t → +∞ have
the same value of phase. This produces level sets of
phase within the basin of attraction that are called
isochrons (Winfree 2001). Each isochron is the locus
of all initial conditions that result in trajectories that
asymptotically converge to the same point on the pe-
riodic orbit. The points at which all isochrons converge
are where a phase value can not be defined, and hence
the collection of these points make the phaseless set
for the oscillator. One can randomize the phase of a
noisy oscillator by steering its state to its phaseless
set, and letting it randomly fall on an isochron due
to its intrinsic noise. In neuronal systems, this yields
randomization of the next spike time for each neuron,
and hence, desynchronization in a network structure.
As a proof of concept, Fig. 1 shows the voltage traces
and spike time histogram for a network of 100 all-
to-all coupled and synchronized neurons, more for-
mally introduced in the following section, that are all
initialized at their phaseless set after the control is
switched off. It is seen that despite the synchronizing
force of the coupling and the fact that the network is
initialized coherently, the next spike time for the neu-
rons has been effectively randomized due to an intrin-
sic zero-mean, variance 2, Gaussian white background
noise.
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Fig. 1 Voltage traces and spike time histogram for a network of
100 coupled and synchronized neurons (described by (1) in the
absence of any control u) that are initialized at their phaseless
points, subject to i.i.d. Gaussian white background noise with
zero-mean and variance 2
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The organization of the paper is as follows. In
Section 2 we describe the model used for the neuron.
Then we lay out the control method and derive the
necessary equations in Section 3. In Section 4, we de-
scribe the essentials of the numerical method that was
used to solve the equations. Results and discussion are
presented in Section 5 for both a single neuron and a
network of neurons. In Section 6, we investigate the
robustness of the results to heterogeneity in the neural
population. Finally, we present concluding remarks in
Section 7. This paper extends the preliminary results
from Nabi et al. (2012).

2 Model

The model considered for the neurons in the population
is as follows:

V̇i = fV(Vi, ni) + ηi(t) + 1

N

N∑

j=1

αij(V j − Vi) + u,

ṅi = fn(Vi, ni).

(1)

Here, i, j = 1, · · · , N, where N is the total number of
neurons in the network, Vi and ni are the membrane
voltage and the gating variable for neuron i, αij is
the coupling strength between neurons i and j, which
are assumed to be electrotonically coupled (Johnston
and Wu 1995) with αij = α ji and αii = 0 for all i, j,
ηi(t) = √

2DN (0, 1) is the intrinsic noise for each neu-
ron taken as zero-mean Gaussian white noise with vari-
ance 2D, u = I(t)/c is the common control input where
I(t), in μA/cm2, gives the DBS input current, and
c = 1 μF/cm2 is the constant membrane capacitance.
Also,

fV = (Ib − ḡNa[m∞(V)]3(0.8 − n)(V − VNa)

− ḡKn4(V − VK) − ḡL(V − VL))/c,

fn = an(V)(1 − n) − b n(V)n

are the state dynamics for each neuron in the absence of
noise, coupling, and control. This is a two-dimensional
reduction of the celebrated four-dimensional Hodgkin-
Huxley (HH) model (Hodgkin and Huxley 1952) that
captures the essentials of a neuron’s dynamical behav-
ior (cf., Keener and Sneyd 1998; Moehlis 2006). The
full HH model was originally developed for the Loligo
squid’s giant axon through a series of experiments. The

other functions and parameters in this reduced model
are

m∞(V) = am(V)

am(V) + b m(V)
,

am(V) = 0.1(V + 40)/(1 − exp(−(V + 40)/10)) ,

b m(V) = 4 exp(−(V + 65)/18) ,

an(V) = 0.01(V + 55)/(1 − exp(−(V + 55)/10)) ,

b n(V) = 0.125 exp(−(V + 65)/80) ,

VNa = 50 mV, VK = −77 mV, VL = −54.4 mV,

ḡNa = 120 mS/cm2, ḡK = 36 mS/cm2,

ḡL = 0.3 mS/cm2, c = 1 μF/cm2.

Also, Ib , in μA/cm2, is the neuron’s baseline current
which represents the effect of other parts of the brain
on the neuron under consideration and can be viewed
as a bifurcation parameter in the model that controls
whether the neuron is in an excitable or an oscillatory
regime. We consider Ib = 10 μA/cm2 to ensure oscil-
latory (periodic spiking) behavior for the neuron. With
this, the period of spiking is Ts = 11.85 ms. ḡNa, ḡK, and
ḡL are the conductances of the sodium, potassium, and
leakage channels, respectively. Also, VNa, VK, and VL

represent their respective reversal potentials.
In the absence of noise, coupling, and control, the

oscillatory behavior of Eq. (1) is seen as a periodic
orbit in the V − n phase plane of the system, shown
in Fig. 2 as the thick solid black line. The isochrons
for this system are shown as gray lines. The isochrons
converge at the unstable fixed point where the V−
and n−nullclines intersect. This unstable fixed point is
the phaseless set for this system (Osinga and Moehlis
2010). In the present article, we first find the optimal
control stimulus that, when applied to a single neuron,
drives the system to its phaseless set. As mentioned
before, the idea here is that once the state of the system
is at the phaseless set, the intrinsic background noise
could cause the system to fall on a random isochron,
thereby randomizing the phase of the neuron and its
next spiking time. We then apply this optimal control
to the population of synchronized, coupled, and noisy
neurons and evaluate its performance in desynchroniz-
ing the population. Although we consider this specific
model in this paper, we expect that a similar approach
to that described below can be used to find optimal
control inputs for other neuron models.

