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a b s t r a c t

For asymptotically periodic systems, a powerful (phase) reduction of the dynamics is obtained by
computing the so-called isochrons, i.e. the sets of points that converge toward the same trajectory on
the limit cycle. Motivated by the analysis of excitable systems, a similar reduction has been attempted
for non-periodic systems admitting a stable fixed point. In this case, the isochrons can still be defined but
they do not capture the asymptotic behavior of the trajectories. Instead, the sets of interest – that we call
‘‘isostables’’ – are defined in the literature as the sets of points that converge toward the same trajectory
on a stable slow manifold of the fixed point. However, it turns out that this definition of the isostables
holds only for systems with slow–fast dynamics. Also, efficient methods for computing the isostables are
missing.

The present paper provides a general framework for the definition and the computation of the
isostables of stable fixed points, which is based on the spectral properties of the so-called Koopman
operator. More precisely, the isostables are defined as the level sets of a particular eigenfunction of the
Koopman operator. Through this approach, the isostables are unique and well-defined objects related to
the asymptotic properties of the system. Also, the framework reveals that the isostables and the isochrons
are two different but complementary notions which define a set of action–angle coordinates for the
dynamics. In addition, an efficient algorithm for computing the isostables is obtained, which relies on
the evaluation of Laplace averages along the trajectories. The method is illustrated with the excitable
FitzHugh–Nagumo model and with the Lorenz model. Finally, we discuss how these methods based on
the Koopman operator framework relate to the global linearization of the system and to the derivation of
special Lyapunov functions.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Among the abundant literature on networks of coupled sys-
tems, a vast majority of studies focus on asymptotically periodic
systems (i.e. coupled oscillators) while only a few consider cou-
pled systems characterized by a stable fixed point. This is particu-
larly surprising since the latter can exhibit excitable regimes that
are relevant in many situations (e.g. neuroscience [1]). One reason
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for this disproportion is probably related to phase reductionmeth-
ods. For asymptotically periodic systems, powerful phase reduc-
tion methods turn the (complex, high-dimensional) system into a
phase oscillator evolving on the circle, making the study of com-
plex networks more amenable to mathematical analysis [2–4]. In
contrast, in the case of systems admitting a stable fixed point, the
development of equivalent reduction methods is more recent and
a general framework is still in its infancy.

The goal of reduction methods is to assign the same value to
a (codimension-1) set of initial conditions that are characterized
by the same asymptotic behavior, in turn designing a coordinate
on the state space. In the case of asymptotically periodic systems,
these sets of identical (phase) value are the so-called isochrons,
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which approach the same trajectory on the limit cycle [5]. This
concept has been recently extended to heteroclinic cycles [6]. For
systems admitting a stable focus, the isochrons (or isochronous
sections) can still be defined as the sets of points that are invari-
ant under a particular return map [7,8]. This notion is of particular
interest in the case of weak foci (i.e. characterized by a Jacobian
matrix with purely imaginary eigenvalues) and non-smooth vec-
tor fields, where the existence of isochrons is a non-trivial problem
related to the stability of the fixed point. However, the isochrons
provide in this case no information on the asymptotic convergence
of the trajectories toward the fixed point and are not useful for the
system reduction. (Note also that they do not exist for fixed points
characterized by a Jacobian matrix with real eigenvalues.) There-
fore, the isochrons must be complemented by another family of
sets: the so-called isostables.

Excitable systems are characterized by slow–fast dynamics
with a stable fixed point and, in the plane, they admit a particular
trajectory – the transient attractor or slow manifold – that
temporarily attracts all the trajectories as they approach the fixed
point. In this case, the isostables are naturally defined as the sets
of points that converge to the same trajectory on the transient
attractor [9]. (Note that these sets are called ‘‘isochrons’’ in [9], but
we feel that the proper sense is ‘‘isostables’’ instead, in order to
avoid the confusion with the isochrons of foci studied in [7,8].) For
non-planar systems possessing amulti-dimensional slowmanifold
or center manifold, a (more rigorous) framework was previously
developed in [10,11]. In that work, the sets of interest (called
‘‘projection manifolds’’ in [10]) are closely related to the notion
of isostable and correspond to the invariant fibers of the (slow or
center) manifold, i.e. the sets of initial conditions characterized
by the same long-term behavior on that manifold. Through the
reduction obtained with the isostables, excitable systems have
been studied in various contexts (sensitivity to periodic pulses
[12–14], network synchronization [15], etc.).

Since the isostables provide a characterization of the system
dynamics around the fixed point, their computation is also desir-
able for systems which do not contain multiple time scales (i.e.
with no slow or center manifold). For instance, the computation
of the isostables can be useful to achieve an optimal control that
minimizes the time of convergence toward a steady state or to
investigate the delay of convergence to a stable equilibrium in
decision-making models [16]. But in these cases, a more general
framework is required, which defines the isostables as particular
(and unique) codimension-1 sets capturing the asymptotic behav-
ior of the system. In addition, the computation of the isostables
through backward integration [9] or normal form of the dynam-
ics [11] is limited to a neighborhood of the slow manifold. In this
context, an efficient method for computing the isostables in the
entire basin of attraction is also missing.

In this paper, we propose a general framework for the reduc-
tion of systems admitting a stable fixed point, which is not lim-
ited to excitable systems with slow–fast dynamics. This approach
is based on the spectral properties of the so-called Koopman oper-
ator [17,18]. More precisely, we propose a general and unique defi-
nition of the isostables in terms of a particular eigenfunction of the
Koopman operator. In addition, the framework yields an efficient
method to compute the isostables in the whole basin of attraction.
This method relies on the estimation of Laplace averages along the
trajectories and can be seen as an extension of the approach re-
cently developed in [19] to compute the isochrons of limit cycles.

Viewed through the Koopman operator framework, the isosta-
bles and the isochrons appear to be two different but complemen-
tary concepts. On the one hand, they are different since they are
related to the absolute value and to the argument, respectively,
of the eigenfunction of the Koopman operator. On the other hand,
they are complementary in the sense that they define a set of ac-
tion–angle coordinates for the system dynamics. This action–angle
Fig. 1. Trajectories starting from the same isostable Iτ0 are characterized by
the same convergence toward the fixed point. They simultaneously intersect the
successive isostables Iτn and approach the fixed point synchronously.

representation is related to important properties of the isosta-
bles, such as the global linearization of the dynamics [20] and the
derivation of special Lyapunov functions, that we discuss in the pa-
per.

The paper is organized as follows. In Section 2, we introduce
the concept of isostable in the context of the Koopman operator
framework, both for linear and nonlinear systems.We also propose
a rigorous definition of the isostables and discuss their main
properties. The relation between the isostables and the Laplace
averages is developed in Section 3. This provides an efficient
algorithm for the computation of the isostables which is illustrated
in Section 4 for the excitable FitzHugh–Nagumo model and
the Lorenz model. Finally, the related concepts of action–angle
representation, global linearization, and Lyapunov function are
discussed in Section 5. Section 6 gives some concluding remarks.

2. Isostables and Koopman operator

The isostables of an asymptotically stable fixed point x∗ are the
sets of points that share the same asymptotic convergence toward
the fixed point. More precisely, trajectories with an initial condi-
tion on an isostable Iτ0 simultaneously intersect the successive
isostables Iτn after a time interval τn − τ0, thereby approaching
the fixed point synchronously (Fig. 1). The isostables partition the
basin of attraction of the fixed point and define a new coordinate
τ that satisfies τ̇ = 1 along the trajectories. Or equivalently, they
define a coordinate r , exp(λτ) with the linear dynamics ṙ = λr .
This new coordinate can be used in a context of model reduction.

At this point, it is important to remark that this (intuitive) def-
inition of isostable is not complete. Indeed, there exist an infinity
of families of sets that satisfy the above-described property. But
among these families, only one defines a smooth change of coor-
dinates and is relevant to capture the asymptotic behavior of the
trajectories. In this section, wewill give a rigorous definition of this
unique family of isostables. To do so, we first consider the particu-
lar case of linear systems. Then,we extend the concept to nonlinear
systems, using the Koopman operator framework.

