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• Isostable reduction (an analog of phase reduction) is applied to PDE models of cardiac dynamics.
• The reduced systems are analyzed to develop an efficient control strategy for eliminating alternans.
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a b s t r a c t

Cardiac alternans, an arrhythmia characterized by a beat-to-beat alternation of cardiac action potential
durations, is widely believed to facilitate the transition from normal cardiac function to ventricular
fibrillation and sudden cardiac death. Alternans arises due to an instability of a healthy period-1 rhythm,
and most dynamical control strategies either require extensive knowledge of the cardiac system, making
experimental validation difficult, or aremodel independent and sacrifice important information about the
specific system under study. Isostable reduction provides an alternative approach, in which the response
of a system to external perturbations can be used to reduce the complexity of a cardiac system, making it
easier to work with from an analytical perspective while retaining many of its important features. Here,
we use isostable reduction strategies to reduce the complexity of partial differential equation models of
cardiac systems in order to develop energy optimal strategies for the elimination of alternans. Resulting
control strategies require significantly less energy to terminate alternans than comparable strategies and
do not require continuous state feedback.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The elimination of cardiac arrhythmia is a fundamental chal-
lenge in the field of cardiology. The most lethal of these arrhyth-
mias, known as ventricular fibrillation, represents an interruption
of the spatially coordinated cardiac dynamics responsible for
pumping blood throughout the body. Ventricular fibrillation, com-
monly referred to as cardiac arrest, results from pathological, self-
sustaining spiral waves [1–3]. Once cardiac fibrillation begins, the
application of a high intensity shock is the only clinically reliable
way of quickly restoring normal function [4–6], and failure to do
so within minutes can result in death.

The transition from normal cardiac functioning to ventricular
fibrillation is often facilitated by the existence of cardiac alternans,
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the beat-to-beat alternation of dynamic cardiac behavior at a con-
stant rate of depolarization [7]. At a cellular level, alternans usually
manifests in alternating long and short action potential durations
(APDs), defined as the length of time the transmembrane voltage
remains above resting potential after the cell fires (see e.g. the bot-
tom panel of Fig. 1). While alternans can be present during healthy
cardiac conditions, they have long been linked with the onset of
sudden cardiac death [7]. It is widely believed that the develop-
ment of alternans can facilitate the dispersion of refractoriness in
cardiac tissue known as discordant alternans, [8–12] producing fa-
vorable conditions for the formation of reentrant spiral waves.

In the first part of this work, we consider alternans on a one-
dimensional ring of cardiac tissue

Cm
∂V (r, t)
∂t

= D
∂2

∂r2
V (r, t)+ (−Iion(r)+ Istim(r, t)), (1)

where V represents the transmembrane potential, D = 1.5 cm2/s
is the diffusion constant, Iion(r) gives the membrane current
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Fig. 1. The top-left panel shows spatially concordant alternans throughout the ring. The snapshots V1 and V2 are 175 ms apart, approximately the time it takes for the wave
to travel once throughout the medium. In the snapshot V1 , the action potentials last much longer, while in the snapshot V2 , the cells repolarize quickly. The top-right panel
shows the voltage profile of a single cell in the medium at r = 5 cm, showing that alternans are also present at the cellular level. The bottom panel shows the voltage profile
of the same cell on a longer time scale to illustrate the complicated quasiperiodic dynamics of the instability in the ring which is characterized in [15–17].
density, Istim(r, t) is an external current controlled input, Cm =

1 µF/cm2 is the membrane capacitance, and r gives the position
around the ring. While the diffusive term in (1) is linear, the
underlying ionic currents are, in general, nonlinear functions of the
underlying cellular dynamics. In this study, we consider the Fox
model of canine cardiac tissue [13] for membrane current density
and other gating variables. We take all parameters to be nominal.
Eq. (1) has periodic boundary conditions, V (r + l) = V (r), and for
a long enough ring the tissue admits traveling wave solutions. If
we let the length of the ring be l = 10 cm, and create a traveling
wave moving in the positive r direction in the medium, we find
alternans develop in the system, as shown in Fig. 1. Note that on
short time scales shown in the top-right panel, the dynamics look
as though they display period-2 alternant behavior. On longer time
scales, as shown in the bottom panel, the severity of the alternant
behavior at any given location waxes and wanes due to the
complicated interplay between action potential and conduction
velocity restitution; the resulting quasiperiodic dynamics have
been observed in experimental preparations [14] and have been
investigated in detail from a theoretical perspective [15–17].

