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The well-established method of phase reduction neglects information about a limit-cycle oscillator’s approach
towards its periodic orbit. Consequently, phase reduction suffers in practicality unless the magnitude of the
Floquet multipliers of the underlying limit cycle are small in magnitude. By defining isostable coordinates of
a periodic orbit, we present an augmentation to classical phase reduction which obviates this restriction on the
Floquet multipliers. This framework allows for the study and understanding of periodic dynamics for which
standard phase reduction alone is inadequate. Most notably, isostable reduction allows for a convenient and
self-contained characterization of the dynamics near unstable periodic orbits.
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Oscillatory behavior is a ubiquitous natural phenomenon
with a wide array of applications, including neurological
behavior, circadian rhythms, chemical reactions, mechanical
vibrations, and chaotic systems [1–7]. For nearly half a century,
phase reduction has been an indispensable tool to aid in the
understanding and manipulation of such oscillators [1–6] by
allowing periodic solutions of

ẋ = F (x) + G(x,t), x ∈ Rn (1)

to be represented by the single variable system:

θ̇ = ω + Q(θ )T G(x,t). (2)

Here G ∈ Rn is an external perturbation, θ ∈ [0,2π ) is the
phase of oscillation, ω = 2π/T is the natural frequency
with T being the natural period, and Q(θ ) ∈ Rn is an
infinitesimal phase response curve (PRC), which as its name
suggests, is valid for perturbations G with small magnitude.
Practically, (2) is valid in a close vicinity of the periodic orbit,
γ . Consequently, the amplitude of allowable perturbations
is limited by the size of the Floquet multipliers [8]; stable
orbits with Floquet multipliers with magnitude close to 1 can
only admit relatively small perturbations without the risk of
being driven away from the limit cycle over time. In many
applications [5,9–11], however, the efficacy of a given control
strategy is directly related to the magnitude of allowable
perturbations. Furthermore, for unstable periodic orbits, (2)
alone cannot adequately describe the long-term behavior
of (1), rendering it unusable. Discrete-time proportional state
feedback [7,12] and delayed feedback control [13] have been
used to suppress chaos by means of stabilizing unstable
periodic orbits. These classes of chaos control strategies have
found practical applications in cardiac, electronic, networked,
and optical systems [14–17]. Phase reduction techniques
could be of practical interest in the suppression of chaos if
appropriate modifications could be made.

This work proposes an augmentation of standard phase
reduction which allows for a better understanding of systems
with either a stable or unstable periodic orbit. We introduce a
set of isostable coordinates and associated isostable response
curves (IRCs), which represent the distance from the periodic
orbit in an appropriate basis. The notion of isostables was
introduced in Ref. [18] (cf. Refs. [19] and [20]) to represent sets
of initial conditions which converge toward a stable fixed point
together in a well-defined sense. The isostable coordinates

used in this manuscript are defined in a manner that is similar
in spirit but adapted for use with periodic orbits. Unlike
Refs. [21,22], the strategy proposed here does not require
computationally intensive calculations of an ad hoc coordinate
system with respect to a periodic orbit of dimensionality
greater than 2. Furthermore, the strategy presented here does
not require the periodic orbit to be exponentially attracting in
either forward or backward time. In the examples given in this
work, we illustrate the utility of this reduction method in two
different oscillatory systems for which (2) alone is insufficient.

Starting with a general system of ordinary differential
equations (1), let γ be a T -periodic orbit which exists for
G ≡ 0. We define a scalar phase variable on γ such that
θ (x) : Rn → [0,2π ) for which dθ [x(t)]/dt = ω and θ [x(t)] =
θ [x(t + T )], and choose an arbitrary point x0 ∈ γ for which
θ (x0) = 0. By solving for Q(θ ) (the gradient of the phase field)
using, e.g., adjoint methods [4,23,24], this notion of phase can
be extended to any x in a neighborhood of γ by noting that for
ε > 0, θ (x + εy) = θ (x) + O(ε2) for any y in the null space
of Q[θ (x)]. This definition of phase is possible regardless of
the stability type of γ . We define isochrons as level sets of
the phase field, i.e., �θ = {x|θ (x) = θ}. When γ is a stable
periodic orbit, isochrons have an intuitive meaning: For any
initial conditions a(0) ∈ γ and b(0) in the basin of attraction
of γ on the same isochron, limt→∞ ||a(t) − b(t)|| = 0 [1].