2.1. Linear systems

Consider the stable linear system

ẋ = Ax, x ∈ Rn, (1)
and assume that each eigenvalue λj = σj + iωj of the matrix A
is of multiplicity 1, has a strictly negative real part σj < 0, and is
associated with the right eigenvector vj (which is normalized, that
is, ∥vj∥ = 1). By convention, we sort the eigenvalues so that λ1 is
the eigenvalue related to the ‘‘slowest’’ direction, that is
σj ≤ σ1 < 0, j = 2, . . . , n. (2)
The flow induced by (1) is the continuous-timemap φ : R×Rn

→

Rn, that is, φ(t, x) is the solution of (1) with the initial condition x.



A. Mauroy et al. / Physica D 261 (2013) 19–30 21
For linear systems, the flow is given by

φ(t, x) =

n
j=1

sj(x)vj eλjt , (3)

where sj(x) are the coordinates of the vector x in the basis
(v1, . . . , vn). The function sj(x) can be computed as the inner
product sj(x) = ⟨x, ṽj⟩, with ṽj the eigenvectors of the adjoint A∗,
associated with the eigenvalues λc

j = σj − iωj and normalized so
that ⟨vj, ṽj⟩ = 1. (Note that sj(x) is an eigenfunction of the so-called
Koopman operator; see Section 2.2.)

Next, we show that the isostables of linear systems are simply
defined as the level sets of |s1(x)| = |⟨x, ṽ1⟩|. We consider sepa-
rately the cases λ1 real (with other eigenvalues real or complex)
and λ1 complex (with other eigenvalues real or complex).

2.1.1. Real eigenvalue λ1

When the eigenvalue λ1 = σ1 is real, the trajectories induced
by the flow (3) asymptotically approach the fixed point along the
slowest direction v1 (since the eigenvalues are sorted according
to (2)). Then, the trajectories characterized by the same coefficient
|s1(x)| , exp(σ1τ(x)) exhibit the same asymptotic convergence
toward the fixed point:

φ(t, x) = v±

1 e
σ1(t+τ(x))

+

n
j=2

sj(x) vj exp(λjt)

≈ v±

1 e
σ1(t+τ(x)) as t → ∞, (4)

where the notation v±

1 implies that either the vector v1 or −v1
must be considered. The initial conditions x of these trajectories
therefore belong to the same isostable

Iτ =


x ∈ Rn

x = eσ1τv±

1 +

n
j=2

αj vj, ∀αj ∈ R


, (5)

which is obtained by considering t = 0 in (4). In this case, the
isostables are the (n − 1)-dimensional hyperplanes parallel to vj
for all j > 2 (or equivalently, perpendicular to ṽ1) (Fig. 2).

2.1.2. Complex eigenvalue λ1

A system having a complex eigenvalue λ1 can be transformed
through the use of action–angle coordinates. Then, the isostables
are obtained from the isostables (5) of the subsystem which is re-
lated to the action coordinates and which is only characterized by
real eigenvalues σj. Consider a linear coordinate transformation
that expresses the dynamics (1) in the (spectral) basis given by the
vectors vj (for λj real) and ℜ{vj}, −ℑ{vj} (for λj = λc

j+1 complex).
(Note that ℜ{vj} and ℑ{vj} are not parallel since the two eigenvec-
tors vj and vj+1 are independent.) This is performed by diagonaliz-
ing A and by using the linear transformation

T =


1 1
−i i


in each subspace spanned by a pair of complex eigenvectors
(vj, vj+1). The dynamics become

ẏj = σjyj j ∈ {i ∈ {1, . . . , n}|λi ∈ R},
ẏj

ẏj+1


=


σj −ωj
ωj σj


yj

yj+1


j ∈ {i ∈ {1, . . . , n}|λi = λc

i+1 ∉ R},

with the initial conditions yj(0) = sj(x0) (for λj ∈ R) and (yj(0),
yj+1(0)) = (2ℜ{sj(x0)}, 2ℑ{sj(x0)}) (for λj = λc

j+1 ∉ R). Then, us-
ing the variables rj = yj (for λj ∈ R) and the polar coordinates
(yj, yj+1) = (rj cos(θj), rj sin(θj)) (for λj = λc
j+1 ∉ R), we obtain

the canonical equations

ṙj = σjrj j ∈ {i ∈ {1, . . . , n}|λi ∈ R or λi = λc
i+1 ∉ R}, (6)

θ̇j = ωj j ∈ {i ∈ {1, . . . , n}|λi = λc
i+1 ∉ R}. (7)

The initial conditions are given by rj(0) = sj(x0) (for λj ∈ R) and
(rj(0), θj(0)) = (2|sj(x0)|, ̸ sj(x0)) (for λj = λc

j+1 ∉ R), where ̸

denotes the argument of a complex number.
According to (6)–(7), the variables rj and θj can be interpreted

as the action–angle coordinates of the system (see [21]) and the
convergence toward the fixed point is captured by the (action)
variables rj. Therefore, the isostables of (1) correspond to the
isostables of the linear system (6) with the real eigenvalues σj.
Since the highest eigenvalue is σ1, the results of Section 2.1.1 imply
that the isostables are characterized by a constant value |r1|, that
is, they are the level sets of |s1(x)|. Denoting r1 = 2|s1(x)| ,
exp(σ1τ(x)) and using an expression similar to (5), we obtain (in
the variables yi)

Iτ =


y ∈ Rn

y = (cos(θ)e1 + sin(θ)e2)eσ1τ

+

n
j=3

αj ej, ∀αj ∈ R, ∀θ ∈ [0, 2π)


,

where ej are the unit vectors ofRn, or equivalently (in the variables
xi)

Iτ =


x ∈ Rn

x = (cos(θ)a + sin(θ)b)eσ1τ

+

n
j=3

αj vj, ∀αj ∈ R, ∀θ ∈ [0, 2π)


, (8)

with a = ℜ{v1} and b = −ℑ{v1}. In this case, the isostables are the
(n − 1)-dimensional cylindrical hypersurfaces parallel to vj for all
j ≥ 3. The intersection of an isostablewith the 2-dimensional plane
spanned by (a, b) (i.e., the base of the cylinder) is an ellipse (Fig. 3).
Indeed, a linear transformation turns the circle in the variables yj
into an ellipse in the variables xj.

The trajectories starting from the same isostable converge to
the fixed point along a spiral characterized by the vectors (a, b),
according to
φ(t, x) ≈ (a cos(ω1t + θ(x)) + b sin(ω1t + θ(x))) eσ1(t+τ(x))

as t → ∞,

with exp(σ1τ(x)) = 2|s1(x)| and θ(x) = ̸ s1(x). Note that the
phase – or angle coordinate – θ is related to the notion of isochron
(see e.g. [7,8] and Section 5).

The expressions (5) and (8) provide a unique definition of the
isostables in the case of linear systems, when λ1 is real and when
λ1 is complex, respectively. Since v±

1 = v1 exp(iθ) with θ ∈ {0, π}

and cos(θ)a + sin(θ)b = ℜ{v1 exp(iθ)}, these two definitions can
be summarized in a single definition.

Definition 1 (Isostables of Linear Systems). For the system (1), the
isostable Iτ associated with the time τ is the (n − 1)-dimensional
manifold

Iτ =

x ∈ B(x∗)

x = ℜ

v1 eiθ


eσ1τ

+

n
j=j

αj vj, ∀αj ∈ R, ∀θ ∈ Θ

 ,

with Θ = {0, π} and j = 2 if λ1 ∈ R, and Θ = [0, 2π) and j = 3
if λ1 ∉ R.



