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Abstract. We model spiking neurons in locus coeruleus (LC), a brain nucleus involved in modulating cognitive
performance, and compare with recent experimental data. Extracellular recordings from LC of monkeys performing
target detection and selective attention tasks show varying responses dependent on stimuli and performance accuracy.
From membrane voltage and ion channel equations, we derive a phase oscillator model for LC neurons. Average
spiking probabilities of a pool of cells over many trials are then computed via a probability density formulation.
These show that: (1) Post-stimulus response is elevated in populations with lower spike rates; (2) Responses
decay exponentially due to noise and variable pre-stimulus spike rates; and (3) Shorter stimuli preferentially cause
depressed post-activation spiking. These results allow us to propose mechanisms for the different LC responses
observed across behavioral and task conditions, and to make explicit the role of baseline firing rates and the duration
of task-related inputs in determining LC response.
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1. Introduction and Background

The locus coeruleus (LC) is a brainstem nucleus con-
taining approximately 15,000 neurons in monkeys
(35,000 in humans), each of which can make 100,000
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or more synapses with its widespread target regions, in-
cluding the cerebral cortex (Moore and Bloom, 1979;
Foote et al., 1983). LC neurons release norepinephrine,
which is known to modulate brain processes includ-
ing the sleep/wake cycle and arousal (Foote et al.,
1983; Aston-Jones et al., 2001a). Recent data indicate
that the LC regulates attention and behavioral flexi-
bility (Aston-Jones et al., 1994; Usher et al., 1999;
Aston-Jones et al., 2000). Specifically, increased LC
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activity may increase the responsivity of decision net-
works following salient stimuli, hence improving ac-
curacy. Conversely, lower baseline LC activity would
reduce responsiveness to distractors (Usher et al., 1999;
Servan-Schreiber et al., 1990).

Neurons in the alert monkey LC exhibit two distinct
modes: phasic and tonic (Grant et al., 1988; Aston-
Jones et al., 1994; Usher et al., 1999). In the latter, as-
sociated with labile behavior and poor performance on
tasks requiring focused attention, cells fire at relatively
high rates with little synchrony; in the former, associ-
ated with good performance, firing rates are lower but
display greater synchrony. The phasic mode also pro-
duces greater response to stimuli, as detailed below. We
emphasize that the phasic and tonic modes are defined
based on good vs. poor task performance alone, but
that this performance correlates strongly with baseline
LC firing rates, as detailed below (also see Fig. 1A of
Usher et al., 1999).

Two previous modeling studies have proposed mech-
anisms for the different firing properties of the phasic
and tonic modes. The computational model of Usher
et al. (1999) used a pool of coupled integrate-and-fire
neurons and found, via numerical simulation, that in-
creased electronic coupling promotes synchrony and
enhanced responses to task stimuli. More recently, ex-
perimental and computational studies of paired in vitro
LC cells have shown that decreased baseline activ-
ity can enhance the synchronizing effects of fixed-
strength electrotonic coupling (Alvarez et al., 2002)
(cf. Chow and Kopell, 2000); however, the different
patterns of LC response to stimuli in the phasic vs.
tonic modes were not addressed in these studies. Here,
we show how decreased baseline spiking can, via dif-
ferent mechanisms, cause not only the partial syn-
chronization but also the amplified response to exoge-
nous inputs observed in the phasic mode. Hence we
propose decreased baseline spiking rates in the pha-
sic mode, resulting from altered exogenous input to
the LC, as a new mechanism contributing to the pha-
sic/tonic transition (as elaborated in the Discussion,
this does not exclude other effects such as coupling).
We suggest that these lower rates may result from de-
creased excitatory or enhanced inhibitory input from
brain areas afferent to the LC (including the anterior
cingulate cortex (ACC), a region previously implicated
in cognitive control) or from neuromodulators such
as corticotropin releasing factor (CRF). Neural evi-
dence for these possibilities is elaborated upon in the
Discussion.

Recent data indicates that LC responses differ not
only between LC modes, as just discussed, but also
among different psychological tasks. In Section 2, we
present data demonstrating this difference for the tar-
get identification vs. Eriksen flanker tasks. This data
also indicates different LC responses in trials in which
correct vs. incorrect behavioral responses to task stim-
uli were obtained. In this paper, we show how differ-
ences in LC responses among task types and behavioral
conditions can be accounted for by assuming different
time-courses of inputs to the LC in the two tasks, as
well as greater variation of input arrival times in incor-
rect vs. correct conditions, in accord with behavioral
data. Indeed, these different LC inputs are a prediction
of our model.

Below we develop a mathematical model for a pool
of LC neurons, reduce it to differential equations for
individual neuron phases, thereby retaining spike tim-
ing information, and analyze spiking probabilities in
response to stimuli. This elucidates the dependence
of spike histograms on model parameters and reveals
how timescales in the neural substrate interact with
those in the stimuli. Section 2 reviews relevant ex-
perimental data and provides an overview of its re-
lationship with the modelling results that follow. We
describe the neural model and probabilistic analysis in
Sections 3 and 4, fit parameters and compare model
results with data in Section 5, and discuss the work in
Section 6.

2. Experimental Data and Modelling Overview

2.1. Experimental Results and Methods

Activities of individual neurons were obtained from
behaving monkeys using extracellular recording tech-
niques, as described previously (Aston-Jones et al.,
1994). Animals were trained to continuously depress
a pedal and visually fixate a centrally located spot on
a video monitor. In the target detection task, after suc-
cessful fixation, target (20% of trials) or non-target cues
(80% of trials) were displayed singly in random order
across trials, with random inter-trial intervals (1.65 sec
on average). Release of the pedal within 650 msec after
target cue onset was rewarded by juice. Four response
categories are possible: correct detection (hit), correct
rejection, incorrect detection (false alarm), and incor-
rect omission (miss).

The second task, the Eriksen flanker paradigm
(Eriksen and Eriksen, 1974), requires greater
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Figure 1. Peri-stimulus time histograms of LC activity for poor (left) and good (right) performance periods during the target identification task
(top) and for incorrect (left) and correct (right) responses in the Eriksen task (bottom). Former are from single neurons, averaged over ∼100
trials; latter are cumulative PSTHs from multiple neurons averaged over ∼600 and 6000 trials respectively. Histograms are aligned at visual
stimulus onset, marked by dashed line.

attentional focus. The display comprises five icons,
with two ‘flankers’ on each side of the central
cue, each selected at random with 50% probability
from two possible cues (‘left’ or ‘right’). The sub-
ject was trained to respond by releasing the left or
right of two pedals according only to the central
icon. The distracting flankers were either all identi-
cal to the central cue (congruent stimulus) or iden-
tical to the opposite, nondisplayed cue (incongruent
stimulus).

Extracellular recordings from LC neurons were ob-
tained from microwire electrodes positioned within the
brain via a stereotaxically implanted guide cannula.
LC neurons were identified during recording sessions
by electrophysiological criteria, and continuous mon-
itoring of eye position and pupil diameter was per-
formed, as previously described (Aston-Jones et al.,
1994). Baseline activity was calculated as an average
spike rate during 500 msec epochs immediately pre-
ceding stimuli. Peri-stimulus time histograms (PSTHs)
were produced and population PSTHs generated by
aligning visual stimulus onsets and averaging across
multiple sessions, or selected portions thereof. His-
tograms were smoothed via averages of spike counts
in neighboring bins (using the program SigmaPlot)
to facilitate superposition of cumulative PSTHs in a
single figure while preserving response pattern and
timing.

Figure 1 shows examples of the resulting PSTH data.
These histograms reveal LC responses to stimuli for
both tasks. As previously reported (Usher et al., 1999),
in the target detection task, response relative to baseline
is greater during good (phasic LC mode) compared to
poor (tonic LC mode) performance, and a period of
depressed spiking follows the response before activity
returns to baseline in both cases. The phasic mode also
displays greater synchrony (cf. Fig. 7 below). Reduced
spiking following the LC response is not observed for
the Eriksen task; instead, near-monotonic decay occurs
following phasic activation, and the magnitude is much
reduced for incorrect responses. Furthermore, in this
latter task pre-stimulus spike rates are similar for both
correct and incorrect responses (Clayton et al., 2004).