In order to better stabilize the numerical simula-
tion, we scale down the V dimension in Eq. (1) by a
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Fig. 2 Periodic orbit (thick solid), V-nullcline (thin dashed), and
n-nullcline (thick dashed), and fifty isochrons equally spaced in
phase for the two-dimensional reduced Hodgkin-Huxley model
in the absence of noise, coupling, and control. The location of
the unstable fixed point (phaseless point) for this system is at the
intersection of the nullclines

factor of K = 100 so that the two states are of same
order of magnitude. Consider the change of variables
z ≡ (x, y) = ( 1

K V, n). In view of Eq. (1), for a single
deterministic neuron under control, we get

ż = F(z) + Bu, (2)

where B = [ 1
K , 0]T and

F(z) =
[

fx(z)

fy(z)

]
=

[ 1
K fV(Kx, y)

fn(Kx, y)

]
. (3)

We note that this scaling is only for the sake of
numerical stability and the results that we present later
are all in the original V − n coordinates.

3 Optimal control

We consider the system Eq. (2). The objective is to find
the optimal control law that would take the system to
its phaseless set in some prespecified length of time
[0, Tend], while minimizing the cost function

J(z, u(t)) =
∫ Tend

0
u2dt + γ q(z(Tend)). (4)

This cost function is composed of a time-additive
portion,

∫ Tend

0 u2dt, that characterizes the total input
energy being used, and an end-point cost, q(z(Tend)),
that discriminates between different possible outcomes
for the end states. γ is a penalizing scalar. We consider

bounded inputs, i.e., |u| ≤ umax, as would be the case
in practice due to hardware limitations as well as tissue
sensitivity.

To find the optimal control, we employ a Hamilton-
Jacobi-Bellman (HJB) approach (Kirk 1970; Hespanha
2007). The idea in this approach is that one finds the
optimal control to go from the current point in time and
space to the end target point irrespective of how the
system has reached the current state. To find the op-
timal control, one first defines the cost-to-go function,
also known as the value function, from state z and time
τ ∈ [0, Tend]. The cost-to-go function V(z, τ ) gives the
minimum cost that one needs to pay to go from (z, τ ) to
the end point subject to the constraints on the optimal
control:

V(z, τ ) = min
|u(t)|≤umax
∀ t∈[τ,Tend]

J

= min
|u(t)|≤umax
∀ t∈[τ,Tend]

[∫ Tend

τ

u2dt + γ q(z(Tend))

]
. (5)

With this definition, following classical optimal con-
trol theory (Kirk 1970; Hespanha 2007), we can write

V(z, τ ) = min
|u(t)|≤umax
∀ t∈[τ,Tend]

[∫ τ+h

τ

u2dt +

+
∫ Tend

τ+h
u2dt + γ q(z(Tend))

]
,

where, h ∈ [0, Tend − τ). Note that, due to causality, the
first integral in this equation is independent of u(t) for
t ∈ [τ + h, Tend]. On the other hand, the second integral
and the value of the end point cost are, in general,
dependent on u(t) for all t ∈ [τ, Tend]. The reason for
this is that in the general case, the integrand u2 could
be any function of the form G(t, u(t), z(t)) and so the
u(t) for t ∈ [τ, τ + h] determines the state of the state at
t = τ + h, z(τ + h), which in turn comes into play when
finding u(t) for t ∈ [τ + h, Tend]. With this, we can write

V(z, τ ) = min
|u(t)|≤umax
∀ t∈[τ,τ+h]

[∫ τ+h

τ

u2dt +

+ min
|u(t)|≤umax

∀ t∈[τ+h,Tend]

(∫ Tend

τ+h
u2dt + γ q(z(Tend))

)]
,

where the first (outer) minimum operates on the entire
expression, whereas the second (inner) minimum acts
only on the second integral and the end point cost. We
realize that the inner minimum gives exactly the cost-
to-go function from state z(τ + h) and time t = τ + h:
V(z(τ + h), τ + h). By subtracting V(z(τ ), τ ) from both
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sides of the above equation and dividing by h > 0, we
get

0 = min
|u(t)|≤umax
∀ t∈[τ,τ+h]

[
1

h

∫ τ+h

τ

u2dt +

+V(z(τ + h), τ + h) − V(z(τ ), τ )

h

]
,

for any τ ∈ [0, Tend] and h ∈ [0, Tend − τ). Taking the
limit as h → 0, yields

0 = min
|u(τ )|≤umax

[
u(τ )2 + ∂V

∂z
(z(τ ), τ )ż(τ ) + ∂V

∂t
(z(τ ), τ )

]
.