22 A. Mauroy et al. / Physica D 261 (2013) 19–30
ba

Fig. 2. (a) The isostables of linear systems with a real eigenvalue λ1 are the hyperplanes spanned by the eigenvectors vj , with j > 2. The particular isostable I∞ contains
the fixed point. (b) For two-dimensional systems (or in the plane v1 − v2), the isostables are pairs of parallel lines.
Fig. 3. (a) The isostables of linear systems with a complex eigenvalue λ1 are cylindrical hypersurfaces spanned by vj for all j ≥ 3. (b) For two-dimensional linear systems
(or in the plane a − b), the isostables are ellipses with constant axes.
2.2. Nonlinear systems

Now, we consider a nonlinear system

ẋ = F(x), x ∈ Rn (9)

where F is an analytic vector field, which admits a stable fixed
point x∗ with a basin of attraction B(x∗) ⊆ Rn. In addition, we
assume that the Jacobian matrix J computed at x∗ has n distinct
(nonresonant) eigenvalues λj = σj + iωj characterized by strictly
negative real partsσj < 0 and sorted according to (2). (For unstable
fixed points or for multiple eigenvalues, see Remarks 1 and 2,
respectively.)

The isostables of linear systems have been defined as the
level sets of the coefficient s1(x) that appears in the expression
of the flow (3). For nonlinear systems, an expression of the
flow similar to (3) can be obtained through the framework of
Koopman operator [17,18]. The Koopman semigroup of operators
U t describes the evolution of a (vector-valued) observable f : Rn

→

Cm along the trajectories of the system and is rigorously defined
as the composition U t f(x) = f ◦ φ(t, x). Throughout the paper,
we will make no assumption on the observables, except that they
are analytic in the neighborhood of the fixed point. In the space of
analytic observables, the operator has only a point spectrum and
its spectral decomposition yields [22]

U t f(x) =


{k1,...,kn}∈Nn

sk11 (x) · · · sknn (x) vk1···kn e
(k1λ1+···+knλn)t . (10)

A detailed derivation of the decomposition in the case of a stable
fixed point is given in the Appendix. The functions sj(x), j =
1, . . . , n, are the smooth eigenfunctions of U t associated with the
eigenvalues λj, i.e.

U tsj(x) = sj(φ(t, x)) = sj(x)eλjt , (11)

and the vectors vk1···kn are the so-called Koopman modes [23], i.e.
the projections of the observable f onto sk11 (x) · · · sknn (x). For the
particular observable f(x) = x, (10) corresponds to the expression
of the flow and can be rewritten as

φ(t, x) = U tx = x∗
+

n
j=1

sj(x)vj eλjt

+


{k1,...,kn}∈Nn

0
k1+···+kn>1

sk11 (x) · · · sknn (x) vk1···kn e
(k1λ1+···+knλn)t . (12)

The first part of the expansion is similar to the linear flow (3). The
eigenvalues λj and the Koopmanmodes vj are the eigenvalues and
eigenvectors of J, respectively. Although the eigenfunctions sj(x)
are not computed as the inner products ⟨x, ṽj⟩ as in the linear case,
they can be interpreted as the inner products ⟨z, ṽj⟩, where z is
the initial condition of a virtual trajectory evolving according to
the linearized dynamics ż = Jz and characterized by the same
asymptotic evolution as φ(t, x) [20]. The other terms in (12) do
not appear in the expression of the linear flow (3) and account for
the transient behavior of the trajectories owing to the nonlinearity
of the dynamics.

The isostables can be rigorously defined as the level sets of the
absolute value of the eigenfunction |s1(x)|. Indeed, the asymptotic
evolution of the flow (12) is dominated by the firstmode associated
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with λ1. Then, a same argument as in Section 2.1 shows that the
points x characterized by the same value |s1(x)| are the initial
conditions of trajectories that converge synchronously to the fixed
point, with the evolution

φ(t, x) ≈

x∗
+ v±

1 e
σ1(t+τ(x)), eσ1τ(x)

= |s1(x)|, λ1 ∈ R,

x∗
+ ℜ


v1 ei(ω1t+θ(x)) eσ1(t+τ(x)),

eσ1τ(x)
= 2|s1(x)|, θ(x) = ̸ s1(x) λ1 ∉ R.

(13)

We are now in a position to propose a general definition for
the isostables of a fixed point, which is valid both for linear and
nonlinear systems andwhich is reminiscent of the usual definition
of isochrons for limit cycles [5,24].

Definition 2 (Isostables). For the system (9), the isostable Iτ of
the fixed point x∗, associated with the time τ , is the (n − 1)-
dimensional manifold

Iτ = {x ∈ B(x∗)|∃ θ ∈ Θ s.t.
lim
t→∞

e−σ1t∥φ(t, x) − x∗
− ℜ{v1 ei(ω1t+θ)

}eσ1(t+τ)
∥ = 0},

with Θ = {0, π} and ω1 = 0 if λ1 ∈ R and Θ = [0, 2π) if λ1 ∉ R.
The reader will easily verify that, for all x belonging to the

same isostable, Definition 2 imposes the same value |s1(x)| in the
decomposition of the flow (12) and the same asymptotic behavior
(13). Note that without the multiplication by the increasing
exponential e−σ1t , one would have Iτ = B(x∗)∀τ since φ(t, x) −

x∗
→ 0 as t → ∞ for all x ∈ B(x∗).
Except for the case of multiple eigenvalues, for which v1

might not be unique (see Remark 2), the isostables are uniquely
defined through Definition 2. Uniqueness of the isostables also
follows from the fact that the Koopman operator has a unique
eigenfunction s1(x) which is continuously differentiable in the
neighborhood of the fixed point. Since it is precisely this
eigenfunction s1(x) that appears in (12), the isostables are the only
sets that are relevant to capture the asymptotic behavior of the
trajectories.

Remark 1 (Unstable Fixed Point). Definition 2 is easily extended
to unstable fixed points characterized by σj > σ1 > 0 for all
j. Indeed, the isostables are still given by Definition 2, where the
limit t → ∞ is replaced by t → −∞, that is, one considers the
flow φ(−t, x) induced by the (stable) backward-time system. In
this case, the isostables are related to the unstable eigenfunction
s1(x) of the Koopman operator.

Remark 2 (Multiple Eigenvalues). When the eigenvalue λ1 has a
multiplicitym > 1, the fixed point is either a star node (m linearly
independent eigenvectors) or a degenerate node (m linearly
dependent eigenvectors). In the case of a star node, Definition 2
is not unique since it depends on the direction of the eigenvector
v1 (in other words, a C1 eigenfunction of the Koopman operator
corresponding to the eigenvalue λ1 is not unique). Actually, v1
should be replaced in Definition 2 by any linear combination of m
orthonormal eigenvectors of λ1, a situation where the isostables
lying in the vicinity of the fixed point correspond to cylindrical
hypersurfaces whose intersection with the hyperplane spanned
by the eigenvectors of λ1 is a hypersphere. In the case of a
degenerate node, the asymptotic evolution toward the fixed point
is dominated by the (slowest) term s1(x)v1 tm−1 exp(σ1t). Then,
the increasing exponential exp(−σ1t) in Definition 2 must be
replaced by t1−m exp(−σ1t).

2.3. Some remarks on the isostables

Equivalent definitions for excitable systems. In [9], the authors con-
sidered two-dimensional excitable systems characterized by a
transient attractor (i.e. slow manifold) which attracts all the tra-
jectories as they approach the fixed point. They defined the isosta-
bles (they actually used the term ‘‘isochrons’’; see Section 5.1) as
the sets of points that converge to the same trajectory on the tran-
sient attractor. This definition is equivalent to Definition 2 since
both impose that trajectories on the same isostable have the same
asymptotic behavior (see also Section 4.1). However, the definition
of [9] is qualitative since no trajectory effectively reaches the tran-
sient attractor (which may even lose its normal stability property
near a fixed point with complex eigenvalues). Also, it is valid only
if the system admits a transient attractor induced by the slow–fast
dynamics. In contrast, Definition 2 is more general and does not
rely on the existence of a transient attractor.