2.2. Assumptions and Modelling Overview

Figure 1 shows three ways in which LC response dif-
fers among task and behavioral conditions: between
the phasic and tonic modes in the target detection task,
between the target detection and the Eriksen flanker
tasks, and between correct and incorrect trials in the
Eriksen task. In this paper we develop a model of LC
response to stimuli and use it to propose mechanisms
for these differences. Our model is based on the fol-
lowing assumptions: (A1) Different levels of baseline
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current input to LC neurons determine the different
distributions of baseline firing rates reported in Usher
et al. (1999) (p. 550, col. 1) for the phasic (slower,
more tightly distributed rates: 2 ± 1.1 Hz, (mean ± st.
dev.)) vs. tonic (faster, more broadly distributed: 3 ±
1.6 Hz) modes. (Note that these values are reported
in Usher et al. (1999) as mean ± SEM.) (A2) In con-
trast to Usher et al. (1999) and to clearly separate the
effects of baseline firing rate, coupling strengths are
chosen to be identical in the phasic vs. tonic modes.
(A3) The strength and duration of stimulus-related in-
put to the LC may differ between the target detection
and Eriksen tasks, as described in Section 3.2. (A4)
Reflecting the greater variability in reaction times on
incorrect vs. correct trials, onsets of stimulus-evoked
inputs to the LC may also be more variable for incor-
rect trials. This latter assumption is justified under the
hypothesis that pulsed inputs to the LC are driven by
the (stochastic) decision process (Usher et al., 1999);
more-variable timing of responses (reaction times) then
implies increased variability of “triggering times” for
LC inputs.

Analysis of our model yields three main mathemat-
ical results, presented in italics in the text. These are
(1) Maximum LC response is elevated in populations
with slower baseline firing rates, (2) response decays
exponentially or faster with time due to noise and het-
erogeneous frequencies, and (3) in systems with narrow
frequency distributions, short inputs necessarily lead to
intervals of depressed firing following enhanced spik-
ing and stimulus offset.

The first of these findings explains the influence of
baseline spike rate on response of LC neurons to ex-
ogenous stimuli, and suggests that any factor leading
to decreased baseline rate contributes to stronger re-
sponses in the phasic vs. tonic mode; see Fig. 4 (top
right panel vs. bottom left) and Fig. 8 (top). The second
finding tells us that, in order to produce the protracted
LC responses seen in the Eriksen data, Eriksen task
stimuli must elicit protracted inputs to the LC (since
the impact of brief inputs decays quickly). The third
finding implies that, in contrast to the Eriksen task,
inputs to the LC elicited by target detection task stim-
uli must be punctate, because the interval of depressed
firing observed in the data (Fig. 1, top) can occur only
following the offset of (pulsed) inputs to the LC. There-
fore the second and third findings address influence
of stimulus duration on response of LC neurons. We
also show via additional simulations that varying on-
set times of stimulus-evoked LC inputs in incorrect vs.

correct Eriksen trials (in proportion to reaction time
variability under these conditions) reproduces the trend
in Fig. 1 (bottom).

3. A Mathematical Model for LC Neurons

3.1. A Conductance-Based Model
and Phase Reduction

LC neurons possess calcium- and voltage-dependent
potassium currents (e.g., ‘A-currents’), which are
largely responsible for their slow (�8 Hz) firing rate
(Williams et al., 1984) and their resulting classifica-
tion as ‘Type I’ cells (Ermentrout, 1996). We base our
model of individual LC neurons on the original model
by Connor et al. (1977) (cf. Rush and Rinzel (1995))
for a multi-ion-channel ‘Type I’ neuron including the
A-current. This is a generic choice, intended to capture
the essence but not necessarily the biophysical detail
of LC dynamics. For ease of computation, we exploit a
further simplification by Rose and Hindmarsh (1989),
who used differing timescales and approximate rela-
tionships among state variables to reduce the Connor
et al. system to two variables:

V̇i = [
I b
i − gNam∞(Vi )

3(−3(qi − Bb∞(Vi ))

+ 0.85)(Vi − VNa)

− gK qi (Vi − VK ) − gL (Vi − VL ) + I ext
i

]/
C, (1)

q̇i = (q∞(Vi ) − qi )/τq (Vi ).

Rose and Hindmarsh show that this reduction compares
favorably with the original system. Here Vi is the volt-
age of neuron i (i = 1, . . . , N for an N-cell model), qi

is a collective gating variable, C is cell membrane con-
ductance, gNa, gK , and gL are maximum conductances
for sodium, potassium, and leak currents, and I b

i is the
baseline inward current, which effectively sets spike
frequency. I ext

i denotes extracellular currents described
below, and the other terms are channel gating variables,
m∞(V ) and b∞(V ) denoting equilibrium levels for fast
sodium and potassium channels. Functional forms and
parameter values for this Rose-Hindmarsh model are
given in the Appendix.

LC neurons are coupled by: (1) voltage differences
between cells in electrical contact at electrotonic or gap
junctions; (2) neurotransmitter release across synap-
tic clefts following presynaptic spikes. These effects,
along with excitatory currents I (t) representing inputs
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due to external stimuli, enter I ext
i :

I ext
i = βe

N

N∑
j=1

(Vj − Vi )

+ βs

N

N∑
j=1

∑
k

A(t − t jk)(VK − Vi )

+ I (t) + σηi (t). (2)

Here uniform all-to-all coupling is assumed, βe and βs

denote electrotonic and synaptic coupling strengths,
and the ‘alpha function’ describes the postsynaptic
excitation at neuron i after neuron j fires at time(s)
t jk < t : A(t − t jk) = [(t − t jk − td )/τA] · exp(−(t −
t jk − td )/τA), where τA = 30 msec is the synaptic time
constant and td = 25 msec is an estimate of the alpha 2
NE receptor-mediated synaptic delay (Williams et al.,
1991, Fig. 1). The white noise term σηi (t) represents
unmodeled ‘fast’ synaptic inputs.

Figure 2 shows the orbit in (Vi , qi )-space of an iso-
lated Rose-Hindmarsh neuron with I b

i set to produce
periodic spiking, and subject to a tonic stimulus I (t)
of greater strength than those employed below, super-
posed on the unperturbed trajectory (I ext

i ≡ 0). Like
most conductance-based neural models in repetitive fir-
ing modes, (1) possesses a strongly attracting, normally
hyperbolic limit cycle (Guckenheimer and Holmes,
1983), implying that in the presence of moderate per-
turbations due to coupling and input currents, solutions

Figure 2. (Left) Phase space structure for a repetitively spiking Rose-Hindmarsh neuron (1), I b
i = 5 µA/cm2. Attracting limit cycle for

I ext
i = 0 shown solid. Initial conditions on a given isochron (shown dashed) asymptotically approach the same point on the limit cycle as

t → ∞; isochrons are equally spaced in phase by 2π/10, with θ = 0 at action potential peak. The thick dashed and dash-dotted lines are
nullclines for V̇i = 0 and q̇i = 0, respectively, and squares show points on perturbed limit cycle, equally spaced in time, under tonic stimulus
of I ext

i = 1 µA/cm2. (Right) PRCs for the Rose-Hindmarsh model (1) at frequencies ω/2π ≈ 5 Hz (dotted), ω/2π ≈ 3.2 Hz (dashed),
ω/2π ≈ 1.6 Hz (dot-dashed). PRCs plotted as ω × z(θ ) vs. θ to illustrate that z(θ ) = c

ω
[1 − cos θ ] with c = 0.0036 (mV · msec)−1 (solid)

provides an acceptable fit, improving as ω decreases.

remain confined to a small neighborhood of the original
orbit. This permits reduction of (1) to phase variables,
by defining nonlinear polar coordinates and project-
ing along isochrons onto the unperturbed limit cycle
(Fig. 2) (Winfree, 2001):

dθi =
[
ωi + z(θi )

(
I (t) + βe

N

N∑
j=1

(V (θ j ) − V (θi ))

+ βs

N

N∑
j=1

∑
k

A(t − t jk)(VK − V (θi ))

)

+ σ 2

2
z(θi )z

′(θi )

]
dt + σ z(θi )dWi (t). (3)

Here the σ Wi (t) are independent Wiener processes
with variance σ 2t , and ωi is the frequency of the ith
LC neuron, which may vary slowly, e.g. via I b

i , but
is assumed constant over each experimental trial (see
below). The phase θ is defined to increase at a con-
stant rate ωi in the absence of coupling and external
inputs, with voltage peak (spike) at θ = 0. The phase
response curve (PRC) z(θi ) (Winfree, 2001; Tass, 1999;
Ermentrout, 1996), encoding the phase shift due to in-
stantaneous perturbations, multiplies the stimulus and
the external noise term; the O(σ 2) term is the ‘Ito cor-
rection’ resulting from changing variables from the
stochastic differential equation (2) (Gardiner, 1985).
The functions V (θi ) in (3) are computed from the un-
perturbed voltage profile as V (θi ) = V (ωi t).