Since ∂V
∂t (z(τ ), τ ) does not depend on u, one can take

it out of the minimization and obtain the well-known
HJB equation by substituting ż(τ ) = F(z(τ )) + Bu(τ )

from the dynamics:

0 = ∂V
∂t

(z(τ ), τ )

+ min
|u(τ )|≤umax

[
u(τ )2+ ∂V

∂z
(z(τ ),τ )

(
F(z(τ ))+Bu(τ )

)]
,

(6)

which is a partial differential equation (PDE) with the
boundary condition

V(z(Tend), Tend) = γ q(z(Tend)). (7)

It should be noted that since we let h → 0 to obtain
Eq. (6), the minimization with respect to the control
function in Eq. (6) reduces from choosing values of a
curve, |u(t)| ≤ umax, ∀t ∈ [τ, τ + h], to choosing a sin-
gle value on the curve, |u(τ )| ≤ umax at t = τ (Caputo
2005). By defining

H(z, ∇V, u) = u2 + ∇V(z(t), t)(F(z(t)) + Bu(t)) (8)

as the Hamiltonian for the system, one can rewrite
Eq. (6) more succinctly as

∂V
∂t

+ min|u|≤umax

H(z, ∇V, u) = 0, (9)

where ∇V is the gradient of the value function with re-
spect to z, ( ∂V

∂x , ∂V
∂y )T . The optimal control that globally

minimizes H is obtained as

u∗(t) = arg min|u|≤umax

[u2 + ∇V(z∗(t), t)(F(z∗(t)) + Bu(t))],

where z∗(t) represents the optimal trajectory.
In order to find the optimal control, we can set the

derivative of the Hamiltonian Eq. (8) with respect to u
equal to zero and solve for the extremal u. This is true
as long as the magnitude of the control remains smaller

than the predetermined bound umax. When the magni-
tude of the optimal control reaches the bound umax, it
saturates in accordance to Pontryagin’s minimum prin-
ciple (Pontryagin et al. 1962; Kirk 1970). Considering
Eq. (8), ∂H

∂u = 0 results in u∗(t) = − 1
2∇VT B as long

as |u∗(t)| ≤ umax. Equivalently, one can write u∗(t) =
− 1

2∇VT B for when |∇VT B| ≤ 2umax. When |∇VT B| =
2umax, the optimal control reaches its bound and if
|∇VT B| > 2umax, it gets saturated, in which case, con-
sidering Eq. (8) with |u∗(t)| = umax, the minimizing op-
timal control becomes u∗(t) = −sign(∇VT B)umax. So in
summary, considering the fact that B = [ 1

K , 0]T , we get
the optimal control as

u∗(t) = − 1
2KVx, |Vx| ≤ 2Kumax,

u∗(t) = −sign(Vx)umax, |Vx| > 2Kumax,
(10)

where Vx = ∂V
∂x . With this optimal control, the Hamil-

tonian can be written as

H = ∇VT F(z) − 1
4K2 V2

x , |Vx| ≤ 2Kumax,

H = ∇VT F(z) + u2
max − |Vx| umax

K , |Vx| > 2Kumax.
(11)

In order to find the optimal control u∗(t) in Eq. (10),
we need to find the cost-to-go, V(z, t) from the HJB
PDE Eq. (6) with boundary condition Eq. (7) and
Hamiltonian Eq. (11). This is done numerically as ex-
plained in the following.

4 Numerical method

The HJB PDE Eq. (6) is a special form of a broader
class of equations known as the Hamilton-Jacobi (HJ)
equations which for a scalar variable V(z, t) are given
by

∂V
∂t

+ H(z, t,V, ∇V) = 0,

where H is the Hamiltonian and ∇V denotes spatial gra-
dients. These equations frequently appear in different
areas of research such as optimal control theory, im-
age processing and computational physics (Kirk 1970;
Osher and Fedkiw 2003; Sethian 1999) and thus have
been well studied in the past.

The numerical solution of the HJ equation is deeply
rooted in the methods that already had existed for
the solution of nonlinear hyperbolic conservation laws
(HCL) (Osher and Fedkiw 2003). Originally, Crandall
and Lions (1984) proposed their first-order accurate
numerical algorithm for the solution of the HJ equation
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and a few years later, Osher and Sethian (1988) used
the connection between HJ and HCL to derive higher
order accurate algorithms. For a more complete list
of references, one may consult standard texts such as
Osher and Fedkiw (2003) and Sethian (1999).