For systems with a slow (or center) manifold, the ‘‘projection
manifolds’’ studied in [10,11] are related to the isostables. They are
the sets of initial conditions for which the trajectories share the
same long-term behavior on the slow manifold. In addition, they
can be obtained through the normal form of the dynamics [11]. If
the slow manifold is one-dimensional and if λ1 is real, the projec-
tion manifolds are identical to the isostables. Otherwise, they do
not correspond to the isostables since they are not related to the
slowest direction v1 only and are not of codimension-1.
Isostables and flow. The flow φ(1t, ·) maps the isostable Iτ to the
isostable Iτ+1t , for all 1t ∈ R (as explained in the beginning of
Section 2). Indeed, if x ∈ Iτ , Definition 2 implies that

lim
t→∞

e−σ1t
φ(t, x) − x∗

− ℜ

v1 ei(ω1t+θ)


eσ1(t+τ)

 = 0

for some θ ∈ Θ . Using the substitution t = t ′ + 1t , we have

lim
t ′→∞

e−σ1t ′∥φ

t ′, φ(1t, x)


− x∗

− ℜ{v1 ei(ω1t ′+θ ′)
}eσ1(t ′+τ+1t)

∥ = 0,

with θ ′
= θ + ω11t ∈ Θ , so that φ(1t, x) ∈ Iτ+1t .

Local geometry near the fixed point. The isostables close to the fixed
point have a geometry similar to the isostables of the linearized
dynamics, i.e. parallel hyperplanes (if λ1 ∈ R) or cylindrical
hypersurfaces with constant axes of the elliptical sections (if λ1 ∉

R) (see Section 2.1). This follows from the fact that, in the vicinity of
the fixed point, the flow (12) and the flow induced by the linearized
dynamics are (approximately) equal, so that their eigenfunctions
s1(x) have (approximately) the same value for ∥x − x∗

∥ ≪ 1 (see
also (A.4) in the Appendix).
Invariant fibration. When the eigenvalue λ1 is real, the isostables
are the invariant fibers of the 1-dimensional invariant manifold
V defined as the trajectory associated with the slow direction v1
(i.e. the transient attractor in the case of slow–fast systems). Given
their local geometry, it is clear that the isostables near the fixed
point are the fibers defined by the splitting N ⊕ TV , where N =

span{v2, . . . , vn} and TV = span{v1}. Moreover, it follows from
the invariance property of the isostables that this local fibration
is naturally extended to the whole invariant manifold V by back-
ward integration of the flow. Provided that σ2 < σ1, the normal
hyperbolicity of V implies that the isostables are characterized by
smoothness properties and persist under a small perturbation of
the vector field [25,26]. In addition, this description also implies
the uniqueness of the concept of isostables. Note that Definition 2
is recovered in [27, Theorem 3], and corresponds to the property
that the points on the same fiber converge to a trajectory on V with
the fastest rate.

When λ1 is complex, however, the isostables cannot be
interpreted as the invariant fibers of an invariant manifold. They
are homeomorphic to a circle (or to a cylinder) and cannot be the
sets of points converging to the same trajectory, since the flow is
continuous. Moreover, in the neighborhood of the fixed point, one
observes no particular one-dimensional invariant manifold (e.g.
a slow manifold) that is tangent to the ℜ{v1} − ℑ{v1} plane. In
that case, the only definition of the isostables is in terms of an
eigenfunction of the Koopman operator.
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Extension to other eigenfunctions. The isostables Iτ are related to the
first eigenfunction s1(x) of the Koopman operator, but the concept
can be directly generalized to other eigenfunctions. Namely, the
sets I(j)

τ (j) , j ∈ J = {i ∈ {1, . . . , n}|λi ∈ R or λi = λc
i+1 ∉ R},

are obtained by considering the level sets of |sj(x)|. The extension
is useful to derive an action–angle coordinates representation of
the system, to perform a global linearization of the dynamics (see
Section 5.2), or to compute the (un)stable manifold of an attractor.

The intersection between the sets I(j)
τ (j) , with j ≤ j, is defined as

the generalization of Definition 2


j∈J
j≤j

I(j)
τ (j) =

x ∈ B(x∗)

∃ θj ∈ Θj s.t. lim
t→∞

e−σjt

φ(t, x) − x∗

−


j∈J
j≤j

ℜ

vj ei(ωjt+θj)


eσj(t+τ (j))

 = 0

 , (14)

with Θj = {0, π} if λj ∈ R and Θj = [0, 2π) if λj ∉ R. When
τ (j)

= ∞ for all j < j ∈ J , (14) is equivalent to Definition 2, so
that it can be interpreted as an isostable for the system restricted
to the invariant manifold Mj =


j∈J ,j<j I(j)

τ (j)=∞
. (The manifold Mj

is tangent to the fast directions vj, j = j, . . . , n.) In addition, if
λj ∈ R, (14) defines a codimension-j invariant fibration of the in-
variant manifold Vj =


j∈J ,j>j I(j)

τ (j)=∞
. (Themanifold Vj is tangent

to the slowdirections vj, j = 1, . . . , j.) If Vj is a slowmanifold, then
the fibration (14) corresponds to the projection manifolds consid-
ered in [10,11]. Note that the family of manifolds Vj generalizes the
notion of slow manifold observed for systems with slow–fast dy-
namics.

3. Laplace averages

In this section, we show that the isostables can be obtained
through the computation of the so-called Laplace averages. The
Laplace averages of a scalar observable f : Rn

→ C are given by

f ∗

λ (x) = lim
T→∞

1
T

 T

0
(f ◦ φt)(x) e−λt dt, (15)

with φt(x) = φ(t, x) and λ ∈ C. (The observable f has to sat-
isfy some conditions which ensure that the averages exist.) When
it exists and is nonzero for some λ and f , the Laplace average f ∗

λ (x)
corresponds to the eigenfunction of the Koopman operator associ-
ated with the eigenvalue λ [22]. Indeed, one easily verifies that

U t ′ f ∗

λ (x) = lim
T→∞

1
T

 T

0
(f ◦ φt+t ′)(x) e−λt dt

= eλt ′ lim
T→∞

1
T

 T+t ′

t ′
(f ◦ φt)(x) e−λt dt

= eλt ′ f ∗

λ (x)
where the second equality is obtained by substitution. For systems
with a stable fixed point, the Laplace average f ∗

λ1
(x) corresponds

(up to a scalar factor) to the eigenfunction s1(x), and is therefore
related to the concept of isostable. In addition, the Laplace aver-
ages are an extension of the Fourier averages [17,18] that were
used in [19] to compute the isochrons of limit cycles.

Remark 3. Instead of (15), the generalized Laplace averages [22]

f ∗

λj
(x) = lim

T→∞

1
T

 T

0


(f ◦ φt)(x) − f (x∗) −

j−1
k=1

f ∗

λk
(x)eλkt


× e−λjt dt
must be considered to obtain other eigenfunctions sj(x), j ≥ 2, and
the associated sets I(j)

τ (j) considered in (14). However, their compu-
tation is delicate since it requires a very accurate computation of
the other (generalized) Laplace averages f ∗

λk
(x), k < j, and goes be-

yond the scope of the present paper.

3.1. The main result

The exact connection between the Laplace averages and the
isostables is given in the following proposition.

Proposition 1. Consider an observable f ∈ C1 such that f (x∗) = 0
and ⟨∇f (x∗), v1⟩ ≠ 0. Then, a unique level set of the Laplace average
|f ∗

λ1
| corresponds to a unique isostable. That is, |f ∗

λ1
(x)| = |f ∗

λ1
(x′)|,

with x ∈ Iτ and x′
∈ Iτ ′ , if and only if τ = τ ′. In addition,

τ − τ ′
=

1
σ1

ln

 f ∗

λ1
(x)

f ∗

λ1
(x′)

 .
Proof. If x belongs to the isostable Iτ , one has, for some θ ∈ Θ ,

lim
t→∞

e−σ1t |(f ◦ φt)(x) − f (x∗)

− ⟨∇f (x∗), ℜ{v1 ei(ω1t+θ)
}⟩eσ1(t+τ)

|

= lim
t→∞

e−σ1t |⟨∇f (x∗), φt(x) − x∗
⟩ + o(∥φt(x) − x∗

∥)

− ⟨∇f (x∗), ℜ{v1 ei(ω1t+θ)
}⟩eσ1(t+τ)

|

≤ ∥∇f (x∗)∥ lim
t→∞

e−σ1t∥φt(x) − (x∗
+ ℜ{v1 ei(ω1t+θ)