18 Brown et al.

As I b
i increases, Type I neurons undergo a transi-

tion from excitability, with a stable hyperpolarised rest
point, to repetitive spiking via a saddlenode bifurcation
on a limit cycle (Guckenheimer and Holmes, 1983).
Normal form theory may be used to derive the PRC ap-
proximation z(θ ) = C(ω)[1−cos(θ )] near the bifurca-
tion point (Ermentrout, 1996; Brown et al., 2004). This
approximation is reasonable in the frequency range of
interest (1–5 Hz); moreover, C(ω) = c/ω where c =
0.0036 (mV · msec)−1: see Fig. 2. Other neuron models
yield different PRC forms and ω-scaling (Ermentrout,
1996). In particular, the two-compartment LC neu-
ron of Alvarez et al. (2002) yields PRCs similar
to those of Fig. 2, although the lack of an explicit
form for z(θ ) precludes analysis of the type done
below.

3.2. Modeling LC Modes, Frequency Variability,
and Stimuli

To further develop our model, we review the data anal-
ysis leading to Fig. 1. Target detection PSTHs were ob-
tained by averaging single-cell recordings over one ses-
sion (≈100 trials), after separating epochs of good and
poor behavioral performance according to error rates.
These epochs correspond to phasic vs. tonic LC modes,
respectively (Usher et al., 1999, Fig. 1A). Eriksen
PSTHs derive from single- or multi-unit recordings,
and multiple sessions. No clear tonic episodes were
identified in the Eriksen data, although significant fre-
quency variations were seen in individual cells over
time, and among multiple cells at any given time (see
Fig. 3). To reproduce the experimental data, frequen-

Figure 3. Bars: Estimated distribution of LC spiking frequen-
cies at a fixed time. Solid line: Gamma distribution fit: �( f ) =

1
�(β)φβ f β−1 exp(− f

φ
), with φ = 1.2, β = 2.75 chosen to match

mean and minimize least-squares difference within each quartile.

cies ω will be drawn from appropriate narrow (for target
detection) and broad (for Eriksen) distributions, noise
variances fitted to match interspike interval distribu-
tions, and coupling strengths chosen to reproduce cor-
relograms.

The correlation data of Usher et al. (1999, Fig. 4A)
indicates only partial synchrony, even in the phasic
mode. We find below that this can be captured by cou-
pling terms that are weak compared with the stim-
ulus and noise (cf. Fig. 7). Neglecting such weak
coupling, any given cell is approximately governed
by:

dθ =
[
ω + z(θ )I (t) + σ 2

2
z(θ )z′(θ )

]
dt + σ z(θ ) dW (t)

� v(θ, t) dt + σ z(θ ) dW (t). (4)

Here and henceforth we drop the subscripts i and let θ

and ω represent the phase and frequency of a typical
neuron. Via comparison with simulations of the fully
coupled biophysical model (1–2), we demonstrate be-
low that this greatly reduced equation provides an ad-
equate model (cf. Figs. 4 and 8).

Since decisions take longer in more complex tasks,
we assume that LC inputs due to stimuli are briefer and
more intense in target identification than in the Erik-
sen task. We take a simple square wave input of in-
tensity Ī TD and duration dTD in the former case, and
in the latter, a function that rises exponentially to-
wards Ī E for a period dE and decays exponentially
thereafter. Moreover, the Eriksen data does not in-
dicate performance-dependent variations in baseline
LC activity, and incorrect PSTHs keyed on response
(rather than stimulus, as in Fig. 1) have peak activ-
ities similar to corrects, but it does display signifi-
cantly broader reaction time distributions (Clayton et
al., 2004). We therefore ascribe differences between
the correct and incorrect PSTHs of Fig. 1 to variable
input latencies in this more complex task. These and
all other parameter choices are specified in Section 5.1,
below.

4. Probabilistic Analysis

4.1. Phase Density Equation

We now describe how PSTHs such as those of Fig. 1
emerge from averages of single trials with appropriate
initial conditions (as in, e.g. Herrmann and Gerstner,
2001; Fetz and Gustaffson, 1983). In this and the fol-
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Figure 4. (Top and bottom left) Phase density ρ(θ, t) and flux FL(t) computed from Eqs. (10) and (11) with ω/2π = 2 Hz, Ī = 0.1 µA/cm2,
d = 100 msec. (Top and bottom right) Fluxes FL(t) for ω/2π = 3 Hz, Ī = 0.1 µA/cm2, d = 100 msec (top) and Ī = 0.0333 µA/cm2, d = 300
msec (bottom). Stimuli indicated by black bars. The ‘charge’ Ī d = 10 µA · msec/cm2 in both cases. Gray bars show spike rates computed
directly from Rose-Hindmarsh equations (1).

lowing subsection we suppress explicit dependence
on oscillator frequency ω, assuming that baseline fre-
quency remains constant for each trial. Frequency
variability is introduced later.

Let ρ(θ, t) denote the probability density of so-
lutions of (4); thus ρ(θ, t)dθ is the probability that
a neuron’s phase lies in the interval [θ, θ + dθ ] at
time t . The evolution of ρ is governed by the for-
ward Kolmogorov or Fokker-Planck equation (Arnold,
1974):

∂ρ(θ, t)

∂t
= − ∂

∂θ
[v(θ, t)ρ(θ, t)]

+ σ 2

2

∂2

∂θ2
[z2(θ )ρ(θ, t)]. (5)

Here v(θ, t) denotes the deterministic vectorfield of (4)
and σ is the r.m.s noise strength. Since (5) is linear, his-
tograms representing many trials may be produced by
averaging over suitable initial conditions. Specifically,
pre- and post-stimulus, v lacks explicit t-dependence,
so the probability that the phase lies in [θ, θ + dθ ]
is proportional to T (θ ), the time spent in this inter-
val during each cycle. Neglecting noise, this implies
ρ(θ, 0) = ρ0 ∝ 1/v(θ ); for constant v = ω, nor-
malization gives the uniform distribution ρ0 ≡ 1/2π .
PSTHs may be extracted from (5) by noting that the
probability for an arbitrary neuron to spike at time t is
the rate at which its phase passes through θ = 0, i.e.,
the flux FL(t) � v(0, t)ρ(0, t). Similar phase density
formulations appear in Tass (1999) and in Ritt (2003);
Stein (1965), Herrmann and Gerstner (2001), Fetz and

Gustaffson (1983), Omurtag et al. (2000), Nykamp and
Tranchina (2000) and references therein, for example,
develop voltage density descriptions. The formulation
below is generalized to other neuron models in Brown
et al. (2004).