Changing to phase variables using the chain rule, one arrives
at the phase reduction (2). Here we are also interested in the
transient behavior of (1) near γ which can be understood in
terms of Poincaré maps. By construction, any initial condition
in �0 first returns to �0 at time T allowing for the definition
of a Poincaré map,

P : �0 → �0; x �→ φ(x), (3)

with P (x0) = x0. In a small neighborhood of x0 we may
approximate φ from (3) as

φ(x) = x0 + JP (x − x0) + O(||x − x0||2), (4)

where JP = dφ/dx|x0 . Suppose Jp is diagonalizable and let
V ∈ Rn×n be a matrix with columns that form a basis of unit
length eigenvectors {vk,k = 1, . . . ,n} of JP with associated
eigenvalues {λk,k = 1, . . . ,n}. The eigenvalues λi are often
referred to as Floquet multipliers of the periodic orbit. For any
eigenvector vi with associated λi ∈ R > 0 (if any λi < 0, one
can define the period to be 2T so all eigenvalues are positive),
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θ = 0

ψ1(x) = ϑ

ψ1(x) = λ1ϑ

γ

FIG. 1. A sketch of the behavior of a general two-dimensional
system near its limit cycle. The red and blue lines represent two
trajectories integrated over one period which start on the same
isostable level set. Dashed and dotted lines represent two different
isostable level sets. When the Poincaré map defined with respect to the
θ = 0 isochron is well approximated as a linear map the discontinuity
across the θ = 0 isochron is negligable, and trajectories on the same
isostable level set cross the successive isostable level sets together.
Furthermore, the isostable coordinate decreases at an exponential rate
governed by the Floquet multiplier λ1. Here the isostable level sets
give a sense of the distance from the periodic orbit.

we can define a set of isostable coordinates,

ψi(x) = eT
i V −1(x� − x0) exp(− log(λi)t�/T ). (5)

Here x� and t� ∈ [0,T ) are defined to be the location and time,
respectively, at which the trajectory first returns to �0 under the
flow ẋ = F (x) and ei is a vector with 1 in the ith position and
zeros elsewhere. These isostable coordinates ψi(x) are defined
for all x ∈ Rn, not just on the Poincaré section. Intuitively,
a trajectory near the periodic orbit will spiral towards or
away at a rate determined by each of the Floquet multipliers.
This growth (decay) is matched by the decay (growth) of the
exponential term from (5), giving a sense of the distance
in directions transverse to the periodic orbit. Noting that
dt�/dt = −1 for x(t) �∈ �0, by direct differentiation of (5)
dψi/dt = ψi log(λi)/T , therefore,

∇ψi(x) · F (x) = ψi log(λi)/T . (6)

By (4), one can verify that under the flow ẋ = F (x),
ψi[x(t+� )] = ψi[x(t−� )] + O(||x − x0||2). This discontinuity
results from the approximation of (3) as a linear mapping.
Throughout this analysis, we will assume close-enough prox-
imity to the periodic orbit so this discontinuity is negligible.
Figure 1 gives a representation of a general two-dimensional
system in terms of its isostable coordinates. For an an arbitrary
time τ , if we compute the isostable coordinate ψ1[x(τ )] = ϑ ,
after one revolution, ψ1[x(τ + T )] = λ1ϑ + O(||x − x0||2).
Furthermore, close to the periodic orbit, when the Poincaré
map (3) is well approximated by a linear mapping, two initial
conditions on the same isostable level set will cross successive
isostable level sets together on their way to the limit cycle (to
leading order)