} eσ1(t+τ))∥

+ lim
t→∞

e−σ1to




n
j=1

sj(x)vj eλjt

+


{k1,...,kn}∈Nn

0
k1+···+kn>1

sk11 (x) · · · sknn (x) vk1···kn e
(k1λ1+···+knλn)t




= 0 (16)

with λ1 = σ1 + iω1. The first equality is obtained through a
first-order Taylor approximation, the inequality results from the
Cauchy–Schwarz inequality and the expression of the flow (12),
and the last equality is implied byDefinition 2. Then, it follows from
(16) that limT→∞

1
T

 T

0
(f ◦ φt)(x) e−λ1t dt − lim

t→∞

1
T

 T

0


f (x∗)

+ ⟨∇f (x∗), ℜ{v1 ei(ω1t+θ)
}⟩eσ1(t+τ)


e−λ1t dt


≤ lim

T→∞

1
T

 T

0
e−σ1t |(f ◦ φt)(x) − f (x∗)

− ⟨∇f (x∗), ℜ{v1 ei(ω1t+θ)
}⟩eσ1(t+τ)

|dt = 0,

or equivalently, given (15) and since f (x∗) = 0,

f ∗

λ1
(x) = lim

T→∞

1
T

 T

0


f (x∗) + ⟨∇f (x∗), ℜ{v1 ei(ω1t+θ)

}⟩

× eσ1(t+τ)

e−λ1t dt

= lim
T→∞

1
T

 T

0


∇f (x∗),

v1 ei(ω1t+θ)
+ vc1 e

−i(ω1t+θ)

2


× eσ1τ−iω1t dt



A. Mauroy et al. / Physica D 261 (2013) 19–30 25
= lim
T→∞

1
2T

 T

0


∇f (x∗), v1


eσ1τ+iθdt

+

 T

0


∇f (x∗), vc1


eσ1τ−i(2ω1t+θ)dt


. (17)

If λ1 ∈ R, one has ω1 = 0, v1 = vc1, and eiθ = e−iθ (since
θ ∈ Θ = {0, π}). Then, it follows from (17) that

f ∗

λ1
(x) = lim

T→∞

1
T

 T

0


∇f (x∗), v1


eσ1τ+iθdt

=

∇f (x∗), v1


eσ1τ+iθ (18)

and

|f ∗

λ1
(x)| = |⟨∇f (x∗), v1⟩| eσ1τ , λ1 ∈ R. (19)

If λ1 ∉ R, ω1 ≠ 0 implies that the second term of (17) is equal to
zero, which yields

|f ∗

λ1
(x)| =

|⟨∇f (x∗), v1⟩|
2

eσ1τ , λ1 ∉ R. (20)

For x′
∈ Iτ ′ , the inequalities (19) or (20) still hold (with τ replaced

by τ ′), so that the result follows provided that ⟨∇f (x∗), v1⟩
≠ 0. �

The Laplace average f ∗

λ1
(x) considered in Proposition 1 actually

extracts the term v10···0 s1(x) from the expression of U t f (x) (10).
The Koopman mode v10···0 corresponds to ⟨∇f (x∗), v1⟩, as shown
by (19) and (20) (recall that |s1| = exp(σ1τ) when λ1 ∈ R or
|s1| = exp(σ1τ)/2 when λ1 ∉ R). This value must be nonzero
to ensure that f has a nonzero projection onto s1.

Remark 4 (Unstable Fixed Point and Multiple Eigenvalues (See Also
Remarks 1 and 2)).
(i) For unstable fixed points with σj > σ1 > 0 for all j, the

isostables are the level sets of the Laplace averages |f ∗

−λ1
|

computed for backward-in-time trajectories φ(−t, ·).
(ii) In the case of a star node (e.g. with a real eigenvalue of

multiplicity m), the isostables obtained through the Laplace
averages depend on the choice of the observable f , whichmay
have a nonzero projection


∇f (x∗), vj


, j = 1, . . . ,m, on

several eigenfunctions of the Koopman operator associated
with the eigenvalue λ1. However, a unique family of isostables
is obtained by considering the level sets of

m
k=1(f

∗

λ1,k
)2,

where f ∗

λ1,k
denotes the Laplace average for an observable fk

that satisfies

∇fk(x∗), vj


= 0 for all j ∈ {1, . . . ,m} \ {k}.

(iii) In the case of a degenerate fixed point (eigenvalue of
multiplicity m), the isostables are computed with the Laplace
averages, but the exponential exp(−λ1t) in (15) must be
replaced by t1−m exp(−λ1t).

3.2. Numerical computation of the Laplace averages

Proposition 1 shows the strong connection between the
isostables and the Laplace averages, a result which provides a
straightforward method for computing the isostables. Similarly to
the method developed in [19], the computation of isostables is
realized in two steps: (i) the Laplace averages are computed (over
a finite time horizon) for a set of sample points (distributed on a
regular grid or randomly); (ii) the level sets of the Laplace averages
(i.e. the isostables) are obtained using interpolation techniques.
The proposed method is flexible and well-suited to the use of
adaptive grids, for instance. In addition, the averages can be
computed either in the whole basin of attraction of the fixed point
or only in regions of interest.

It is important to note that the computation of the Laplace
averages involves the multiplication of the very small quantity
(f ◦ φt)(x) with the very large quantity exp(−λ1t), as t → ∞.
When the trajectory approaches the fixed point, the relative error
of the integrationmethod implies that the (numerically computed)
quantity (f ◦ φt)(x) does not compensate exactly the value
exp(−λ1t), and the computation becomes numerically unstable.
Therefore, a high accuracy of the numerical integration scheme and
a reasonably small time horizon T are required for the computation
of the Laplace averages.

In spite of the numerical issue mentioned above, an algorithm
based on a straightforward calculation of the Laplace averages
produces good results. However, it is improved if one can
avoid computing the integral. Toward this end, we remark that
evaluating the integral (15) is not necessary when λ1 is real, since
the integrand converges to a constant value. When λ1 is complex,
we consider the successive iterations of the discrete time-T1 map
φ(T1, ·), with T1 = 2π/ω1. The result is summarized as follows.

Proposition 2. (i) Real eigenvalue λ1. Consider an observable f ∈

C1 that satisfies f (x∗) = 0. Then, the Laplace average f ∗

λ1
(x)

corresponds to the limit

f ∗

λ1
(x) = lim

T→∞

e−σ1T (f ◦ φT )(x). (21)

(ii) Complex eigenvalue λ1. Consider two observables f1 ∈ C1 and
f2 ∈ C1 that satisfy

f1(x∗) = f2(x∗) = 0∇f1(x∗), a
 =

∇f2(x∗), b
 ≠ 0

∇f1(x∗), b

=

∇f2(x∗), a


= 0

with a = ℜ{v1} and b = −ℑ{v1}. Then the Laplace average
|f ∗

λ1
(x)| of an observable f ∈ C1 is proportional to the limit

|f ∗

λ1
(x)| ∝ lim

n→∞

n∈N

e−σ1nT1


(f1 ◦ φnT1)(x)
2

+

(f2 ◦ φnT1)(x)

2
,

with T1 = 2π/ω1.
Proof. (i) Real eigenvalue λ1. Since f (x∗) = 0, the result follows
from (16) and (18). (ii) Complex eigenvalue λ1. Provided that
f (x∗) = 0, (16) implies that

lim
n→∞

e−σ1nT1(f ◦ φnT1)(x) =

∇f (x∗), ℜ


v1eiθ


eσ1τ

=

∇f (x∗), a cos(θ) + b sin(θ)


eσ1τ

and since f1(x∗) = f2(x∗) = 0,

lim
n→∞

e−σ1nT1(f1 ◦ φnT1)(x) = cos(θ)

∇f1(x∗), a


eσ1τ

lim
n→∞

e−σ1nT1(f2 ◦ φnT1)(x) = sin(θ)

∇f2(x∗), b


eσ1τ .