4.2. Spiking Probabilities in the Absence of Noise

For noise-free (σ = 0) systems, (5) becomes a stan-
dard advection equation that may be solved explicitly
for piecewise constant stimuli of duration d = t2 − t1:
I (t) = Ī for t1 ≤ t ≤ t2 and I (t) = 0 other-
wise. Since (5) then propagates the function ρ(θ, t) at
speed v(θ, t), the method of characteristics ((Whitham,
1974), pp. 97–100 of Evans (1998)) yields:

ρ(θ, t) = ρ0(�θ,t (0)) exp

(
−

∫ t

0

∂

∂θ
v(�θ,t (t

′), t ′) dt ′
)

= 1

2π
exp

(
− Ī

∫ t̃2

t1

z′[�θ,t (s)] ds

)
, (6)

where t ≥ t1, t̃2 = min(t, t2) and we take the initial
condition ρ0 = ρ(θ, 0) = 1/2π . Here, �θ,t (s) lies on
the characteristic curve given by

d

ds
�θ,t (s) = v(�θ,t (s), s), (7)

with ‘endpoint’ condition �θ,t (t) = θ . To obtain the
terms in (6), we integrate (7) backward in time from the
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final condition at s = t until s = t1 or s = t̃2, giving

�θ,t (t̃2) = θ − ω(t − t̃2), (8)

�θ,t (t1)

= 2 arctan

{√
ω

b
tan

[
arctan

(√
b

ω
tan

[
�θ,t (t̃2)

2

])

− 1

2
(t̃2 − t1)

√
ωb

]}
, (9)

where b = ω + 2cĪ/ω. For t < t1, ρ(0, t) ≡ 1/2π .
Using the fact that v(�θ,t (s), s) = ω + Ī z(�θ,t (s))

for t1 ≤ s ≤ t2 and changing variables from s to
z(�θ,t (s)), the integral in (6) may be evaluated to give:

ρ(θ, t) = 1

2π

[
ω + Ī z(�θ,t (t1))

ω + Ī z(�θ,t (t̃2))

]
. (10)

The top left panel of Fig. 4 shows ρ(θ, t) computed
from (8–10); note the constant speed post-stimulus
propagation.

Since v(0, t) = ω+ z(0)I (t) ≡ ω at the spike phase,
we obtain the flux:

FL(t) = ωρ(0, t) = ω

2π

[
ω + Ī z(�0,t (t1))

ω + Ī z(�0,t (t̃2))

]
. (11)

The right hand panels of Fig. 4 show FL(t) for two
different inputs. The short, strong (target detection) in-
puts yield post-peak intervals of depressed firing and
substantial ‘ringing,’ while the protracted input gives
less ringing. We also show histograms computed via
direct numerical simulations of the Rose-Hindmarsh
equations (1), indicating that, apart from a slight time
stretch due to the PRC approximation, the reduction to
a phase equation is remarkably accurate.

Building on these examples, we now elucidate the
parameter dependence hidden in (11). First we recall
that, during the input, �0,t (t̃2) = �0,t (t) = 0, so that
the following special case of Eq. (11) is valid:

FL(t) = ω

2π

[
ω + Ī z(�0,t (t1))

ω + Ī z(0)

]

= 1

2π
[ω + Ī z(�0,t (t1))] ≥ ω

2π
; (12)

where we consecutively use the facts z(0) = 0 and
z(θ ) ≥ 0 ∀ θ ∈ [0, 2π ). The inequality implies that
firing rates do not dip below baseline while the stimulus
is on.

After the stimulus, i.e. absent I (t), (5) supports
traveling waves of unchanging shape; hence, for t >

t2, FL(t) = ωρ(0, t) = ωρ(−ω(t − t2), t2): the dis-
tribution ρ(θ, t2) determines the entire 2π/ω-periodic
post-stimulus response. We characterize ρ(θ, t2) as a
function of frequency ω, stimulus duration d = t2 − t1
and strength Ī . From the remarks above, it suffices to
describe the evolution of ρ(θ, t) from ρ(θ, t1) ≡ 1/2π

through the stimulus duration d, governed by (5) with
v(θ, t) ≡ ω + Ī z(θ ). From (8)–(10), ρ(θ, t) is periodic
during stimulus (cf. Tass, 1999), with ‘response period’

P = 2π√
ωb

= 2π√
2cĪ + ω2

, (13)

and, between returns to the pre-stimulus distribution
1/2π, ρ(θ, t) develops a peak and a trough that assume
extremal values at ‘half integer’ points n P + P/2, n =
0, 1, 2, . . . . From (9)–(10), these extrema are:

ρmax = ρ(0, t1 + n P + P/2) = (ω + Ī z(π ))

2πω
;

ρmin = ρ(π, t1 + n P + P/2) = ω

2π (ω + Ī z(π ))
,

(14)

where we use the facts that, during inputs, �θ,t (t̃2) =
�θ,t (t) = θ , and z(0) = 0 and z(π ) = 2c/ω are respec-
tively the minimum and maximum of the approximate
cosine-fitted PRC of Fig. 2. Thus stimuli of durations
n P leave no trace (cf. Tass, 1999) after stimulus offset,
while those with d = n P + P/2 have maximal effect.

To compare responses for different values of ω, Ī
and d, we define the peak and refractory indices Rp(d)
and Rr (d) as

Rp(d) = FLmax − FLbase

FLbase
;

(15)
Rr (d) = FLbase − FLmin

FLbase
,

where the baseline value is FLbase = ω/2π . Figure 5
(right) illustrates the d-dependence of Rp and Rr ; in
particular, Eqs. (14) and (15) yield:

Rmax
p = Rp(n P + P/2) = 2cĪ

ω2
;

(16)

Rmax
r = Rr (n P + P/2) = 2cĪ

2cĪ + ω2
,

as shown in Fig. 5 (left and center). Note that Rmax
p

is proportional to stimulus strength over frequency
squared, which quantifies our first main result: Max-
imum LC response is elevated in populations with
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Figure 5. (Left, center) Rmax
p and Rmax

r as functions of ω for values
of Ī evenly spaced between 0.01 and 0.30 µA/cm2. (Right) Rp(d)
(stars) and Rr (d) (dots) for ω/2π = 3.2 Hz, Ī = 0.1 µA/cm2 and d
ranging between 0 and P . The greatest post-stimulus ringing of the
firing rate will occur for values of d around P/2 (where Rp,r (d) are
largest).

baseline slower firing rates. Density formulations de-
rived from integrate and fire models (e.g. Fetz and
Gustaffson, 1983; Herrmann and Gerstner, 2001), es-
tablish analogous inverse relationships between peak
firing rates and baseline frequency. This effect, which
in our model primarily derives from the c/ω factor in
the PRC, is clear in the bottom left and top right panels
of Fig. 4; note that (16) implies FLmax −FLbase ∼ 1/ω.

4.3. Effects of Noise and Distributed Frequencies

We now restore two effects thus far neglected: noise
and heterogeneous oscillator frequencies, and deter-
mine how these effects damp post-stimulus “ringing” of
the LC response, thereby generalizing formulas in Tass
(1999) to populations with distributed frequencies. Fol-
lowing stimulus offset and neglecting coupling, from
(4) individual phases are described by

dθ =
[
ω + σ 2

2
z(θ )z′(θ )

]
dt + σ z(θ ) dW(t). (17)

In the limit of small r.m.s. noise strength σ , stochas-
tic averaging (Zhu, 1988; Freidlin and Wentzell, 1998,
Theorem 3.1) may be applied to (17). As in the av-
eraging theory of deterministic dynamical systems
(Guckenheimer and Holmes, 1983), this amounts to
replacing the small deterministic term σ 2

2 z(θ )z′(θ ) by
its average 1

2π

∫ 2π

0
σ 2

2 z(θ )z′(θ )dθ = 0; additionally, the
coefficient of the noise term, σ z(θ ), is replaced by its

r.m.s. value σ ẑω = ( 1
2π

∫ 2π

0 σ 2z(θ )2dθ )1/2 =
√

3
2

σc
ω

,
yielding

dθ = ωdt + σ ẑωdW(t). (18)

(Recall from Section 3.1 that the PRC has the explicit
form z(θ ) = c

ω
[1 − cos(θ )], and the subscript on ẑω in-

dicates this frequency dependence.) The corresponding
Fokker-Planck equation

∂ρ(θ, t, ω)

∂t
= − ∂

∂θ
[ωρ(θ, t, ω)]

+ σ 2 ẑ2
ω

2

∂2

∂θ2
[ρ(θ, t, ω)] (19)

may then be Fourier transformed for each ω, as in Tass
(1999), to yield

ρ(θ, t, ω) =
∞∑

n=−∞
an(t, ω) exp(inθ ), where

ȧn = −iωnan − σ 2 ẑ2
ω

2
n2an. (20)

Solving the latter equations with ‘initial’ values
an(t2, ω) representing the state at stimulus end, we get:

FL(t, ω) = ω

∞∑
n=−∞

an(t2, ω)

× exp

[
−

(
iωn + σ 2 ẑ2

ωn2

2

)
(t − t2)

]
.