Letting κi ≡ log(λi)/T , and changing variables to isostable
coordinates, with the chain rule we find

dψi(x)

dt
= ∇ψi(x) · [F (x) + G(x,t)]

= κiψi(x) + ∇ψi(x) · G(x,t). (7)

Evaluating the vector field at xγ (θ,ψi), which we define as
the intersection of the trajectory γ , the ψi(x) level set (i.e.,
isostable), and the θ (x) level set (i.e. isochron), we have

dψi(x)

dt
= κiψi(x) + ∇ψi[xγ (θ,ψi)] · G(xγ (θ,ψi),t). (8)

Here, as in Ref. [25] we have ignored an O(|G|2) term so (8)
is valid for perturbations with small G.

Towards deriving an equation for the numerical computa-
tion of ∇ψi[xγ (θ,ψi)], we will momentarily take G ≡ 0 and
consider the effect of a small perturbation �x to a trajectory
x(t) ∈ γ . �x(t) evolves according to

d�x(t)

dt
= J [x(t)]�x(t) + O(||�x||2), (9)

where J [x(t)] is the Jacobian matrix evaluated at x(t).
The corresponding isostable shift, �ψi ≡ ψi[x(t) + �x(t)] −
ψi[x(t)], is given by

�ψi = ∇x(t)ψi · �x(t) + O(||�x||2), (10)

where ∇x(t)ψi is the gradient of ψi evaluated at x(t) ∈ γ . After
the initial perturbation at t = 0,

d�ψi

dt
= κi�ψi

= κi∇x(t)ψi · �x. (11)

In the spirit of Refs. [24] and [26], by taking the time derivative
of (10) and rearranging, to lowest order in ||�x||,

〈d∇x(t)ψi/dt,�x(t)〉
= −〈∇x(t)ψi,d�x(t)/dt〉 + 〈κi∇x(t)ψi,�x〉
= −〈∇x(t)ψi,J [x(t)]�x〉 + 〈κi∇x(t)ψi,�x〉
= −〈J (x(t))T ∇x(t)ψi − κi∇x(t)ψi,�x〉. (12)

Here 〈·,·〉 is the Euclidean inner product (i.e., dot product),
and superscript T indicates the transpose (i.e., adjoint) of the
real-valued matrix J [x(t)]. Because (12) is valid for any �x,

d∇x(t)ψi

dt
= {κiI − J [x(t)]T }∇x(t)ψi, (13)

where I is the identity matrix. Note the similarity between (13)
and the adjoint equation derived in Ref. [21] which was valid
only for two-dimensional systems. Recall that for x ∈ �0,
t� = 0 and x� = x, so from (5), ψi(x) = eT

i V −1(x − x0).
This implies that ψi(x + ηvi) = ψi(x) + η for η ∈ R or,
equivalently,

∇x0ψi · vi = 1. (14)

This normalization condition along with T -periodicity defines
a unique solution of (13). Equation (1) can then be understood

052213-2



ISOSTABLE REDUCTION OF PERIODIC ORBITS PHYSICAL REVIEW E 94, 052213 (2016)

in reduced form

θ̇ = ω + QT (θ ) · G(t)
(15)

ψ̇i = κiψi + IT
i (θ ) · G(t) for i = 1, . . . ,n − 1,

where QT (θ ) ≡ ∇θ |xγ (θ) is often referred to as the PRC, and
Ii(θ ) ≡ ∇ψi |xγ (θ) will be referred to as an IRC. As shown in
Appendix, the magnitude but not the shape of the resulting
IRCs depends on the initial choice of θ (x0) = 0. Much like in
the standard phase reduction (2), Eqs. (15) are valid provided
the unreduced state dynamics remain close to γ . In practice,
we generally only need to consider a few isostable coordinates:
If |λk| ≈ 0, any perturbations to ψk will be quickly forgotten
and this coordinate can simply be ignored. Finally, we note
that if Jp is not diagonalizable, a similar reduction analysis
can be performed for any eigenvalue for which the geometric
and algebraic multiplicity are identical. As we will show in
the following examples, isostable reduction is essential for
understanding phase reduced systems with eigenvalues close
to or greater than 1.