Because alternans may promote the formation of spiral
wave reentry, termination of this arrhythmia could be useful
from a clinical standpoint as a method of prevention for
those who are susceptible to cardiac fibrillation. However, the
underlying dynamics associated with the membrane current
density make (1) difficult to work with directly to devise alternans
elimination strategies. Indeed, experimentally successful alternans
elimination strategies have utilized model independent state
feedback methodologies which do not explicitly take into account
the cellular dynamics but rather drive the system to an underlying
unstable period-1 orbit [18–21]. While such strategies are useful
when the system dynamics are difficult to work with or have
parameters which are not fully known, they ignore important
features, likely leading to a sacrifice in energy efficiency of the
control strategy. Other control strategies employ state feedback
techniques which may be difficult to implement in real time in
an in vivo setting [22,23]. As a middle ground between these two
strategies, in this workwewill approach this control problem from
the perspective of isostables [24,25] which preserves important
information about (1) but is still simple enough to be treated
analytically.

For excitable systems such as (1) the notion of isostables,
defined to be sets of initial conditions that share the same
asymptotic convergence towards a fixed point [24], provide
a convenient means of understanding the underlying system
dynamics (for a brief introduction on the concept of isostables
in a two-dimensional excitable ODE, we refer the reader to the
Appendix. For a more complete discussion about isostables, we
refer the reader to [24,26]). Isostables of excitable systems are
analogous to isochrons of systems with stable periodic orbits [1,
27–29], as both have the ability to work with a complicated
and high dimensional nonlinear system in terms of a reduced
system with a single variable. When working with isostables,
the resulting isostable reduction [25,26] captures the effect of
perturbations to the state variables on the isostable coordinates.
Isostable reduction is similar to reduction methods which use
inertial manifold [30,31], or center manifold [32] theory. However,
a significant advantage of isostable reduction is that the dynamics
are not required to rapidly collapse onto a lower dimensional
manifold (see e.g. [26]).

At a cellular level, alternans is caused by the existence of a stable
period-2 orbit; in [25]we found that itwas possible to use a control
algorithmbased on an isostable reduction to eliminate alternans by
stabilizing the underlying unstable period-1 orbit (cf. [18,20,21]).
Ultimately, terminating alternans is a problem of controlling the
timing of cell repolarization. By appropriately speeding up the
repolarization of the long action potentials, the unstable period-1
orbit can be stabilized to eliminate alternans in the system. In [25],
using a newly developed methodology of isostable reduction in
ODEs we were able to calculate infinitesimal isostable response
curves (iIRCs) to determine the effect of small perturbations
on individual cell repolarization timing. However, the control
strategy previously developed in [25] lacked the framework
necessary for application in connected cardiac tissue which is
more relevant for in vivo applications. More recently, [26] presents
the necessary framework for calculation of isostable reduction
of partial differential equations, allowing for the reduction of
PDEs which represent cardiac behavior. The aim of this paper is
to develop strategies for elimination of cardiac alternans in PDE
models of cardiac tissue. Ultimately, we find that such methods
can eliminate alternans using significantly less energy than other
comparable strategies and may have relevance in an experimental
setting.