(21)

Additionally, as noted above (Fig. 3), there is sig-
nificant baseline spike rate variation both among cells
and in single cells over multiple trials. The PSTH data
of Fig. 1 is thus effectively averaged over a frequency
distribution r (ω). Carrying this out, we obtain:

〈FL(t)〉 =
∫

r (ω)FL(t, ω)dω

=
∫

r (ω)ω
∞∑

n=−∞
an(t2, ω)

× exp

[
−

(
iωn + σ 2 ẑ2

ωn2

2

)
(t − t2)

]
dω.

(22)

so that

〈FL(t)〉 − 〈ω〉
2π

=
∫ ∞

−∞
r (ω)ω

∞∑
n=−∞,n �=0

an(t2, ω)

× exp

[
−

(
iωn + σ 2 ẑ2

ωn2

2

)
(t − t2)

]
dω,

(23)
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where 〈ω〉 denotes the mean of r (ω). We will now es-
timate how the average spike rate 〈FL(t)〉 relaxes to its
baseline value 〈ω〉

2π
.

Choosing a ‘maximal’ frequency ωm beyond the es-
sential support of the integrand, breaking the integral
into pieces, and applying the triangle inequality, (23)
yields

∣∣∣∣FL(t) − 〈ω〉
2π

∣∣∣∣ ≤
∣∣∣∣∣
∫ ωm

0
r (ω)ω

∞∑
n=−∞,n �=0

an(t2, ω)

× exp

[
−

(
iωn + σ 2 ẑ2

ωn2

2

)
(t − t2)

]
dω

∣∣∣∣∣
+

∣∣∣∣∣
∫ ∞

ωm

r (ω)ω
∞∑

n=−∞,n �=0

an(t2, ω)

× exp

[
−

(
iωn + σ 2 ẑ2

ωn2

2

)
(t − t2)

]
dω

∣∣∣∣∣ (24)

Noting that the exponential in the second term is
bounded in modulus by 1, and that

∑∞
n=−∞,n �=0

an(t2, ω) = FL(t2, ω) − ω/2π , we can bound the
second term of (24) as follows:∣∣∣∣∣

∫ ∞

ωm

r (ω)ω
∞∑

n=−∞,n �=0

an(t2, ω)

× exp

[
−

(
iωn + σ 2 ẑ2

ωn2

2

)
(t − t2)

]
dω

∣∣∣∣∣
≤

∫ ∞

ωm

∣∣∣∣∣r (ω)ω
∞∑

n=−∞,n �=0

an(t2, ω)

× exp[−(iωn)(t − t2)]dω

∣∣∣∣∣
=

∫ ∞

ωm

r (ω)ω

∣∣∣∣ρ̃(θ = 0, t − t2, ω) − 1

2π

∣∣∣∣ dω

≤
∫ ∞

ωm

r (ω)ω max
θ

∣∣∣∣ρ̃(θ, t2, ω) − 1

2π

∣∣∣∣ dω � E .

Here, ρ̃(θ, t − t2, ω) is the density function that would
result from evolution at frequency ω with σ = 0. Be-
cause zω(θ ) ∼ 1/ω, the effective stimulus strength de-
clines with ω, so that for sufficiently large ω the per-
turbation of ρ(θ, t2, ω) from equilibrium ρ ≡ 1/2π

is negligible. Because, additionally, ωr (ω) decays for
sufficiently large ω (since r is a PDF), ωm may be cho-
sen so that E is arbitrarily small. As for the first term
in (24), noting that ẑω decays with ω we can replace ẑω

in the exponential with its least value ẑωm and also re-
place n by 1 to obtain an upper bound on the decaying
flux. This allows us to remove the exponential from the
integral, giving

∣∣∣∣FL(t) − 〈ω〉
2π

∣∣∣∣ ≤ exp

[
− σ 2 ẑ2

ωm
(t − t2)

2

]

×
∣∣∣∣∣
∫ ωm

0
r (ω)ω

∞∑
n=−∞,n �=0

an(t2, ω)

× exp[−(iωn)(t − t2)]dω

∣∣∣∣∣ + E . (25)

Next, we note that∣∣∣∣∣
∫ ωm

0
r (ω)ω

∞∑
n=−∞,n �=0

an(t2, ω)

× exp[−(iωn)(t − t2)]dω

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞

0
r (ω)ω

∞∑
n=−∞,n �=0

an(t2, ω)

× exp[−(iωn)(t − t2)]dω

−
∫ ∞

ωm

r (ω)ω
∞∑

n=−∞,n �=0

an(t2, ω)

× exp[−(iωn)(t − t2)]dω

∣∣∣∣∣
≤

∣∣∣∣∣
∫ ∞

0
r (ω)ω

∞∑
n=−∞,n �=0

an(t2, ω)

× exp[−(iωn)(t − t2)]dω

∣∣∣∣∣ + E

which, together with (25), implies

∣∣∣∣FL(t) − 〈ω〉
2π

∣∣∣∣ ≤ exp

[
−σ 2 ẑ2

ωm
(t − t2)

2

]

×
∣∣∣∣∣
∫ ∞

0
r (ω)ω

∞∑
n=−∞,n �=0

an(t2, ω)

× exp[−(iωn)(t − t2)]dω

∣∣∣∣∣. (26)

up to the arbitrarily small error 2E . For each n, the in-
tegral in (26) is the Fourier transform of r (ω)ωan(t2, ω)
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evaluated at [n(t − t2)]. This integral decays for suffi-
ciently large t−t2 (by the Riemann-Lebesgue Lemma),
giving an additional decay factor. Thus, (26) supplies
our second main finding: Response decays exponen-
tially or faster with t due to noise and heterogeneous
frequencies.

In the case that r (ω) is Gaussian and varies rapidly
compared with ωan(t2, ω), for each n contributing sig-
nificantly to the sum, we have

r (ω)ωan(t2, ω)

≈ 1√
2πγ

exp

(
− (ω − 〈ω〉)2

2γ

)
〈ω〉an(t2, 〈ω〉), (27)

and the integral in (26) may be evaluated to give the
following upper bound on decay rate:∣∣∣∣〈FL(t)〉 − 〈ω〉

2π

∣∣∣∣
≤ exp

[
−σ 2 ẑ2

ωm
(t − t2)

2
− γ (t − t2)2

2

]

×
∣∣∣∣∣

∞∑
n=−∞,n �=0

〈ω〉an(t2, 〈ω〉)
∣∣∣∣∣

= exp

[
−σ 2 ẑ2

ωm
(t − t2)

2
− γ (t − t2)2

2

]

×
∣∣∣∣〈FL(t2, 〈ω〉)〉 − 〈ω〉

2π

∣∣∣∣. (28)

Here 〈FL(t2, 〈ω〉)〉 is the value of FL at time t2 under the
condition that r (ω) = δ(ω − 〈ω〉). When we fit param-
eters below, a (narrow) Gaussian distribution for which
(27) holds is found to be appropriate, and Fig. 8, below,
illustrates that (28) provides a good decay estimate.

4.4. Stimulus Duration and Depressed Firing

In Section 4.2, we showed that if inputs due to stimuli
are sufficiently short compared with the (ω-dependent)
response period:

d < P(ω) = 2π√
2cĪ + ω2

, (29)

then ρ(θ, t2, ω) necessarily exhibits a peak and a
trough, so that successive episodes of enhanced and
depressed spiking ensue following stimulus offset.
Longer inputs may or may not have this effect: they can
end near ‘integer points’ d ≈ n P , leaving ρ(θ, t2, ω) ≈

1/2π , or at d ≈ n P + P/2, leaving stronger post-
stimulus effects (cf. Fig. 4). Furthermore, during the
stimulus itself, firing rates do not dip below their base-
line, as per the inequality in (12) and as demonstrated
in Fig. 4d.

Noise and frequency heterogeneity cause additional
decay of firing rates to their baseline level, cf. (28).
For example, typical variations in P(ω) for the broad
distribution of Fig. 3 range from 145 to 205 msec,
leading to significantly differing ρ(θ, t2, ω)’s, and dif-
fering propagation speeds. However, for tight distri-
butions r (ω), P(ω) varies little and ρ(θ, t2, ω) travel
at approximately the same speed, so the leading
peak and depression can be expected to survive av-
eraging over mild oscillator heterogeneity. This, to-
gether with the inequality in (12), leads to the find-
ing: In systems with narrow frequency distributions,
short inputs necessarily lead to intervals of de-
pressed firing following enhanced spiking and stimulus
offset.