Generally, a convergent, high-order approxima-
tion to the HJ equation consists of three steps:
(i) Computing the solution gradient ∇V , which is typ-
ically achieved with essentially non-oscillatory (ENO)
schemes (Harten et al. 1987; Shu and Osher 1989).
These schemes are designed such that they do not
produce oscillatory results when the solution gradients
are evaluated close to the discontinuities that are in-
herent to nonlinear HJ equations. (ii) Evaluating the
Hamiltonian function, which is straightforward only for
linear problems. For nonlinear problems it is neces-
sary to compute the so-called numerical Hamiltonian
(see Ĥ in Osher and Shu 1991) in such a way as
to account for the nonlinear shock and rarefaction
phenomena; Godunov or local Lax-Friedrichs (LLF)
schemes are traditionally used. In this paper, we use
the LLF scheme to obtain the numerical Hamiltonian.
(iii) Given an initial condition V(z, 0), time integration
is needed to obtain the solution V(z, t) at later times.
To prevent non-physical oscillations in the solution,
this is done using a total variation diminishing (TVD)
method (Osher and Fedkiw 2003).

The details regarding the careful implementation of
these steps are included in the Appendices. In this study
we have used the Matlab toolbox, “Level Set Methods
Toolbox” written by Mitchell (2007), which is a working
example of such implementations.

We set Tend = 7 ms and use a 321 × 321 uniform grid
for the states to solve the HJB Eq. (6) for the cost-to-go
function V(z, t). The control bound is set to be umax =
10 μA/μF. We also set the end point cost to be

V(z(Tend), Tend) = γ

(
1 − e

−
(

(x−xpl )
2

σ2
x

+ (y−ypl )
2

σ2
y

))
,

where γ = 1000, σ 2
x = σ 2

y = 0.001, and (xpl, ypl) =
( 1

K Vpl, npl) where K = 100 and (Vpl, npl) = (−59.6,

0.403) is the phaseless target point. This Gaussian end
point cost function has a minimum of zero at the
phaseless point that encourages the evolution of the
controlled system toward this point. We note that we
solve the HJB equation backward in time and treat this
end point cost as the initial condition for the equations.

Once the solution V(z, t) is computed, the optimal
control is found as a function of the state at all time
steps using Eq. (10). Given this data in time and space,
the optimal control sequence u(t), and the optimal
trajectories can be found by forward integrating Eq. (1)

in the absence of noise and coupling, and for any
initial condition including the spiking point (V0, n0) =
(44.8, 0.459) ≡ (Vs, ns), as we consider here. A fourth
order Runge-Kutta method is used for the integration.
We note that since V(z, t) is available on spatial grid
points, a simple bilinear interpolation scheme is used to
obtain the input off grid points at each time step. This
optimal control sequence is then applied first to the
noisy single neuron system to evaluate its performance
in randomizing the noisy neuron’s next spiking time,
and then, to a population of 100, initially synchronized,
coupled neurons to evaluate its performance in de-
synchronizing the population in the presence of noise
and heterogeneities in the coupling. Since introducing
noise into the equations makes the problem a stochas-
tic differential equation (SDE) problem, care must be
taken in choosing a proper numerical algorithm for
integration. A simple and straightforward algorithm is
the Honeycutt’s second order stochastic Runge-Kutta
method (Honeycutt 1992) which was chosen in this
study.

5 Results and discussion

The top panel in Fig. 3 shows the minimum energy
control law for the deterministic single neuron. As can
be seen in Fig. 3, the control has saturated at the
bound value umax = 10 μA/μF (equivalent to Imax =
10 μA/cm2). Figure 3 also shows the evolution of the
system states (V, n) in time as well as the optimal
trajectory in the state space when driven by the control.
It is worth pointing out that we set the initial condition
to be the spiking state as this is a practical observable
which can be used as a trigger for the control, hence
producing an event-based control.

5.1 Single neuron level

To evaluate the performance of the control for phase
randomization, we apply it to the single neuron in
the presence of noise and integrate the noisy system
forward in time. Figure 4 shows the results obtained
for this case for 100 different numerical realizations.
We have included three different cases in this figure for
comparison. The top row in this figure shows the case of
the neuron under its natural dynamics in the absence of
both the noise and the control. As expected, the neuron
spikes at its natural period Ts = 11.85 ms for all 100
different trials. The second panel shows the case where
noise is active, but the control is not. As can be seen,
the spiking instant of the neuron varies due to the effect
of different noise realizations. In the third panel, both
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Fig. 3 Results for the deterministic single neuron system (Eq. (1)
with ηi(t) ≡ 0 and αij = 0, ∀i, j). The system is initialized at the
spiking point (Vs, ns) = (44.2, 0.465) and the target point for the
control is the phaseless set for the neuron which is its unstable
fixed point (Vpl, npl) = (−59.6, 0.403). Top: minimum energy
control law that is bounded to |u| ≤ 10 μA/μF. Middle: the time
evolution of the states of the system with this control. Bottom: the
state space representation of the trajectory of the system under
the control shown in top panel. We see that the control has been
able to take the system close to the phaseless point shown with
asterisk marker
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Fig. 4 Results for 100 different simulations for the system Eq. (1)
with initial condition (V0, n0) = (44.8, 0.459). Top row: voltage
trace (left) and histogram (right) for the case of without noise
and without external control; middle row: voltage trace (left) and
histogram (right) for the case of 100 different noise realizations,
without control; bottom row: voltage trace (left) and histogram
(right) for the case of 100 different noise realizations, with one
cycle of control