Then, one has

lim
n→∞

e−σ1nT1


(f1 ◦ φnT1)(x)
2

+

(f2 ◦ φnT1)(x)

2
= |⟨∇f1(x∗), a⟩|eσ1τ

and it follows from (20) that the limit is proportional to |f ∗

λ1
(x∗)|,

with the factor of proportionality 2| ⟨∇f1(x∗), a⟩ / ⟨∇f (x∗), v1⟩ |.
�

Proposition 2 implies that the isostables can be computed as the
level sets of particular limits. In the case λ1 ∈ R, the computation
of the limit (21) is interpreted as the infinite-dimensional version
of the power iteration method used to compute the eigenvector
of a matrix associated with the largest eigenvalue. While the
straightforward computation of the Laplace averages (15) is
characterized by a rate of convergence T−1, the computation of
the limits is characterized by an exponential rate of convergence.
Hence, the results of Proposition 2 are of great interest from
a numerical point of view, and it is particularly so since the
numerical instability imposes an upper bound on the finite time
horizon T .
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Remark 5. In the case λ1 ∈ R, the limit (21) is characterized by
the rate of convergence exp(ℜ{λ2 − λ1}T ), which can still be slow
if λ1 ≈ λ2. This rate can be further improved by choosing an ob-
servable f that has no projection onto the eigenfunction s2, i.e. that
satisfies ⟨∇f , v2⟩ = 0. In that case, the rate of convergence will be
exp(ℜ{λ3 − λ1}T ). Similarly, the convergence can be made as fast
as required by choosing an observable that has no projection onto
many other eigenfunctions (i.e. with many zero Koopman modes
vk1···kn ; see the Appendix).

4. Applications

The concept of isostables of fixed points is now illustrated
with some examples. These examples show that the framework is
coherent and general, coherent with the equivalent definition of
isostable for excitable systems and general since it is not limited to
the particular class of excitable systems.

The isostables are computed according to the algorithm
proposed at the beginning of Section 3.2. The Laplace averages are
numerically computed through the integral (15) (e.g. Section 4.2)
or through the limits derived in Proposition 2 (e.g. Section 4.1).

4.1. The excitable FitzHugh–Nagumo model

The concept of isostables is primarily motivated by the reduc-
tion of excitable systems characterized by slow–fast dynamics. In
this case, trajectories with initial conditions on the same isostable
share the same asymptotic behavior on a stable slow manifold.

We compute the isostables for the well-known FitzHugh–
Nagumo model [28,29]

v̇ = −w − v(v − 1)(v − a) + I,
ẇ = ϵ(v − γw),

which admits an excitable regime with a stable fixed point (x∗
=

(v∗, w∗), with v∗
= w∗) for the parameters I = 0.05, ϵ =

0.08, γ = 1, and a ∈ {0.1, 1}. The eigenvalues (of the Jacobian
matrix at the fixed point) are either real (e.g., a = 1) or complex
(e.g., a = 0.1). We consider both cases in the sequel.

In [9], the isostables were computed for the FitzHugh–Nagumo
model through the backward integration of trajectories starting
in a close neighborhood of the stable slow manifold (or transient
attractor). Here, we obtain the same results using a forward
integration method based on the computation of the Laplace
averages.

4.1.1. Real eigenvalues (a = 1)
The Laplace averages are computed according to the result of

Proposition 2(i),with the observable f (v, w) = (v−v∗)+(w−w∗).
The level sets of the Laplace averages (isostables) are represented
in Fig. 4.

One first verifies that the isostables are parallel to the eigen-
vector v2 in the neighborhood of the fixed point. In addition,
two trajectories with an initial condition on the same isostable
synchronously converge to the fixed point. For instance, two tra-
jectories that start from the same level set |s1(x′)| = 1.74 syn-
chronously reach the level set |s1(x)| = 0.17 after a time τ − τ ′

≈

12. This observation confirms the result of Proposition 1, since

1
σ1

ln
 s1(x)s1(x′)

 =
1

−0.1933
ln

0.17
1.74

≈ 12.

The system admits an unstable slow manifold (transient re-
peller), which corresponds to a stable slow manifold (transient at-
tractor) for the backward-time system. The unstable slowmanifold
lies in the highly sensitive region v < 0, w ≈ −0.3 characterized
by a high concentration of isostables. Consider a trajectory that is
Fig. 4. The level sets of the Laplace averages |f ∗

λ1
| are the isostables (black curves)

of the fixed point (red dot), here for the FitzHugh–Nagumomodel with λ1 real. The
color refers to the value of |f ∗

λ1
|. In the neighborhood of the fixed point, the isostables

are parallel to the direction v2 ≈ (−1, 0.1133) (red arrow). Two trajectories with
an initial condition on the same isostable ((−0.0303, −0.5152) for the solid curve,
(1.7879, −0.8182) for the dashed curve) synchronously reach the same isostable
after a time τ − τ ′

≈ 12. They also reach the stable slow manifold (transient
attractor) (green curve) synchronously. (The averages are computed on a regular
grid 100 × 100, with a finite time horizon T = 50; the black dotted–dashed curves
are the nullclines.) (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

near the fixed point and that belongs to the isostable Iτ . If it is
weakly perturbed, it will jump to the isostable Iτ ′ , with τ ′

≈ τ ,
and will reach the initial isostable after a short time τ − τ ′

≪ 1.
In contrast, if the trajectory is perturbed beyond the unstable slow
manifold, it will reach the isostable Iτ ′ , with τ ′

≪ τ . As a con-
sequence, the trajectory will not immediately converge toward its
initial position near the fixed point but will exhibit a large excur-
sion in the state space, whose duration is given by τ −τ ′

≫ 1. This
phenomenon induced by the unstable slow manifold is character-
istic of slow–fast excitable systems and is related to the concentra-
tion of isostables. Note that for slow–fast asymptotically periodic
systems, a high concentration of isochrons is also observed near
the unstable slow manifold [30].

4.1.2. Complex eigenvalues (a = 0.1)
The Laplace averages are computed according to the result of

Proposition 2(ii), with the observables f1(v, w) = b2(v − v∗) −

b1(w−w∗) and f2(v, w) = a2(v −v∗)−a1(w−w∗), a = (a1, a2),
b = (b1, b2). The level sets (isostables) are represented in Fig. 5.
We verify that the isostables are ellipses in the neighborhood of
the fixed point (Fig. 5(b)). In addition, two trajectories with an
initial condition on the same isostable synchronously converge to
the fixed point (Fig. 5(a)). For instance, two trajectories that start
from the same level set |s1(x′)| = 0.10 synchronously reach the
level set |s1(x)| = 0.051 after a time τ − τ ′

≈ 16. This observation
confirms the result of Proposition 1, since

1
σ1

ln
 s1(x)s1(x′)

 =
1

−0.041
ln

0.051
0.10

≈ 16.

As in the case λ1 real, the system admits an unstable slow
manifold (region v < 0 and w ≈ 0) characterized by a high
concentration of isostables.

4.2. The Lorenz model

The framework developed in this paper is not limited to two-
dimensional excitable models, but can also be applied to higher-
dimensional models, including those which are not characterized
by slow–fast dynamics. For instance, we compute in this section
the isostables of the Lorenz model

ẋ1 = a(x2 − x1),
ẋ2 = x1(ρ − x3) − x2,
ẋ3 = x1x2 − bx3.
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Fig. 5. The level sets of the Laplace averages |f ∗

λ1
| are the isostables (black curves) of the fixed point (red dot), here for the FitzHugh–Nagumo model with λ1 complex.

(a) Two trajectories with an initial condition on the same isostable ((0.7688, −0.5779) for the solid curve, (−0.1960, −0.1558) for the dashed curve) synchronously reach
the same isostable after a time τ − τ ′

≈ 16. (The averages are computed on a regular grid 100 × 100, with a finite time horizon T = 250, that is, with 11 iterations of the
time-T1 map; the black dotted–dashed curves are the nullclines.) (b) In the neighborhood of the fixed point, the isostables are ellipses. The arrows represent the vectors
a = ℜ{v1} ≈ (0.96, 0.03) and b = −ℑ{v1} ≈ (0, 0.27). (The averages are computed on a regular grid 50 × 50). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 6. The isostables can be computed for three-dimensional models, including
those which are not characterized by slow–fast dynamics (in this case, the Lorenz
model with λ1 real). Four isostables are represented, which are the level sets of the
Laplace averages |f ∗

λ1
| ∈ {0.5, 1, 1.5, 2}. (The averages are computed on a regular

grid 75 × 75 × 75, with a finite time horizon T = 20; the red dot corresponds to
the fixed point.) (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

With the parameters a = 10, ρ = 0.5, b = 8/3, the origin is
a stable fixed point with a real eigenvalue λ1. Several isostables
are depicted in Fig. 6. They are the two-dimensional level sets—
i.e., the isosurfaces—of the Laplace averages f ∗

λ1
computed for the

observable f (x1, x2, x3) = x1 + x2 + x3. Note that the isostables are
approximated by a plane in the vicinity of the fixed point.