To illustrate the principles derived above, we will first
consider a three-dimensional model of gene regulation [27]
which has been used to describe the oscillatory behavior of
the suprachiasmatic nucleus responsible for the mammalian
circadian clock:

Ẋ = v1K
n
1 /(Kn

1 + Zn) − v2X/(K2 + X) + L(t),

Ẏ = k3X − v4Y/(K4 + Y ), (16)

Ż = k5Y − v6Z/(k6 + Z).

Here X, Y , and Z represent concentrations (expressed in
nM) of the messenger ribonucleic acid (mRNA) clock gene
per or cry, the PER or CRY protein, and the nuclear form
of the protein, respectively, with all constants taken as the
nominal values from Fig. 2 of Ref. [27], and L(t) represents
a perturbation from ambient light. Figure 2(a) shows the

FIG. 2. Panel (a) shows the limit cycle in black with �0 in red.
Panels (b) and (c) show the PRC and IRC, respectively. Numerical
validation of the IRC through calculation of �ψ1/�X (represented
by black dots) for various phases of perturbation are shown with black
dots. Initial conditions (red dots) in panel (d) are mapped to locations
in panel (e) after one iteration of the Poincaré map.

limit-cycle solution of (16) when L(t) = 0 with a natural
period Tc = 23.54 h. The value θ = 0 (an arbitrary reference
point) is represented with a black dot, and the �0 Poincaré
section (i.e., the θ = 0 isochron) is approximated by the red
plane near the periodic orbit. Initial conditions represented by
red dots in Fig. 2(d) are mapped to the locations in Fig. 2(e).
Eigenvalues λ1 and λ2 of eigendirections v1 and v2 of P (x)
are determined numerically to be 0.951 and approximately 0,
respectively. Using standard techniques [4,23,24], the PRC,
Qc(θ ) ≡ [QX(θ ) QY (θ ) QZ(θ )], is calculated with QX(θ )
shown in Fig. 2(b). The IRC, Ic

1(θ ) = [IX
1 (θ ) IY

1 (θ ) IZ
1 (θ )], is

calculated using (13) with IX
1 (θ ) shown in Fig. 2(c).

We can represent the reduced dynamics of this oscillator
with two coupled ordinary differential equations:

θ̇ = ωc + QX(θ )L(t), (17)

ψ̇1 = κcψ1 + IX
1 (θ )L(t), (18)

with ωc = 2π/Tc and κc = log(λ1)/Tc. Note that we do not
include ψ2 in the reduction because the stability in this
coordinate is very strong. To illustrate the necessity of (18)
in the phase reduction, we will test and implement a simple
control strategy for entrainment to an external perturbation.
Suppose we would like to entrain the oscillation to an external
periodic perturbation L(t) = μδ[mod(t,Tc + �T )], a control
objective which is relevant in the treatment in certain types of
circadian misalignment (cf. Refs. [28,29]). By simply taking
into account the phase reduction (17), one can understand the
phase dynamics as a series of maps

θ̄+ = θ̄ + 2π�T/Tc + μQX(θ̄), (19)

where θ̄ represents the phase immediately prior to the
application of a pulsatile stimulus, and θ̄+ gives the phase at a
time Tc + �T later. Equation (19) has a fixed point when μ =
−2π�T/TcQ

X(θ̄). The minimal control effort required occurs
when θ = argmax|QX(θ )| ≈ 1. Letting Tc + �T = 22.2 h,
simple stability analysis reveals that the resulting fixed point
is stable. However, as shown in the right panels of Fig. 3,
this control strategy does not give stable entrainment and the
mean period remains unchanged. From the three-dimensional
trajectory in blue, we find that the trajectory does not remain
close to the periodic orbit, as would be predicted from the
isostable reduction, as IX