The organization of this paper is as follows: Section 2 gives
details for the calculation of an isostable reduction on the PDE (1).
Section 3 develops a control objective for eliminating alternans
from the perspective of isostables and Section 4 investigates the
utility of a nearly optimal control strategy for achieving this
control objective using voltage perturbations. Section 5 suggests a
strategy for experimental calculation of isostable response curves,
Section 6 investigates control of alternans in tissuewith two spatial
dimensions, and concluding remarks are given in Section 7.
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2. Isostable reduction

Consider aweakly perturbed partial differential equation on the
domainΩ:

∂

∂t
X(r, t) = F(X(r, t), r)+ G(X(r, t))+ p(r, t), (2)

whereX(r, t) ∈ Rm represents the local state at the location r ∈ Rd

at time t , F(X(r, t), r) ∈ Rm gives the local dynamics, G(X(r, t))
represents spatial coupling which could potentially be a function
of derivatives of X , (e.g. diffusion), and p(r, t) represents a weak
external perturbation. In the absence of external perturbations,
(i.e. p(r, t) = 0) suppose the system eventually approaches the
stationary solution, denoted byXo. Near the stationary solution, the
dynamics behave according to

X(r, t)− X0 =

∞
j=1

sj(X(r, 0)− X0)φjeλjt . (3)

Here φj and λj are eigenfunctions of eigenvalues of the system
linearized about the stationary solution and ordered so that |λ1| ≤

|λ2| ≤ · · · , and sj(X) give the coordinates of the state X in the basis
of eigenvectors.

This asymptotic behavior can be used to define a fully nonlinear
isostable field ψ = Ψ {X(r)}: [26,24]

ψ = Ψ {X(r)}

=
1
λ1

log


lim
t→∞


e−λ1t


Ω


ZT (r)(X(r, t)− Xo)


dΩ


+ C . (4)

In (4) we take X(r, 0) = X(r), Z(r) ∈ Rm is a system observable,
and T indicates the transpose operator, and C is a constant. When
eigenvalues are distinct, the choice of Z(r) has little bearing on the
structure of isostables in the system provided it is not orthogonal
toφ1 (cf. [24]), butwhenλ1 has geometricmultiplicity greater than
1, Z(r) can be chosen as desired so that the resulting isostable field
provides useful information about (2). Examining the individual
components of (4), the exponential function in brackets grows at
a rate determined by λ1. The integral in Eq. (4) is proportional
to eλ1t so that the product of these two terms approaches a
constant as time goes to infinity and gives a sense of the distance
of the corresponding state to the stationary solution. Taking the
logarithm and normalizing by λ1 gives a coordinate system for
which dψ/dt = 1 when p(r, t) ≡ 0 (see [25]), and the constant
C allows flexibility in defining ψ = 0 to correspond to certain
outward characteristics of a given trajectory (incorporated tomake
further computations easier as we will show in the sections to
follow).

While the definition of isostables in (4) is rather technical,
when applied to the cardiac PDE model (1), isostable coordinates
have a more intuitive meaning. For example, let Z(r) = δ(r −

ro)1, where 1 is an appropriately sized vector of ones and δ is
the delta function. With this choice, the integral from (4) only
registers the dynamics at ro in the approach to the stationary
solution. Suppose repolarization occurs at this location at t = t0.
Then, as t − t0 increases both the diastolic interval (DI) and the
isostable coordinates increase at the same rate (until the next
action potential is elicited). Thus, for isostable coordinates defined
in this way, larger values of isostables will correlate with larger
values of DIwhich in turn produce larger action potential durations
on the next beat.

While (4) uniquely defines isostable coordinates for any state,
direct calculation of an isostable field using (4) is generally of
limited practical use because it requires computationally intensive
simulation of (2) for each state X(r) to estimate the approach to
the stationary solution in infinite time. Often, we might only be
interested in the isostable coordinates near a particular trajectory
of interest, which we will denote by γ , and these coordinates can
be defined in a more ad hoc manner by X(r) = X(r, 0) with
X(r) ∈ γ forward in time, and choosing ψ(X(r, t)) = t . Changing
to isostable coordinates by taking the gradient of the isostable field
using the chain rule yields

dψ
dt

=

∇ψ(X), F(X(r, t), r)+ G(X(r, t))+ p(r, t)


= 1 +


∇ψ(X), p(r, t)


. (5)

Here, ∇ψ(X) is the infinitesimal isostable response curve (iIRC)
which gives the system’s response to an external perturbation, and
⟨·, ·⟩ denotes the L2 inner product. In the second line, we have used
the fact that dψ/dt = 1 when p(r, t) ≡ 0 so that