This effect is further magnified if we normalise to
maintain fixed ‘synaptic charge’ Ī d = S. Now Ī ∝ 1/d
and (16) (Fig. 5) shows that brief inputs are yet further
enhanced over longer, more diffuse ones. In this case,
eliminating Ī from (29) yields an explicit input duration
for maximal effect:

d ≈ P

2
= 1

ω2

(√
c2S2 + π2ω2 − cS

)
. (30)

5. Comparison with Experimental Data

5.1. Parameter Fitting

To compare model predictions with data, we first deter-
mine appropriate frequency distributions r (ω) for sin-
gle neurons recorded over long durations, characterized
by mean µω and variance γ ω, and r.m.s. noise strength
σ , by seeking parameter values for which model re-
alizations match both an empirical interspike interval
(ISI) histogram and correlations between neighboring
ISIs:

r1 �
E{(y j − m)(y j+1 − m)}

E{(y j − m)2} . (31)

Here subsequent ISIs are labeled y j and E denotes ex-
pectation, m = E{y j }. The process {y j } is assumed
stationary so r1 and m are independent of j . Vari-
ability is assumed due to: (1) slow drift in baseline
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Figure 6. Empirical (gray bars) and model (solid line) histograms
of baseline ISIs for a single neuron during the Eriksen task. For em-
pirical data, windows of 1.5 sec. following each stimulus are removed
to isolate baseline frequencies. Histogram bins are 10 ms wide.

frequency ω, and (2) rapid input current fluctuations
modeled through the σ z(θ )dW (t) term in (3). Thus
y j = yω

j + η j , where yω
j are the noise-free drift

values, and η j causes additional variance (γ σ )2 due
to rapid noise. If the drift is sufficiently slow then
E{(yd

j − m)(yd
j+1 − m)} ≈ E{(yd

j − m)2}� (γ ω)2, and
(31) becomes

r1 ≈ (γ ω)2

(γ σ )2 + (γ ω)2
= 0.1, (32)

where we appeal to independence of the η j and insert
the numerical value derived from the data of Fig. 6,
recorded from a single LC neuron in an Eriksen session.

Equation (32) constrains the ratio of slow ((γ ω)2) to

Figure 7. Normalized cross correlograms for phasic LC mode (filled histogram) and tonic mode (solid line). (Left) from Usher et al. (1999, Fig.
4) for two simultaneously recorded LC neurons. (Right) model results derived from mean ±1 standard deviation of 100 oscillator population.
In both cases, central peak indicates increased synchrony in phasic mode.

fast ((γ σ )2) ISI variances, the breadth of the ISI his-
togram constrains the magnitude of these variances,
and the mean frequency µω may be estimated directly
from the ISI mean m. Guided by this and by analyti-
cal expressions for, e.g., barrier hitting times relating σ

and γ σ , Monte-Carlo simulations suggest a Gaussian
distribution r (ω) with mean 1.69 Hz and standard devi-
ation 0.47 Hz, and r.m.s. noise strength σ = 0.45. This
yields the model ISI distribution of Fig. 6. To match
the baseline data for the single neuron PSTHs of the
target detection task, we rescale the center frequencies
to 2 and 3 Hz respectively for the phasic and tonic
modes, while keeping the ratio of mean to standard de-
viation constant. For the multi-neuron Eriksen data, we
use the broader Gamma distribution of Fig. 3. (Recall
that these different frequency distributions are realized
by different distributions of baseline currents I b

i , see
Discussion.) We maintain σ = 0.45 throughout.

Synaptic and electrotonic coupling strengths were
chosen to qualitatively capture the experimental cross-
correlograms for phasic and tonic episodes given in
Usher et al. (1999) (see Fig. 7). As described in Section
2.2 (Usher et al., 1999) reports that baseline firing rates
(among the entire LC population) are not only slower
than in the tonic mode but are also more tightly dis-
tributed. Thus, in the phasic (tonic) mode, we draw
spike frequencies from a Gamma distribution with
β = 3, φ = 0.667(β = 3, φ = 1), giving mean 2 Hz
(3 Hz) and standard deviation 1.16 Hz (1.73 Hz) (cf.
Fig. 3). (However, as described in the previous para-
graph, only some of these frequencies contribute to
the single-neuron PSTHs of the target detection task.)
We then require that a central subgroup of oscillators
are largely synchronous (asynchronous). This yields
βs = 0.01, βe = 0.05. Note that, unlike (Usher et al.,
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1999), we take the same coupling strengths for pha-
sic and tonic modes, showing that increased synchrony
can result solely from a tighter distribution of phasic
frequencies.

Finally, we found via interactive simulations the
following appropriate inputs I (t). For the target de-
tection task we found that a square wave of height
Ī = 0.125 µA/cm2 and duration d = 110 msec was
satisfactory. Since the Eriksen data is averaged over
all conditions (congruent and incongruent stimuli) and
presumably involves more complex cognitive process-
ing, a more diffuse input is appropriate. We adopted
an exponentially rising and falling function, with rise
duration d = 180 msec and rise and fall time constants
75 and 90 msec respectively and maximum height
Ī = 0.22 µA/cm2. Moreover, reaction time (RT) dis-
tributions have significantly greater standard deviation
than for target detection: 114 and 241 msec for cor-
rect and incorrect respectively (Clayton et al., 2004),
compared to ≈34 and 53 msec for phasic and tonic
modes respectively (Usher et al., 1999). We therefore
averaged over Gaussian distributions of onset times
with standard deviations of 38 and 80 msec in the
Eriksen task, assuming that variability in input ar-
rival times at LC contributes about one third of total
RT variability. Because our simulations indicate that
the much smaller RT variability in the target detec-
tion task produces only minor effects (see below), we
used fixed latencies in modeling this task. In all cases,
since LC input lags visual stimulus, we include a time

Figure 8. Model PSTHs computed from solution of Eq. (5) (solid) and from Eq. (11) (dashed), averaged over neuron frequency distributions
and with stimuli (shown as filled black; arrows above stimuli for Eriksen task indicate variability in stimulus onset) and all other parameters
as described in text. Gray bars show results of simulating 100 Rose-Hindmarsh neurons for multiple trials. Decay bound of (28) shown dotted.
Top row: target detection task for poor performance/tonic mode (left) and good performance/phasic mode (right); bottom row: Eriksen task for
incorrect (left) and correct (right) responses. Analytical results (11) do not apply to the varying magnitude Eriksen Stimuli; hence no dashed
curves appear on bottom row.

delay of 90 msec (Aston-Jones et al., 1994). Thus, as
noted in Section 2.2, the results of Section 4 predict
that the target detection and Eriksen inputs must differ
qualitatively.

5.2. Comparison of Model and Empirical
PSTH Data

Figure 8 shows model PSTH data for the target de-
tection and Eriksen tasks, obtained in three ways: (1)
by numerical solution of (5) in the presence of noise
(σ �= 0), followed by averaging over the frequency dis-
tributions derived above; (2) via direct simulations of
a set of N = 100 globally-coupled Rose-Hindmarsh
equations (1) representative of the same distributions,
excited by independent Brownian noise currents of ap-
propriate strength; and (3) directly from the noise-free
expression (11) averaged over the same frequency dis-
tributions. The probabilistic effects considered above
are clear: population averaging and noise combine to
damp the periodic ringing of the noise-free single-
frequency data of Fig. 4 (cf. the decay rate bound (28)).

These results confirm that reduction to a single phase
equation (4) and the probabilistic theory developed
above provide good descriptions of the coupled Rose-
Hindmarsh system, and that the decay rate bounds are
reasonable. The noise-free limit (11) is a useful qual-
itative estimator of PSTHs, although target detection
phasic/tonic response ratios are significantly less than
9/4 predicted by (16), due to the high noise level that
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selectively damps the sharply peaked phase densities
arising at low frequencies.