1 (1) is relatively large. Instead, if

0.07
0.17

0.3 0.4

1.8
2

2.2

XY

Z

0 100 200 300 400
1.8

2
2.2

Z
(t

)

t

0.07
0.17

0.3
0.4

1.8
2

2.2

XY

Z

0 100 200 300 400
1.8

2
2.2

Z
(t

)

t

FIG. 3. Left: The circadian oscillator can be entrained (trajectory
shown in blue) to periodic δ-function perturbations if they are
given when the IRC is approximately zero. Right: Entrainment
does not occur even when analysis of (17) alone predicts it should.
Equation (18) is essential for using phase reduction in this application.
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FIG. 4. Top-left: Trajectory along the Lorenz attractor in blue
with an unstable periodic orbit outlined in black. Top-right: A
small portion of the periodic orbit is shown as a thick black line.
Eigendirections of the Poincaré map are shown as thin lines. Initial
conditions in red are mapped to the locations in blue after one
application of the map. Bottom: an example uncontrolled chaotic
trajectory on the Lorenz attractor.

we choose μ as above, numerically we find θ̄ = 2 is a stable
fixed point of (19), and with IX

1 (1) = 0, the pulsatile stimulus
stably entrains the oscillator as shown in the left panels of
Fig. 3. Numerically, we find that fixed points θ̄0 of (17) are
unstable unless I(θ̄0) ≈ 0.

Next, we show that the notion of isostables can be used to
understand the effect of small perturbations near an unstable
periodic orbit and how they can be used to optimally drive a
given trajectory to an unstable periodic orbit. Here we consider
the three-dimensional Lorenz equations [30]:

Ȧ = σ (B − A) + u(t),

Ḃ = A(ρ − C) − B, (20)

Ċ = AB − βC.

Here, A, B, and C are nondimensional system variables;
σ = 16, β = 8/3, and ρ = 350 are constants chosen so the
unperturbed dynamics are chaotic; and u(t) is an external
perturbation. An unstable periodic orbit, γL with period
TL = 0.372 and dynamics along the Lorenz attractor are shown
in Fig. 4. Along this orbit, θ = 0 is taken to correspond to
an arbitrary location along γL allowing for the definition of
�0. The resulting Poincaré section is shown in the top-right
panel. Eigenvalues λ1 and λ2 of the Poincaré map’s v1 and
v2 eigendirections are numerically determined to be 3.33
and approximately 0, respectively. Using (13) the IRC of
this unstable eigendirection IL

1 (θ ) = [IA
1 (θ ) IB

1 (θ ) IC
1 (θ )] is

calculated with IA
1 (θ ) shown in Fig. 5. We also calculate the

PRC QA(θ ) for perturbations in the A direction, allowing for
the reduction

θ̇ = ωL + QA(θ )u(t),
(21)

ψ̇1 = κLψ1 + IA
1 (θ )u(t),

where ωL = 2π/TL and κL = log(λ1)/TL. Understanding
the Lorenz system in reduced coordinates allows for the
formulation of a control problem to drive any initial condition
to the unstable periodic orbit provided it is close enough
to the orbit so the reduction is valid. Towards this calculus
of variations problem formulation [31], we define a cost
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FIG. 5. Panels (a) and (b) give the PRC and IRC for this system.
IRC values are numerically validated by calculating �ψ1/�A at
various phases and shown as black dots. Panel (c) shows an optimal
stimulus which takes an initial condition in �0 and returns it to �0 with
ψ1 = 0 one period later. A control strategy using this information is
shown in panels (d) and (e).

functional

M[�̇,�,u(t)] =
∫ TL

0

[
u2(t) + ζ1{θ̇ − ωL − QA(θ )u(t)}

+ ζ2
{
ψ̇1 − κLψ1 − IA

1 (θ )u(t)
}]

dt, (22)

with �(t) = [θ (t),ψ1(t),ζ1(t),ζ2(t)]. Here, Lagrange multipli-
ers ζ1 and ζ2 force the dynamics to satisfy the phase and
isostable reduced equations. The associated Euler-Lagrange
equations are