⟨∇ψ(X), F(X(r), r)+ G(X)⟩ = 1. (6)

As detailed in [26], by defining ∇X(r,t)ψ as the gradient of ψ
evaluated at X(r, t) along γ , the iIRC can be calculated using

∂∇X(r,t)ψ

∂t
= −J(X(r, t))Ď∇X(r,t)ψ (7)

where J ≡ ∇ [F(x(r, t), r)+ G(X(r, t))], and Ď denotes the adjoint
associated with the L2 inner product. Practically, JĎ must generally
be estimated numerically by first discretizing (2) and solving for
the adjoint of the resulting ODE system [33]. By approximating
(5) as a linear system near the stationary solution, the iIRC can be
calculated close to the stationary solution, and (7) can be solved
by integrating backwards in time along γ for the full nonlinear
equations [26].

To cast (1) in the form of Eq. (2) so that we may calcu-
late isostable response curves, let X = [V , [Ca2+]i, [Ca2+]sr , f ,
d,m, h, j, fCa, XKr, XKs, Xto, Yto]

T , consisting of all cellular state vari-
ables, and let F(X(r, t)) correspond to the differential equations for
the cellular dynamics with a nominal parameter set given in [13].
LetG(X(r, t)) = D ∂2

∂r2
V (r, t), leaving p(r, t) = [Istim/Cm 0 . . . 0]T .

Consider an isostable model of this cardiac system:

ψ̇ = 1 + ⟨IV (r, ψ), Istim(r, ψ)⟩
+ ⟨I

[Ca2+]i
(r, ψ), 0⟩ + · · · + ⟨IYto(r, ψ), 0⟩

= 1 + ⟨I(r, ψ), Istim(r, ψ)⟩. (8)

Note (with a slight abuse of notation) that the zero elements in
first line of (8) must be compatible with the iIRCs. Because we
can only perturb in the voltage direction, we define I(r, ψ) ≡

IV (r, ψ). In [26], we show that when γ is close to the stationary
solution, the iIRC corresponding to a given eigenfunction with
a real eigenvalue is orthogonal to all other eigendirections and
satisfies the normalization condition (6). For this problem, near the
stationary solution, the eigenfunctions are difficult to determine
numerically, and solely for the purposes of calculating the system’s
iIRC (all numerical simulations in the following sections use the
unmodified dynamics), we make a few modifications which do
not perceptibly alter the system dynamics. First, we reduce the
dimensionality of the system by averaging [34], taking the slowly
varying sarcoplasmic reticulum Ca2+ to be equal to a constant
318 µmol. Second, we modify the ionic current IKr (given in [13])
so that IKr = 0 when the variable XKr < 10−4. With these
modifications, when the system is close to the stationary solution,
the value of XKr(r) (the variable associated with the gating variable
for one of the potassium currents) approaches the stationary
solution according to XKr(r) = λ1(XKr(r) − XKr,∞) with XKr,∞
denoting a steady state value of XKr and λ1 denoting the slowest
eigenvalue of the linearized system. Because the rate of approach
of XKr(r) is the same at all locations r , there are an infinite
number of eigenfunctions corresponding to the slowest direction
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Fig. 2. In order to calculate the iIRC, γ must come arbitrarily close to the stationary
solution. By modifying the boundary conditions to allow the traveling wave to die
out, we can numerically calculate an iIRC, which is accurate for the unmodified
system until tD . Here γ V (r, t) represents the voltage component of γ at location
r along the ring.

Fig. 3. Top and bottom panels show the mean and standard deviation of the iIRC,
respectively, taken over 96 trials. Here d is defined so that I(d, ψ) represents the
effect of a perturbation on a cell d cm away.

of the stable manifold which span the function space XKr(r).
These eigenfunctions span XKr(r) and are orthogonal to all other
eigenfunctions with no component in XKr(r). Consider a cell at
r = r0. When the system is close to the stationary solution, any
perturbation to XKr(r) for r ≠ r0 will have no effect on XKr(r0) as it
approaches the steady state. With this information, and using (6),
near the stationary solution, the iIRC associated with a cell at r0,
which describes its infinite time approach towards the stationary
solution, is given by

IXKr(r, ψ) =


1/ẊKr if r = r0,
0 otherwise. (9)

An iIRC calculated using this initial condition describes the change
in isostable for a cell at a given location r0 caused by a small
perturbation. Note that (9) is only valid near the stationary
solution.