The model results of Fig. 8 qualitatively reproduce
the PSTHs of Fig. 1, with the major quantitative dis-
crepancy that enhancement of response magnitude for
phasic relative to tonic states in target detection cap-
tures only a part of that reported in Usher et al. (1999).
In terms of the measure Rmag that characterizes en-
hanced spiking following stimulus (Aston-Jones et al.,
1994), our model predicts a ratio Rmag (phasic)/Rmag

(tonic) ≈ 1.3, compared to the value 3.4 of Usher et
al. (1999). Hence, additional mechanisms, beyond the
frequency effects studied here, must be operative in
the phasic/tonic transition. For example, noise levels σ

may be elevated in the tonic mode (in addition to mean
current values Ib). Our simulations (not reported here)
confirm that this increases the relative magnitude of
phasic mode responses, as predicted in Herrmann and
Gerstner (2001). Averaging over a slightly broader dis-
tribution of input onsets in the tonic mode than in the
phasic mode, as suggested by reaction time distribu-
tions in the two tasks, further enhances phasic vs. tonic
responses, although the small RT variance shows that
this is a minor effect in target detection. Electrotonic
coupling changes may also play a role as in Usher et al.
(1999). We note that recent additional analyses of tar-
get detection data, in which recordings were grouped
by baseline rate without reference to tonic and phasic
behavioral modes, revealed small differences in Rmag

similar to those reported here.
Our model reveals that the tonic/phasic frequency

difference contributes to the variation between PSTHs
for poor and good target identification performance,
while in the Eriksen data, for which baseline frequen-
cies are similar, PSTH differences can be accounted
for by variations in stimulus arrival times originating
in earlier processing. Moreover, diffuse stimuli in the
latter case eliminate the depressed post-activation spik-
ing seen in target identification.

6. Discussion

We have shown that a biophysical model of coupled
LC neurons can be reduced to a stochastic differen-
tial equation for the phase of a given cell, and that a
probabilistic formulation and averaging over suitable
frequency distributions allows one to model and ana-
lyze peri-stimulus time histograms derived from single
and multi-cell LC recordings. Our model supplements
that of Usher et al. (1999), and our analysis reveals

explicit parameter dependencies, including the effects
of stimuli appropriate to two different cognitive tasks.

In Usher et al. (1999), electrotonic coupling vari-
ations were proposed as the cause for transitions be-
tween tonic and phasic LC modes, and hence for differ-
ences in PSTHs associated with poor and good target
detection performance. In the model presented here,
while coupling clearly affects synchrony, the key fac-
tor influencing PSTHs averaged over many trials is the
LC spike rate, governed by the baseline currents I b

i .
In any case, our baseline rate explanation differs from
the electrotonic coupling mechanism of Usher et al.
(1999); also, in that paper the I b

i were set in the ex-
citable range, so that noise and other external inputs
were necessary for spiking. From simulations of sub-
threshold networks of coupled Rose-Hindmarsh neu-
rons with noise-driven firing at 2–3 Hz, we found that
reproducing post-stimulus periods of depressed activ-
ity requires strong collateral coupling among LC neu-
rons in both phasic and tonic LC modes. The same con-
clusion held for solutions of the corresponding (cou-
pled) phase density equations derived from the full
‘theta model’ (Ermentrout, 1996) (not reported here).
A study of response dynamics in this high noise, high
coupling regime, in which different mechanisms for the
phasic to tonic transition may dominate, is in progress.

Since we assume here that frequencies are dis-
tributed more tightly in the slower phasic mode, we ob-
tain enhanced phasic mode synchrony without chang-
ing coupling strength (Fig. 7); this differs from the sub-
tler mechanism of Alvarez et al. (2002). In sum, we
see synchrony as a correlate of elevated LC response,
rather than its primary cause. For the LC in vivo, the
synchronizing effects identified here and in Usher et al.
(1999) and Alvarez et al. (2002) may all be relevant.
Additional effects of stronger coupling terms, noise,
and subthreshold neurons may also be important and
are under investigation.

Possible explanations for decreased I b
i include re-

duced inputs from other neurons afferent to the LC.
The anterior cingulate cortex (ACC), a prefrontal area
involved in cognitive control, has recently been shown
to have excitatory (presumably glutamatergic) projec-
tions to the LC (Rajkowski et al., 2000; Jodo and Aston-
Jones, 1997; Jodo et al., 1998). Our findings suggest
that the ACC may send decreased excitation to the
LC in the phasic vs. tonic mode. Intriguingly, small
inhibitory (GABA-ergic) neurons have been found
among in a peri-LC region and are known to project to
LC neurons and dendrites (Aston-Jones et al., 2001b).
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Several areas, including the prefrontal cortex, innervate
this region, suggesting a pathway by which input cur-
rents I b, and hence baseline firing, may be regulated
by increased inhibition in the phasic mode.

Decreased firing rates in the phasic vs. tonic mode
could also result from neuromodulators. For example,
in some cases direct application of the neuropeptide
corticotropin releasing factor (CRF) increases LC base-
line activity and simultaneously decreases responses
to sensory stimuli (Valentino and Foote, 1987). It has
also been found that that the alpha2 adrenoceptor ag-
onist clonidine (or ST-91) can decrease baseline activ-
ity and increase response (Aston-Jones et al., 1991);
the neuromodulator corresponding to this drug is nore-
pinephrine, which presumably could be sent to the
LC from other noradrenergic brain areas. Many other
examples of such ‘modulatory’ effects of neurotrans-
mitters or exogenous inputs exist for neurons in other
brain areas (Aston-Jones et al., 2001a). Finally, we note
that since synaptic coupling among LC neurons is in-
hibitory, it transiently reduces net input currents, thus
effectively decreasing I b

i if LC neurons are sufficiently
decorrelated.

The present analysis therefore provides a simple ex-
planation for how mechanisms which set baseline firing
rate, such as background levels of exogenous input,
neuromodulators, or pharmacological agents, will in-
fluence the response of a neural population to pulsed
stimuli (cf. Herrmann and Gerstner, 2001; Fetz and
Gustaffson, 1983): indeed, it shows that this dual effect
on baseline rates and evoked response is intrinsic to the
dynamics of neural groups. The LC phasic and tonic
modes are an example, but the dual effect occurs in
numerous other brain areas and neurons (Aston-Jones
et al., 2001a). This intrinsic baseline rate mechanism
joins a list of others: in addition to altered electrotonic
coupling (Usher et al., 1999), other mechanisms for si-
multaneous effects on baseline and stimulus-evoked fir-
ing have been proposed, including simultaneous trans-
mitter actions at multiple receptors (Aston-Jones et al.,
1994), alterations in specific second messenger path-
ways and ion conductances (Moore and Bloom, 1979;
Foote et al., 1983).

In addition to the predictions regarding in vivo base-
line LC inputs just described, our analysis also provides
a prediction about inputs evoked by task-related stim-
uli. That is, neurons that project to the LC and evoke
responses should remain active longer following stim-
uli in complex tasks such as the Eriksen paradigm than
in simpler ones like target detection. This is consistent

with the notion introduced above (assumptions (A3)
and (A4) of Section 2.2) that the LC is driven by accu-
mulating activity in decision areas, as this activity may
be expected to accumulate more gradually in complex
decision tasks.

In recent related work (Usher and Davelaar, 2002;
Gilzenrat et al., 2002) abstracted models of LC pop-
ulation activity that modify gains in connectionist
networks have been shown to capture neuromodula-
tory effects on cognitive performance. The present LC
model, derived from the neural substrate, offers sim-
plification comparable to Usher and Davelaar (2002)
and Gilzenrat et al. (2002) as well as suggesting, in the
coupled multi-unit phase model of Eq. (3), a middle
ground between those abstractions and the complexity
of the integrate-and fire pool of Usher et al. (1999) or
the full Rose-Hindmarsh system of (1)–(2).