∂M
∂u

= d

dt

(
∂M
∂u̇

)
;

∂M
∂�

= d

dt

(
∂M
∂�̇

)
. (23)

Optimal solutions to the cost function satisfy (23) with
boundary conditions θ (0) = 0, θ (TL) = 2π , ψ1(TL) = 0, and
ψ1(0) determined from initial data. This two-point boundary
problem can be solved, e.g., with a double bisection algorithm
and is chosen so after one cycle, the trajectory ends on the
stable manifold of the Poincaré section �0. The numerically
determined optimal control u∗(t) is shown in Fig. 5(c) for
multiple choices of ψ1(0) ∈ [−20,20]. In this range, u∗(t) is
approximately proportional to 1/ψ1(0). Using this informa-
tion, we can devise a control algorithm to drive the Lorenz
system to the unstable periodic orbit: For any initial condition,
wait until the trajectory crosses �0 close enough to the
unstable periodic orbit and calculate ψ1(0) to determine u(t).
Figures 5(d) and 5(e) show the result of this strategy where
the control is set to engage when ψ1(0) < 20. After the first
control application at t ≈ 3.5, the system is nearly driven to
the periodic orbit, but because (13) provides an approximation
to the IRC, a second and third control application (of rapidly
decreasing magnitude) are required to bring the system exactly
to the periodic orbit.

The chaos control strategy illustrated here differs from
discrete time proportional feedback methods (for example,
Refs. [7,12]) in that it uses information at all locations near the
periodic orbit, not just along the Poincaré surface. This added
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information about the system allows for the definition of an
optimal control problem which yields a continuous solution.
In many control applications, allowing for continuous wave
forms can lead to a substantial decrease in energy required
to achieve a control objective as compared to discrete time
control [5,32]. One drawback of the method developed here
is that the periodic orbit must be known before IRCs can
be measured and control strategies can be implemented. In
this case, in an experimental setting one might envision that
the unstable orbit could be found, for instance, with delayed
feedback control strategies [13], after which an IRC could
be measured with an experimental protocol similar to the
“direct method” [33,34] for measuring PRCs. Such a protocol
could make a chaos control described here more feasible in an
experimental setting.

In summary, we have developed a set of isostable coor-
dinates which allow classical phase reduction to be useful
for understanding the dynamics near periodic orbits without
Floquet multipliers near 0. The computational complexity
of implementing this reduction strategy is comparable to
that of standard phase-reduction calculations. The reduced
dynamics are particularly useful for the problem of stabilizing
unstable periodic orbits as a means of controlling chaotic
dynamical systems [7,12–17]. Additional applications of this
reduction strategy could include investigating effect noise
on a system in the dynamics in directions transverse to the
periodic orbit (similar to how the variance of the firing rate
of an oscillator was studied in Ref. [35]). Furthermore, it
could be of interest to use this isostable coordinate system
to investigate how the phase response characteristics of an
oscillator change when perturbed from the periodic orbit,
which may have applications to memory effects from pacing
history [36,37]. Continued development of strategies for
understanding isostable coordinates of periodic orbits will
assist in the understanding of these systems in problems
pertaining to synchronization, entrainment, and stabilization
of oscillatory dynamics when (2) alone is insufficient.

ACKNOWLEDGMENTS

Support for this work by National Science Foundation
Grants No. NSF-1363243, No. NSF-1264535, and No. NSF-
1602841 is gratefully acknowledged.

APPENDIX: RELATIONSHIP BETWEEN THE CHOICE OF
POINCARÉ SECTION AND THE RESULTING ISOSTABLE

RESPONSE CURVE

In general, the choice of θ = 0 on the periodic orbit used
to define the initial Poincaré section will change the isostable
coordinates and will affect resulting isostable response curves.
However, the shape of the isostable response curve for any
isostable field defined as in (5) from the main text is invariant
to the choice of θ for which we use to define our Poincaré
section provided the algebraic multiplicity of the associated
eigenvalue λi is unity. This will be shown here by examining
the relationship between isostable changes caused by arbitrary
perturbations in coordinate systems defined by two different
Poincaré sections.