noise and the control are acting on the neuron. We see
that applying the control causes the next spiking instant
of the neuron to randomize over a considerable time
interval. We note that the control has only been applied
for one cycle and has been set to zero for t > 7 ms.

5.2 Population level

We now apply the minimum energy control that is
found for a single neuron to the network of N = 100
coupled synchronized noisy neurons with common cou-
pling strength αij = 0.1 and i.i.d. noise with D = 1. For
this system, we define the mean voltage as the observ-
able for the network

V̄(t) = 1

N

N∑

i=1

Vi(t), (12)

and set V̄ = −20 mV as the event that triggers one
cycle of control administration. After one cycle, the
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Fig. 5 Results for a population of N = 100 coupled neurons with
ηi = √

2DN (0, 1), D = 1, and coupling strength α = 0.1. First
panel shows the result for the noisy network without control.
The second panel shows the results for the same network with
active event-based control. The dotted gray traces show the mean
voltage for each case and the horizontal dotted lines mark the
control activation threshold. We see that the control (shown
in third panel) has only been applied when the mean voltage
has reached the V̄ = −20 mV threshold, and has been able to
substantially desynchronize the network as communicated by the
raster plot
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control turns off until the next event triggers it. Figure 5
shows the result for this with different noise for each
of the neurons in the system. The first panel shows the
individual voltages and mean voltage for the coupled
system with activated noise, but without control. We
see that the mean voltage spikes are always above the
−20 mV threshold that is shown as dotted line. The
second panel shows the individual voltages and mean
voltage for the coupled system when both the noise
and the control are present. The control input is shown
in the third panel. The desynchronizing effect of the
control is clearly seen from the raster plot. The event-
based nature of the control is also apparent from the
fact that the control has only been turned on when the
mean voltage has crossed the threshold line.

It should be noted that when we increase the cou-
pling strength between the neurons to αij = 0.2, we see
the same qualitative results, but with more instances
of control application due to the network’s higher ten-
dency for synchronization (results shown in Fig. 6).
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Fig. 6 Results for a population of N = 100 coupled neurons with
ηi = √

2DN (0, 1), D = 1, and coupling strength α = 0.2. First
panel shows the result for the noisy network without control.
The second panel shows the results for the same network with
active event-based control. The dotted gray traces show the mean
voltage for each case and the horizontal dotted lines mark the
control activation threshold. We see that the control (shown
in third panel) has only been applied when the mean voltage
has reached the V̄ = −20 mV threshold, and has been able to
reasonably desynchronize the network as communicated by the
raster plot

6 Robustness analysis

In this section, we investigate the performance of the
optimal control found in the preceding section when
there are uncertainties in the values of the coupling
strengths or in the location of the phaseless set. This
induces heterogeneities in the network, making it more
realistic. First, instead of a common coupling strength,
we draw the coupling strengths from a normal distrib-
ution with mean ᾱ = 0.1 and standard deviation σα =
0.02, i.e., αij = α ji = N (ᾱ, σα) = N (0.1, 0.02). We note
that similar results are found with asymmetric coupling
(αij �= α ji) between neuron pairs. The left panel in Fig. 7
shows this distribution. Simulating the network with
this variability in the coupling strengths, we get the
result shown in the second panel of Fig. 8. The first
panel in this figure is for the case of the network
with common coupling strength αij = 0.1 as shown in
Fig. 5, and is reillustrated here to facilitate comparison.
When the coupling strengths are different, we see very
similar behavior as before except that there is a delay in
resynchronization after the network is desynchronized.
We note that although this difference in timing of the
resynchronization is seen, it is dependent on the partic-
ular realization of the α values. Next, we used the same
realization of the coupling strengths, but randomly set
20 % of them equal to zero so that the network is
not an all-to-all coupled network. A further delay in
resynchronization is observed, as shown in the third
panel of Fig. 8. This is reasonable since now some of
the connections are broken and thus the overall drive
for resynchronizing the network is smaller. We also
considered the baseline current Ib of the neurons to be
drawn from a normal distribution, so that the neurons
are not all identical. The distribution considered for the
Ib values is shown in the right panel of Fig. 7. With this
additional variability added to those described before,
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Fig. 7 Normal distributions for the coupling strengths (left) and
the baseline currents (right) for inducing heterogeneity into the
network of neurons
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Fig. 8 Results for a population of N = 100 coupled neurons with
active event-based control and ηi = √