When the parameter ρ exceeds the critical value ρ = 1, the ori-
gin becomes unstable and two stable fixed points (±x∗

1, ±x∗

2, x
∗

3)
appear. Since these fixed points are characterized by the same
eigenvalues, their isostables can be obtained through the computa-
tion of a single Laplace average f ∗

λ1
. In Fig. 7, the isostables are com-

puted for the value ρ = 2, a situation characterized by a complex
eigenvalue λ1. Note that the isostables are cylinders in the vicinity
of the fixed point. In addition, the level set |f ∗

λ1
| → ∞ corresponds

to the separatrix between the two basins of attraction (i.e. the sta-
ble manifold of the fixed point at the origin).

5. Discussion

In this section, we discuss some topics related to the concept of
isostables. Through the Koopman operator framework, we claim
that the notion of isostables is different from but complementary
to the known notion of isochrons. Isostables and isochrons define
a set of action–angle coordinates and are related to a global
linearization of the dynamics. In addition, we briefly show that the
isostables are the level sets of a special Lyapunov function for the
fixed point dynamics.
Fig. 7. The level sets of the Laplace averages |f ∗

λ1
| ∈ {1, 2, 3, 4, 5} represent five

isostables of the two stable fixed points, for the Lorenz model with λ1 complex.
(The averages are computed on a regular grid 50 × 50 × 50, with a finite time
horizon T = 15; the red dot corresponds to the (visible) stable fixed point.) (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

5.1. Isostables vs. isochrons

The isostables are the sets of points that approach the same
trajectory when they converge toward the fixed point. Similarly,
in the case of asymptotically periodic systems, the isochrons are
the set of points that converge toward the same trajectory on
the limit cycle [5]. It follows that isostables (of fixed points) and
isochrons (of limit cycles) are conceptually related. However, these
two concepts are also characterized by intrinsic differences and
turn out to be complementary.

The difference between isostables and isochrons can be
understood through the framework of the Koopman operator. The
isostables have been defined as the level sets of the absolute value
of the Koopman eigenfunction |s1(x)| (Section 2.2). In contrast,
the isochrons of limit cycles were computed in [19] by using the
argument of a Koopman eigenfunction. Similarly, the isochrons of
fixed points (characterized by a complex eigenvalue λ1) can be
defined as the levels sets of the argument ̸ s1(x). These sets (also
called isochronous sections) are well-known and usually defined
as the sets invariant under a particular returnmap (i.e. the discrete
map φ(T1, ·) considered in Proposition 2). Also, their existence,
which is not trivial in the case of weak foci (i.e. with purely
imaginary eigenvalues) or non-smooth vector fields, has been
investigated in [7,8]. In the case of linear systems, the isochrons
correspond to radial lines that intersect at the fixed point (see
Fig. 3(b)). For nonlinear systems, they are tangent to radial lines at
the fixed point but are characterized by a more complex geometry
(see Fig. 8). Note that, when they exist, the isochrons are uniquely
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Fig. 8. For a fixed point with a complex eigenvalue λ1 , the isostables (black curves)
and the isochrons (red curves) of the fixed point are the level sets of |s1(x)| and
̸ s1(x), respectively. In the vicinity of the fixed point, the isostables are ellipses and
the isochrons are straight lines. (The numerical computations are performed for the
FitzHugh–Nagumomodel,with the parameters considered in Section 4.1.2; the blue
dot represents the fixed point.) (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

determined by their topological properties: they define the unique
periodic partition of the state space (of period T1). In contrast,more
care was needed to define the isostables as the level sets of the
unique smooth Koopman eigenfunction s1.

Isostables and isochrons appear to be two different but
complementary notions. On one hand, the isostables are related
to the stability property of the system and provide information
on how fast the trajectories converge toward the attractor. On the
other hand, the isochrons are related to a notion of phase and
provide information on the asymptotic behavior of the trajectories
on the attractor. Given (11), the isostables are related to the
property

d
dt

|s1(φt(x))| = σ1|s1(φt(x))| (22)

while the isochrons are characterized by

d
dt

̸ s1(φt(x)) = ω1. (23)

In the case of fixed points, it is clear that the isochrons are
not relevant to characterize the synchronous convergence of the
trajectories, a fact that stresses the importance of considering the
isostables instead.

5.2. Action–angle coordinates and global linearization

For a two-dimensional dynamical system which admits a
spiral sink (i.e. with two complex eigenvalues), the two families
of isostables and isochrons provide an action–angle coordinates
representation of the dynamics. More precisely, (22) and (23)
imply that, with the variables (r, θ) = (|s1(x)|, ̸ s1(x)), the system
is characterized by the (action–angle) dynamics
ṙ = σ1r
θ̇ = ω1

in the basin of attraction of the fixed point. For systems of higher
dimension, the action–angle dynamics are obtained with several
Koopman eigenfunctions, i.e. (rj, θj) = (|sj(x)|, ̸ sj(x)) leads to
ṙj = σjrj, θ̇j = ωj. Note that this was also shown in Section 2.1.2 in
the case of linear systems with λ1 ∉ R.

When expressed in the action–angle coordinates, the dynamics
become linear. This is in agreement with the recent work [20]
showing that a coordinate systemwhich linearizes the dynamics is
naturally provided by the eigenfunctions of the Koopman operator
Fig. 9. The coordinates z1 (black curves) and z2 (red curves) correspond to Cartesian
coordinates in the vicinity of the fixed point but are deformed when far from the
fixed point. (The numerical computations are performed for the FitzHugh–Nagumo
model, with the parameters considered in Section 4.1.2; the blue dot represents the
fixed point.) (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

(see also the Appendix). Namely, in the new variables yj = sj(x),
the system dynamics are given by

d
dt

y1
...
yn

 =

λ1 0
. . .

0 λ2


y1

...
yn

 .

Moreover, the linear change of coordinatesz1
...
zn

 = V

y1
...
yn

 , (24)

where the columns of V are the eigenvectors vj of the Jacobian
matrix J at the fixed point, leads to the linear dynamics

d
dt

z1
...
zn

 = J

z1
...
z2

 .

For the two-dimensional FitzHugh–Nagumo model, the coordi-
nates (z1, z2) are represented in Fig. 9 and are equivalent to the ac-
tion–angle coordinates (r, θ) (Fig. 8). They correspond to Cartesian
coordinates in the vicinity of the fixed point, where the linearized
dynamics are a good approximation of the nonlinear dynamics (see
also (A.3) in the Appendix). But owing to the nonlinearity, the co-
ordinates are deformed as their distance from the fixed point in-
creases. The comparison between these coordinates and regular
Cartesian coordinates therefore appears as ameasure of the system
nonlinearity.

In the case of two-dimensional systemswith a stable spiral sink,
the derivation of action–angle coordinates and the global lineariza-
tion are obtained through the isostables and the isochrons, that
is, with only the first Koopman eigenfunction s1(x). For higher-
dimensional systems (or two-dimensional systems with a sink
node), global linearization involves several Koopman eigenfunc-
tions sj(x) (see [20] for a detailed study), which can be obtained
through the generalized Laplace averages (see Remark 3). In the
context ofmodel reduction, orwhen the dynamics are significantly
slow in one particular direction, the first eigenfunction—related to
the isostable—is however sufficient to retain the main information
on the system behavior.
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Fig. 10. The function V = |s1(x)| is a particular Lyapunov function for the
system (here, the FitzHugh–Nagumo model with the parameters considered in
Section 4.1.2). One verifies that the function decreases with a constant rate along
a trajectory (black curve). Note also that the unstable slow manifold (region v <

0, w ≈ 0) is characterized by a line of maxima of the Lyapunov function.