To begin let γ be a T -periodic solution of the vector field

ẋ = F (x) + G(x,t), x ∈ Rn, (A1)

where F ∈ Rn represents the unperturbed dynamics and
G ∈ Rn is an external perturbation. As in the main text,
we define a scalar phase variable θ (x) : Rn → [0,2π ) for
which dθ [x(t)]/dt = ω and θ [x(t)] = θ [x(t + T )]. We also
define isochrons to be level sets of the phase field, i.e.,
�θ = {x|θ (x) = θ}.

Let x1 and x2 be any two points on γ such that θ (x1) = θ1

and θ (x2) = θ2. The associated isochrons, �θ1 and �θ2 , can be
used to define Poincaré maps

P1 : �θ1 → �θ1

x �→ φ1(x), (A2)

P2 : �θ2 → �θ2

x �→ φ2(x). (A3)

In the analysis to follow, we will restrict our attention to
the dynamics of these maps in a small neighborhood of x1

and x2. Taylor expanding, one can show that for any time t1
(respectively, t2) for which x(t1) ∈ �θ1 (respectively, x(t2) ∈
�θ2 ),

x(T + t1) − x1 = J1(x(t1) − x1) + O(||x(t1) − x1||2),
(A4)

x(T + t2) − x2 = J2(x(t2) − x2) + O(||x(t2) − x2||2),

where J1 = dφ1/dx|x1 and J2 = dφ2/dx|x2 . By construction
of the phase field, �θ2 is the image of �θ1 under the flow of the
vector field (A1) with G ≡ 0. As discussed in Chapter 11 of
Ref. [38], this defines a Cr diffeomorphism

h : �θ1 → �θ2

x �→ ξ (x) (A5)

and implies that the eigenvalues of J1 are equal to the eigen-
values of J2. Note that h(x1) = x2 so in a small neighborhood
of x1, we can approximate (A5) as

h(x) = x2 + H (x − x1) + O(||x − x1||2), (A6)

where H = dξ/dx|x1 .
Towards the definition of isostables with respect to each

map, suppose the J1 and J2 are both diagonalizable. Let
V1 (respectively, V2) ∈ Rn×n be matrices with columns
that form an orthonormal basis of unit length eigenvectors
{v1

k,k = 1, . . . ,n} of J1 (respectively, {v2
k,k = 1, . . . ,n} of J2)

associated with the eigenvalues {λk,k = 1, . . . ,n}.
Let ei be a vector with 1 in the ith position and zeros

elsewhere. Mirroring the definition used in the main text,
we define two isostable fields ψ1

i and ψ2
i with respect to the

Poincaré sections �θ1 and �θ2 :

ψ
j

i (x) = eT
i V −1

j (x�j
− xj ) exp(− log(λi)t�j

/T ),
(A7)

j = 1,2,

where x�1 and t�1 (respectively, x�2 and t�2 ) are the location
and time, respectively, at which the trajectory under the flow
ẋ = F (x) next returns to �θ1 (respectively, �θ2 ). Here, the
superscript −1 denotes the matrix inverse and the superscript
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T denotes the matrix transpose. To present the following
derivation in a more intuitive way, we will define the
scalars s1

i (x) ≡ eT
i V −1

1 x and s2
i (x) ≡ eT

i V −1
2 x which give the

coordinates of x in the basis of eigenvectors of eigenvectors of
J1 and J2, respectively. Using (A4), one can show that

s1
i (x(T + t1) − x1) = λis

1
i (x(t1) − x1)

(A8)
s2
i (x(T + t2) − x2) = λis

2
i (x(t2) − x2).

For convenience of notation in (A8), we have dropped the
higher-order error terms that would carry through from (A4).