2DN (0, 1), D = 1; f irst
panel: the network has a common coupling strength α = 0.1 and
the neurons all have the same baseline current Ib = 10 μA/cm2;
second panel: the coupling strengths are drawn from the dis-
tribution shown in Fig. 7, but the baseline current is the same
for all neurons Ib = 10 μA/cm2; third panel: the same coupling
strengths and baseline current values are used as in the second
panel, except that 20 % of the coupling strengths have been
randomly chosen and set equal to zero; fourth panel: the coupling
strengths are exactly the same as those used to produce panel
three, but the baseline current values have been drawn from the
normal distribution shown in Fig. 7. The seed for the random
number generators have been set such that the same values for
the random vectors were produced across all four experiments
to facilitate comparison. The dotted gray traces show the mean
voltage for each case and the horizontal dotted lines mark the
control activation threshold. The control is only active when the
mean voltage has crossed the threshold

we get the result shown in the fourth panel of Fig. 8. We
see that the network seems to be synchronizing more
often in this case. The reason for this is that when the
baseline currents are not the same, the location of the
phaseless point for each neuron is slightly different and
so the efficiency of the optimal control is reduced.

With common coupling strength αij = 0.1, we next
consider heterogeneous Ib values for the neurons in
a population of 100 coupled neurons. We draw the
Ib values from normal distributions of the form Ib ,i =
N ( Īb , σIb ) where the mean Īb = 10 μA/cm2 and the
standard deviation σIb ∈ {0, 0.2, 0.4, · · · , 3}. In order
to have a measure of the performance of the controller,
we count the number of control applications over an
extended simulation time. We set the simulation time
to be 60 times the natural period of a single noise-
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Fig. 9 Number of control applications in a network of 100 cou-
pled neurons with homogeneous coupling strengths αij = 0.1 in
which the baseline current for each neuron is drawn from a nor-
mal distribution of the form Ib ,i = N ( Īb , σIb ). The mean is Īb =
10 μA/cm2 and the standard deviation σIb ∈ {0, 0.2, 0.4, · · · , 3}.
The total simulation time for each data point is set to be 60 times
the natural period of the noiseless neuron with Īb = 10 μA/cm2,
i.e., Tsim � 60 × 11.85 � 710 ms. The control waveform that is
applied to the system is that obtained from solving the HJB
equation shown in Fig. 3. The statistics have been obtained for
100 different realizations of the noise for each value of σIb

less neuron under Ib = 10. More instances of control
application indicates that the controller has been less
effective in desynchronizing the population. Figure 9
shows the statistical simulation results for 100 different
noise realizations for each value of σIb .

In Fig. 9, we see that by holding the mean value of
the baseline current constant at Ib = 10 μA/cm2, the
number of control applications increases with increas-
ing standard deviation of the Ib ,i’s at first, but after
a certain point, σIb � 1.5, there is a rapid drop in the
number of control applications. The reason for this be-
havior is that by increasing the standard deviation from
zero, the location of the phaseless point changes more
from neuron to neuron and so the control becomes
progressively less effective. This results in less desyn-
chronization per control application and thus more
instances of application. However, for σIb � 1.5 and
higher, the heterogeneity in the Ib values has increased
so much that the neurons become desynchronized after
the first few control applications and do not resynchro-
nize. This means that the heterogeneity overrides the
weak coupling in the system.

7 Conclusion

We have considered the design of an event-based,
minimum energy, desynchronizing control stimulus
for a network of pathologically synchronized coupled
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neurons. The control drives the neurons to their phase-
less set, and lets the phases of the neurons randomize
under intrinsic background noise. The minimum energy
optimality criterion is desirable for practical purposes,
as it may increase the battery life of implanted stimulus
generators in patients with Parkinson’s disease treated
by DBS. By employing the minimum energy formula-
tion, the total input energy for the control input shown
in Fig. 3 is computed to be

∫ Tend

0 u2dt ≈ 194 which is
about 70 % less than the minimum time approach con-
sidered in Danzl et al. (2009). Moreover, this approach
was shown to be robust to heterogeneity in the coupling
strengths and the baseline current.
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Appendix A: Essentially Non-Oscillatory (ENO)
schemes

Finite difference approximations of derivatives of a
function V : R

n �→ R, are essentially equivalent to
choosing an interpolation polynomial for the function
V , and performing exact differentiation. In traditional
finite difference methods, the polynomial stencil is
fixed, i.e., to approximate Vx ≡ ∂V

∂x , at the grid point xi,
one assumes

Vx|i ≈ f (Vi−m,Vi−m+1, . . . ,Vi, . . . ,Vi+n−1,Vi+n),

where constants m and n are fixed in space and are the
same for all points (except maybe at the boundaries).
Here, the subscript indices refer to the grid points,
i.e., Vi ≡ V(xi). Problems arise when the function V
is not sufficiently smooth and this interpolation, when
combined with time integration, results in spurious os-
cillations and even divergence.