5.3. Lyapunov function and contracting metric

As a consequence of the linearization properties illustrated
in the previous section, the Koopman eigenfunctions – and in
particular the isostables – canbeused to derive Lyapunov functions
and contracting metrics for the system.

In the particular case of two-dimensional systems with a spiral
sink, the isostables are the level sets of the particular Lyapunov
function V(x) = |s1(x)| (see Fig. 10 for the FitzHugh–Nagumo
model). Indeed, (22) implies that V̇(x) = σ1V(x) < 0∀x ∈ B(x∗) \

{x∗
} and one verifies that V(x∗) = 0. This function is a special

Lyapunov function of the system, in the sense that its decay rate is
constant everywhere. (Note that the function V = ln(|s1(x)|)/σ1
satisfies V̇ = −1 but with V(x∗) = −∞.)

In addition, the isostables are related to a metric which is
contracting in the basin of attraction of the fixed point. Namely,
the distance
d(x, x′) = |s1(x) − s1(x′)|

is well-defined and (11) implies that
d
dt

d

φt(x), φt(x′)


= σ1d(x, x′) < 0, ∀x ≠ x′

∈ B(x∗).

For more general systems that admit a stable fixed point, the func-
tion V(x) = |s1(x)| is still decreasing along the trajectories, but
V(x) = 0 does not imply x = x∗ (V is zero on the whole isostable
Iτ=∞ that contains the fixed point). However, the function can be
used with the LaSalle invariance principle. To obtain a good Lya-
punov function, several Koopman eigenfunctions must be consid-
ered. For instance, the function

V(x) =


n

j=1

|sj(x)|p
1/p

,

with the integer p ≥ 1, satisfies

V̇(x) =


n

j=1

|sj(x)|p
 1

p −1 n
j=1

σj|sj(x)|p ≤ σ1V(x)

and V(x) = 0 iff x = x∗. In addition, a contracting metric is given
by

d

x, x′


=


n

j=1

|sj(x) − sj(x′)|p

1/p

and one has
d
dt

d

φt(x), φt(x′)


≤ σ1d(x, x′), ∀x, x′

∈ B(x∗).

It follows from the above observations that showing the existence
of stable eigenfunctions of the Koopman operator is sufficient to
prove the global stability of the attractor. Therefore, the Koopman
operator framework could potentially yield an alternative method
for the global stability analysis of nonlinear systems.

6. Conclusion

In this paper, thewell-knownphase reduction of asymptotically
periodic systems has been extended to the class of systems which
admit a stable fixed point. In the context of the Koopman operator
framework, the approach is not restricted to excitable systems
with slow–fast dynamics but is valid in more general situations.
The isostables required for the reduction of the dynamics, which
correspond in some cases to the fibers of a particular invariant
manifold of the system, are interpreted as the level sets of
an eigenfunction of the Koopman operator. In addition, they
are shown to be different from the concept of isochrons that
prevails for asymptotically periodic systems. Beyond its theoretical
implications, the framework also yields an efficient (forward
integration) method for computing the isostables, which is based
on the estimation of Laplace averages along the trajectories.

The reduction of the dynamics through the Koopman operator
framework leads to an action–angle coordinates representation
that is intimately related to a global linearization of the system.
More precisely, the proposed reduction procedure is nothing but
a global linearization of the system where only one direction of
interest is considered, which retains the main information on the
system behavior (i.e. the slowest direction). In this context, the
isostables – related to the action – or the isochrons – related to
the angle – used for the reduction are particular objects involved
in the global linearization process. Given this relation between
reduction methods and linearization, research perspectives are
twofold. On the one hand, convenient Laplace average methods
could be developed for linearization purposes (e.g. computation
of the isostables of limit cycles [31] in the whole – possibly high-
dimensional – basin of attraction), and for the computation of
(un)stable manifolds as well. On the other hand, the Koopman
operator framework can be further exploited for the reduction of
more general dynamical systems (e.g. chaotic systems).

Acknowledgments

The work was completed while A. Mauroy held a postdoctoral
fellowship from the Belgian American Educational Foundation and
was partially funded by Army Research Office Grant W911NF-11-
1-0511, with Program Manager Dr. Sam Stanton.

Appendix. Spectral decomposition of the Koopman operator

In this appendix, we derive the expansion (10) of an observable
onto the eigenfunctions of the Koopman operator. Consider the
change of variable s : x → y, with yj = sj(x), where sj is an
eigenfunction of the Koopman operator. It follows that s(x∗) =

0 and, given (11), the dynamics is linearized in the y variable,
i.e. ẏj = λj yj. According to the linearization Poincaré theorem [32],
the transformation s is analytic since the vector field F is analytic
and the eigenvalues are nonresonant (and provided there is no
unstable fixed point in B(x∗)). If an observable f is analytic, the
Taylor expansion of f (s−1(y)) around the origin yields

f (s−1(y)) = f (x∗) + ∇f T (x∗) Js−1y +
1
2
yT JTs−1HJs−1 y

+
1
2
yT

n
k=1

∂ f
∂xk


x∗

Hs−1
k

y + h.o.t., (A.1)

where Js−1 is the Jacobian matrix of s−1 at the origin (i.e. Js−1,ij =

∂s−1
i /∂yj(0)), H is the Hessian matrix of f at x∗ (i.e. Hij = ∂2f /

(∂xi∂xj)(x∗)), andHs−1
k

is the Hessianmatrix of s−1
k at the origin (i.e.

Hs−1
k ,ij = ∂2s−1

k /(∂yi∂yj)(0)). Using the relationship y = (s1(x),
. . . , sn(x)), we can turn the expansion (A.1) into an expansion of
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f onto the products of the eigenfunctions sj. For a vector-valued
observable f, we obtain

f(x) =


{k1,...,kn}∈Nn

vk1···kn s
k1
1 (x) · · · sknn (x) (A.2)

with the (first) Koopman modes

vk1···kn =



f(x∗) kj = 0∀j,
n

k=1

∂f
∂xk


x∗

∂s−1
k

∂yj


0

kj = 1, ki = 0∀i ≠ j,

n
k=1

n
l=1

∂2f
∂xk∂xl


x∗

∂s−1
k

∂yi


0

∂s−1
l

∂yj


0

+

n
k=1

∂f
∂xk


x∗

∂2s−1
k

∂yi∂yj


0

ki = kj = 1, kr = 0∀r ≠ {i, j},

1
2

n
k=1

n
l=1

∂2f
∂xk∂xl


x∗

∂s−1
k

∂yi


0

∂s−1
l

∂yi


0

+
1
2

n
k=1

∂f
∂xk


x∗

∂2s−1
k

∂y2i


0

ki = 2, kj = 0∀j ≠ i.

The other (higher-order) Koopmanmodes can be derived similarly
from (A.1). Since the eigenfunctions satisfy (11), the relationship
(10) directly follows from (A.2).

For the observable f (x) = x, the Koopman modes are given by

vk1···kn =
1

k1! · · · kn!
∂k1···kns−1

∂k1y1 · · · ∂knyn


0
.

In particular, the eigenvectors of the Jacobianmatrix J of F (i.e. vj =

vk1···kn , with kj = 1, ki = 0∀i ≠ j) correspond to

vj =
∂s−1

∂yj


0

and one has Js−1 = V, where the columns of V are the eigenvectors
vj. It follows that the variables z introduced in (24) satisfy z = Js−1y
so that (A.1) implies

x = x∗
+ z + o(∥z∥). (A.3)

In addition, the derivation of y = s(s−1(y)) at the origin leads
to

δij =


∇si(x∗),

∂s−1

∂yj

c
0


=

∇si(x∗), vcj


.

Therefore, the gradient ∇si(x∗) is the left eigenvector ṽci of J
(associated with the eigenvalue λi) and one has

si(x) = ⟨x − x∗, ∇sci (x
∗)⟩ + o(∥x − x∗

∥)

= ⟨x − x∗, ṽi⟩ + o(∥x − x∗
∥), (A.4)

which implies that, for ∥x − x∗
∥ ≪ 1, the eigenfunction si(x) is

well approximated by the eigenfunction of the linearized system.
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