Consider any initial condition x(0) ∈ �θ1 . Written in the
basis of eigenvectors of J1

x(0) − x1 = s1
1 (x(0) − x1)v1

1

+ · · · + s1
n(x(0) − x1)v1

n

x(T ) − x1 = λ1s
1
1 (x(0) − x1)v1

1

+ · · · + λns
1
n(x(0) − x1)v1

n, (A9)

where we have used (A8) to obtain the second line. Using (A6),
we can write to leading order ||x(0) − x1||2

x(�t) − x2 = H
[
s1

1 (x(0) − x1)v1
1

+ · · · + s1
n(x(0) − x1)v1

n

]
x(�t + T ) − x2 = H

[
λ1s

1
1 (x(0) − x1)v1

1

+ · · · + λns
1
n(x(0) − x1)v1

n

]
. (A10)

Here �t = ω(θ2 − θ1) with θ̇ = ω under the flow ẋ = F (x).
When calculating isostables using (A7) t�2 = 0 for any
x ∈ �θ2 . Because x(�t) ∈ �θ2 , ψ2

i [x(�t)] = s2
i [x(�t) − x2].

Also, x(�t + T ) ∈ �θ2 , and using (A8), ψ2
i [x(�t + T )] =

λis
2
i [x(�t) − x2]. With (A10), this implies

λis
2
i

(
H

{
s1

1 [x(0) − x1]v1
1 + · · · + s1

n[x(0) − x1]v1
n

})
= s2

i

(
H

{
λ1s

1
1 [x(0) − x1]v1

1

+ · · · + λns
1
n[x(0) − x1]v1

n

})
. (A11)

Equation (A11) holds for any x(0). We will assume that λi

has an algebraic multiplicity of 1 so, by linearity of s1
i and

s2
i , (A11) implies

s2
i

(
Hv1

j

) = 0 for all j �= i (A12)

and

s2
i [H (x − x1)] = s1

i (x − x1)s2
i

(
Hv1

i

)
. (A13)

Using this information, we can now show that the isostable
response curve is invariant to the value of θ we use for our
initial Poincaré section.

Consider any initial condition z(0) ∈ Rn which returns to
�θ1 at time t1. Let s1

i (z(t1) − x1) = β, and then by (A7)

ψ1
i (z(0) − x1) = β exp[− log(λi)t1/T ]. (A14)

Now consider a perturbed initial condition y(0) = z(0) + �x
which returns to �θ1 at time t1 + p with s1

i (y(t1 + p) − x1) =
μ + β. We can write

ψ1
i (y(0) − x1) = (μ + β) exp[− log(λi)(t1 + p)/T ]

(A15)
so

ψ1
i (y(0) − x1) − ψ1

i (z(0) − x1)

= (μ + β) exp[− log(λi)(t1 + p)/T ]

−β exp[− log(λi)t1/T ]

≡ �. (A16)

Now consider the isostables with respect to the �θ2 Poincarè
section. Each trajectory will reach �θ2 at a time �t after it
reaches �θ1 . Using (A6),

z(t1 + �t) = H (z(t1) − x1) + x2

+O(||z(t1) − x1||2)

y(t1 + p + �t) = H (y(t1 + p) − x1) + x2

+O(||y(t1 + p) − x1||2). (A17)

Using (A13), we find

ψ2
i [z(0) − x2] = βs2

i

(
Hv1

i

)
× exp[− log(λi)(t1 + �t)/T ]

ψ2
i (y(0) − x2) = (μ + β)s2

i

(
Hv1

i

)
× exp[− log(λi)(t1 + p + �t)/T ]. (A18)

Algebraic manipulation yields

ψ2
i [y(0) − x2] − ψ2

i [z(0) − x2]

= s2
i

(
Hv1

i

)
exp[− log(λi)�t/T ]�. (A19)

Note here that s2
i (Hv1

i ) and exp[− log(λi)�t/T ] are both
constant terms so Eqs. (A16) and (A19) imply that regardless
of which isochron is chosen for the Poincaré section to define
isostables, the shape of the resulting isostable response curves
will be identical provided λi has an algebraic multiplicity of
1. The magnitude of the isostable response curve can vary
depending on the geometry of the periodic orbit.
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