To remedy this problem, Harten et al. (1987) first in-
troduced the idea of essentially non-oscillatory (ENO)
schemes. Unlike traditional finite difference methods,
in ENO schemes the polynomial stencil is not fixed, and
at each point, one chooses the smoothest possible poly-
nomial. When combined with a TVD time integration
method (see below), the scheme is guaranteed not to
produce any spurious solutions.

This idea was further improved, from the implemen-
tation point of view, by Shu and Osher (1989) and later
applied to the numerical solution of the HJ equation
(Osher and Shu 1991). Here we merely consider the

method in one spatial dimension. Extension of the
method to higher spatial dimensions is possible through
a dimension-by-dimension approach and we leave the
details to the appropriate references mentioned above.

Consider the one-dimensional HJ equation written
as

∂V
∂t

+ H(Vx) = 0,

where the explicit dependence on other variables have
been dropped for brevity. To construct a polyno-
mial function, Q j+M

j (x), of degree M that interpo-
lates through points x j, x j+1, . . . , xi, . . . , x j+M, one first
needs to define the so-called mth-order Newton divided
differences coefficients, f j+m

j , for m = 0, 1, . . . ,M.
This is done via the recursive formula

f j+m
j = f j+m

j+1 − f j+m−1
j

x j+m − x j
,

with f j
j = V j = V(x j). Here the subscript index, j, and

superscript index, j + m, refer to the lower and upper
bounds of the interval used to compute the coefficient,
i.e., to compute f j+m

j , m + 1 grid points, x j through
x j+m, are required. Using the divided differences
coefficients, the polynomial Q j+M

j (x) may be written
as,

Q j+M
j (x) =

M∑

m=0

f j+m
j φm

j (x), (13)

where, by definition, φ0
j (x) = 1 and, for m ≥ 1,

φm
j (x) =

m−1∏

n=0

(x − x j+n).

Once the interpolating polynomial, Q j+M
j (x), is

known, Eq. (13) may be differentiated with respect to
x, to obtain the following approximation to the spatial
derivative:

Vx|i = dQ j+M
j

dx

∣∣∣∣∣
xi

+ O
(
hM)

,

where h ≡ max1≤n≤M
∣∣x j+n − x j+n−1

∣∣ is the maximum
grid spacing in the interpolation interval and deter-
mines the order of truncation error.

Constructing the polynomial Q j+M
j (x) also requires

the knowledge of the interpolation interval, I ≡
[x j, x j+1, . . . , xi, . . . , x j+M]. To build the interval, and
starting at point xi, one has two possible options for
choosing the next point, xi−1 or xi+1. In fact, these
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are both valid, and as we shall see, required for the
next step of the algorithm. Thus at each point, xi, two
different approximations for Vx exist which we denote
as V+

x and V−
x based on whether xi+1 or xi−1 are chosen,

respectively. In fact, if one chooses M = 1, these are
simply the classical first-order upwind methods.

What comes next is the core idea of the ENO
scheme. At each remaining step, toward finding the
interval, one will face two options in choosing the
next point. The idea is to choose the point that will
result in the smoothest polynomial. In fact, it is easy
to note that the divided differences coefficients are
a good measure of the variations in the interpolating
function. A coefficient with a large magnitude alerts
the existence of a rapid change, or even a discontinuity
in the function V around point xi, and thus should be
avoided in constructing the polynomial.

For example, let’s consider the second-order correc-
tion to V−

x . The two possible options are xi−2 and xi+1.
There are also two second-order divided differences
coefficients, f i

i−2 and f i+1
i−1 . As a result one either

chooses xi−2 if

∣∣ f i
i−2

∣∣ ≤ ∣∣ f i+1
i−1

∣∣ ,

or xi+1 otherwise. This same idea is repeated for all
higher-order coefficients until all remaining points in
the interval are found, after which the interpolation
polynomial is uniquely determined. Note that in this
algorithm, one first determines the interval and then
constructs the polynomial. It is possible to combine the
two in one single pass as suggested in Osher and Fedkiw
(2003).

Finally let us briefly mention that, since the ENO
scheme always chooses the smoothest polynomial with
minimal variations, it may dampen out even slightest
gradients in the solution where no shock or disconti-
nuity exist. To remedy this problem, Liu et al. (1994)
introduced the idea of the weighted ENO (WENO)
schemes in which one obtains a higher order numer-
ical approximation to Vx by appropriate weighting of
all possible Mth-order ENO schemes. The weighting
coefficients are usually chosen so that they inversely
depend on the smoothness of corresponding ENO
scheme in a potential interval. This idea then results in a
WENO scheme that automatically switches to an ENO
scheme in parts of the domain that the solution is non-
smooth while obtaining higher-order approximations
in the smooth part of the domain. We do not present
the algorithm in detail here and refer the interested
reader to Osher and Fedkiw (2003) for a discussion of
the implementation and also the literature review on
WENO schemes.