In summary, we have shown how: (1) post-stimulus
LC response is elevated in populations with slower fir-
ing rates; (2) response decays exponentially or faster
due to noise and heterogeneous neuron frequencies;
and (3) ‘focused’ stimuli tend to lead to intervals of
depressed spiking. The analytical tools developed here
apply to rather general systems of limit cycle oscil-
lators occurring in neural and other applications (e.g.
Tass, 1999; Winfree, 2001). In addition to the Type I
Rose-Hindmarsh cells studied here, we have found that
populations of weakly-coupled neurons modeled by
the Hodgkin-Huxley and Fitzhugh-Nagumo equations
show qualitatively similar behavior, suggesting that the
present analysis may apply to other (non-LC) neurons
(Brown et al., 2004).
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Appendix: The Rose-Hindmarsh Equations

Parameter values and function definitions of the
Rose-Hindmarsh model (1) are as follows:

VNa = 55 mV, VK = −72 mV, vL = −17 mV,

gNa = 120 mS/cm2, gK = 20 mS/cm2,

gL = 0.3 mS/cm2, gA = 47.7 mS/cm2,

C = 1 µF/cm2, I b
i = 5 µA/cm2,

γb = 0.069 mV−1, Tb = 1 msec,

Tn = 0.52 msec, B = 0.21 gA/gK .

q∞(v) = n∞(v)4 + Bb∞(v),

b∞(v) = (1/(1 + exp(γb(v + 53.3))))4,

m∞(v) = αm(v)/(αm(v) + βm(v)),

n∞(v) = αn(v)/(αn(v) + βn(v)),

τq (v) = (τb(v) + τn(v))/2,

τn(v) = Tn/(αn(v) + βn(v)),

τb(v) = Tb(1.24 + 2.678/

(1 + exp((v + 50)/16.027))),

αn(v) = 0.01(v + 45.7)/(1− exp(−(v + 45.7)/10)),

αm(v) = 0.1(v + 29.7)/(1 − exp(−(v + 29.7)/10)),

βn(v) = 0.125 exp(−(v + 55.7)/80),

βm(v) = 4 exp(−(v + 54.7)/18).

References

Alvarez V, Chow C, van Bockstaele E, Williams J (2002)
Frequencydependent synchrony in locus coeruleus: Role of
electronic coupling. Proc. Nat. Acad. Sci. USA 99: 4032–
4036.

Arnold L (1974) Stochastic Differential Equations. John Wiley,
New York.

Aston-Jones G, Akaoka H, Charlety P, Chouvet G (1991) Sero-
tonin selectively attenuates glutamate-evoked activation of locus
coeruleus neurons in vivo. J. Neurosci. 11: 760–769.

Aston-Jones G, Chen S, Zhu Y, Oshinsky ML (2001a) A neural cir-
cuit for circadian regulation of arousal. Nature Neurosci. 4: 732–
738.

Aston-Jones G, Rajkowski J, Cohen J (2000) Locus coeruleus and
regulation of behavioral flexibility and attention. Prog. Brain Res.
126: 165–182.

Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T (1994) Locus
coeruleus neurons in the monkey are selectively activated by at-
tended stimuli in a vigilance task. J. Neurosci. 14: 4467–4480.

Aston-Jones G, Zhu Y, Card P (2001b) Gabaergic afferents to locus
coeruleus (LC) from the peri-lc region: Possible LC interneurons.
Soc. Neurosci. Abst. 27: 373.8.

Brown E, Moehlis J, Holmes P (2004) On the phase reduction and
response dynamics of neural oscillator populations. Neural Comp.
16(4): 673–715.

Chow C, Kopell N (2000) Dynamics of spiking neurons with elec-
trotonic coupling. Neural Comp. 12: 1643–1678.

Clayton E, Rajkowski J, Cohen JD, Aston-Jones G (2004) Decision-
related activation of monkey locus coeruleus neurons in a forced
choice task. In preparation.

Connor J, Walter D, McKown R (1977) Neural repetitive firing: Mod-
ifications of the Hodgkin-Huxley axon suggested by experimental
results from crustacean axons. Biophys. J. 18: 81–102.

Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the
identification of target letters in a non-search task. Perception and
Psychophysics 16: 143–149.

Ermentrout B (1996) Type I membranes, phase resetting curves, and
synchrony. Neural Comp. 8: 979–1001.

Evans L (1998) Partial Differential Equations. American Mathemat-
ical Society, Providence.

Fetz E, Gustaffson B (1983) Relation between shapes of post-
synaptic potentials and changes in firing probability of cat mo-
toneurones. J. Physiol. 341: 387–410.

Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus coeruleus:
New evidence of anatomical and physiological specificity. Physiol.
Rev. 63(3): 844–914.

Freidlin M, Wentzell A (1998) Random Perturbations of Dynamical
Systems. Springer, New York.

Gardiner C (1985) Handbook of Stochastic Methods. Springer, New
York.

Gilzenrat MG, Holmes BD, Rajkowski J, Aston-Jones G, Cohen JD
(2002) Simplified dynamics in a model of noradrenergic modula-
tion of cognitive performance. Neural Networks 15: 647–663.

Grant SJ, Aston-Jones G, Redmond DE (1988) Responses of primate
locus coeruleus neurons to simple and complex sensory stimuli.
Brain Res. Bull. 21(3): 401–410.

Guckenheimer J, Holmes PJ (1983) Nonlinear Oscillations, Dynam-
ical Systems and Bifurcations of Vector Fields. Springer-Verlag,
New York.

Herrmann A, Gerstner W (2001) Noise and the PSTH response to cur-
rent transients: I. General theory and application to the integrate-
and-fire neuron. J. Comp. Neurosci. 11: 135–151.

Jodo E, Aston-Jones, G (1997) Activation of locus coeruleus by pre-
frontal cortex is mediated by excitatory amino acid inputs. Brain
Res. 768: 327–332.

Jodo E, Chiang C, Aston-Jones G (1998) Potent excitatory influence
of prefrontal cortex activity on noradrenergic locus coeruleus neu-
rons. Neuroscience 83: 63–80.

Moore RY, Bloom FE (1979) Central catecholamine neuron systems:
Anatomy and physiology of the norepinephrine and epinephrine
systems. Ann. Rev. Neurosci. 2: 113–168.

Nykamp D, Tranchina D (2000) A population density approach that
facilitates large-scale modeling of neural networks: Analysis and
application to orientation tuning. J. Comp. Neurosci. 8: 19–50.

Omurtag A, Knight BW, Sirovich L (2000) On the simulation of
large populations of neurons. J. Comp. Neurosci. 8: 51–63.



Influence of Spike Rate and Stimulus Duration on Neurons 29

Rajkowski J, Lu W, Zhu Y, Cohen J, Aston-Jones G (2000) Promi-
nent projections from the anterior cingulate cortex to the locus
coeruleus (LC) in rhesus monkey. Soc. Neurosci. Abst. 26: 838.15.

Ritt J (2003) A Probabilistic Analysis of Forced Oscillators, with
Application to Neuronal Response Reliability. PhD thesis, Boston
University.

Rose R, Hindmarsh J (1989) The assembly of ionic currents in a
thalamic neuron I. The three-dimensional model. Proc. R. Soc.
Lond. B 237: 267–288.

Rush M, Rinzel J (1995) The potassium A-current, low firing rates
and rebound excitation in Hodgkin-Huxley models. Bull. Math.
Biol. 57: 899–929.

Servan-Schreiber D, Printz H, Cohen JD (1990) A network model of
catecholamine effects: Gain, signal-to-noise ratio, and behavior.
Science 249: 892–895.

Stein R (1965) A theoretical analysis of neuronal variability. Biophys.
J. 5: 173–194.

Tass P (1999) Phase Resetting in Medicine and Biology. Springer,
New York.

Usher M, Cohen JD, Servan-Schreiber D, Rajkowsky J, Aston-Jones
G (1999) The role of locus coeruleus in the regulation of cognitive
performance. Science 283: 549–554.

Usher M, Davelaar EJ (2002) Neuromodulation of decision and re-
sponse selection. Neural Networks 15: 635–645.

Valentino RJ, Foote SL (1987) Corticotropin-releasing factor dis-
rupts sensory responses of brain noradrenergic neurons. Neuroen-
docrinology 45(1): 28–36.

Whitham GB (1974) Linear and Nonlinear Waves. Wiley, New York.
Williams J, North R, Shefner A, Nishi S, Egan T (1984) Membrane

properties of rat locus coeruleus neurons. Neuroscience 13: 137–
156.

Williams JT, Bobker DH, Harris GC (1991) Synaptic potentials in
locus coeruleus neurons in brain slices. Prog. Brain Res. 88: 167–
172.

Winfree AT (2001) The Geometry of Biological Time. 2nd edition.
Springer, New York.

Zhu WQ (1988) Stochastic averaging methods in random vibration.
Appl. Mech. Rev. 41: 189–199.