Appendix B: Numerical Hamiltonian

The second part in constructing a high-order algo-
rithm for solving the HJ equation is the high-order
construction of a numerical Hamiltonian, Ĥ. As noted
in the previous section, at each point there are two
approximations to the gradient, denoted by V+

x and V−
x ,

depending on the initial stencil bias. As such, in general,
the numerical Hamiltonian may be written as

Ĥ = Ĥ
(
V+

x ,V−
x

)
.

To get a numerical Hamiltonian that correctly ac-
counts for the nonlinear shock and rarefaction phenom-
ena (see Osher and Shu 1991), three criteria must be
satisfied. First, the Hamiltonian needs to be Lipschitz
continuous in both V+

x and V−
x . Second, the numerical

Hamiltonian needs to be a non-increasing function of
V+

x and a non-decreasing function of V−
x . Symbolically,

this is usually denoted as Ĥ (↓, ↑). Third, the numerical
Hamiltonian needs to be consistent with the analytical
Hamiltonian, i.e., Ĥ(Vx,Vx) = H(Vx).

Usually, what makes one numerical Hamiltonian
better than the other is the degree of numerical dissipa-
tion it adds to the problem. Different constructs have
been proposed over the years that vary, not only in the
degree of dissipation they add, but also how hard they
are to implement. One of the easiest ones, though more
dissipative, is the Lax-Friedrichs Hamiltonian. In one
spatial dimension, this is written as

Ĥ(V+
x ,V−

x ) = H
(V+

x + V−
x

2

)
− 1

2
αx

(
V+

x − V−
x

)
, (14)

where αx = max |∂H/∂Vx|. If the maximum is computed
globally through the whole computational domain, the
method is usually termed global Lax-Friedrichs (LF).
This, however, is usually unnecessarily too restrictive
and the maximum, at any point, is usually computed lo-
cally for adjacent grid points and the method is termed
local Lax-Friedrichs (LLF).

Although both LF and LLF Hamiltonians are very
easy to implement, they usually over-dampen the so-
lution and distort sharp gradients. Better results may
be obtained via the Godunov’s Hamiltonian. The
Godunov’s Hamiltonian, unfortunately, is usually hard
to obtain for complicated Hamiltonians and may be
quite computationally expensive. We do not go into
the details of finding these, and other, numerical
Hamiltonians and refer the interested reader to Osher
and Fedkiw (2003) and Osher and Shu (1991) for more
details. Finally we note that to avoid the computational
cost of evaluating the Godunov’s Hamiltonian, and
to obtain solutions that are not overly damped when
using the LLF Hamiltonian, one can generally use a
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high-order ENO scheme along with a high order TVD
Runge-Kutta (see below) scheme and use a sufficiently
refined grid.

Appendix C: Total Variation Diminishing (TVD)
Runge-Kutta schemes

A TVD Runge-Kutta (TVD-RK) method is merely a
Runge-Kutta method that is ensured to decrease the
total variation (TV) in the solution as integrated in
time. By definition, total variation of a differentiable
function, f (x), is defined as,

TV( f ) =
∫

| fx| dx,

while for a discrete function, u j, this definition changes
to

TV(u) =
∑

j

∣∣u j+1 − u j
∣∣ .

In both cases, TV of a function simply is a measure
of the amount of variation in the function. To have
a convergent solution, one requires a time integra-
tion method that decreases the total variation in the
function since otherwise it may lead to non-physical
oscillatory results. A TVD method is then any time in-
tegration scheme that satisfies the following condition:

TV(un+1) ≤ TV(un).

Many different TVD methods exist in the literature,
from both the Runge-Kutta (Shu and Osher 1988) and
the linear multi-step families (Gottlieb et al. 2001).
Without going into much detail, here we present the
third-order TVD-RK method and leave other TVD
methods to the references mentioned above.

Just like normal Runge-Kutta methods, the third-
order TVD-RK method consists of three consecutive
forward Euler parts. For the semi-discrete HJ equation,
i.e., already discretized in the space variable, x, using
the ENO scheme,

∂V
∂t

= −Ĥ(V+
x ,V−

x ),

the third-order TVD-RK method is written as

Vn+1/3 = Vn − 	t Ĥn,

Vn+2/3 = 3

4
Vn + 1

4
Vn+1/3 − 1

4
	t Ĥn+1/3,

Vn+1 = 1

3
Vn + 2

3
Vn+2/3 − 2

3
	t Ĥn+2/3.

Note that to ensure stability, and the TVD property,
it is required to impose a restriction on the time step
according to

	t
hmin

αmax ≤ c,

where αmax = max |∂H/∂Vx| and hmin = min |xi+1 − xi|.
These can also be local evaluations (i.e., for each grid
point, xi, within the stencil used to compute V±

x ). Here,
0 < c ≤ 1 is called the CFL number (Osher and Shu
1991; Osher and Fedkiw 2003).
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