To numerically calculate the iIRC using (7), the trajectory γ
must approach the stationary solution so that (9) can be used
to obtain an initial condition for (7). This can be accomplished,
for instance, by taking r0 = 5 cm, and locally setting D = 0
between r = 0 cm and r = 10 cm at a moment immediately after
the cell at r0 fires. This allows the traveling waves to die out so
that the system approaches the stationary solution. With an initial
condition determined from (9), the iIRC at all other values in time
is determined by integrating (7) backwards in time. As represented
in Fig. 2, the resulting iIRC is valid until tD, the time that the cell at r0
would have fired its next action potential. Note that in the control
strategies to follow, alternans will be eliminated by perturbing the
systemon itsway towards the stationary solution, but the traveling
pulse will never die out.

The system does not take the same trajectory γ towards the
stationary solution every time, and we calculate the iIRC 96 times
using different initial conditions to determine an average iIRC,
I(r, ψ) shown in the top panel of Fig. 3, with the associated
standard deviation σI shown in the bottom panel. For the problem
of eliminating alternans, each cell can be thought of as having its
own isostable value and iIRC, but because the system is circularly
symmetric, we simply report the iIRC in terms of the effect of a
perturbation given at a signed distance d. A constant value can be
added to the isostable fieldΨ {X(r)}without changing the property
(6), and throughout the manuscript we will make use of this
property as convenient. In Fig. 3, we shift the isostable coordinates
so that ψ = 0 corresponds to the time at which ∂V

∂t


r=r0

= 0,
during a long action potential. The effect of an external stimulus is
largest when d is zero, corresponding to direct stimulation of that
cell, and is near zero when |d| > 0.5 cm. The standard deviation of
the iIRC at d ≈ 0 is small compared to the magnitude of the iIRC
itself, allowing us to use I(r, ψ) as an approximation of the true
iIRC in the control strategy to follow.

3. Using isostables to define a control objective to eliminate
cardiac alternans

From a dynamical systems perspective, alternans can be
eliminated by driving the cell dynamics to an underlying unstable
period-1 orbit [18,20,21]. In an experimental setting in which
control nodes are sparsely distributed throughout the tissue,
controlling the system to the unstable period-1 orbit is not a
trivial task. For the following analysis, we consider a single cell
isostable reduction throughout the ring, using methods similar to
those of [25]. We assume the existence of an alternans-free state,
ψ0(r, t), throughout the ring which evolves so that ψ0(r, t) =

ψ0(r − ct, 0), with c > 0. Furthermore, we assume that the state
at each location is close to the alternans-free trajectory, denoted
by γa + O(ϵ∥1X∥), where X represents the state variables of
the system. This means that to leading order ϵ, there is a 1 to 1
relationship between ψ and the state variables.

Panel A of Fig. 4 shows such a distribution, which can be found,
for instance, by applying delayed feedback controlmethods [18,35]
to (1) until the control effort disappears. This distribution is an
unstable solution to (1) which is periodic in both space and time;
the wavefront (located at r ≈ 4.6 cm in the figure) travels
at approximately 57 cm/s so that the period of oscillation is
approximately 175 ms. Isostables for each cell are scaled so that
at all locations except the wavefront ψ̇ = 1 in the absence of
external stimuli. In this section, the constant C from (4) is chosen
so that ψ = 0 corresponds to the time at which a cell has
just repolarized (i.e. reached 95% of its resting potential). At the
depolarizing wavefront, quiescent cells are excited again. The end
goal of our control strategy is to guide the system to this unstable,
alternans-free periodic orbit.

The local dynamics at location r = x evolve according to (1):

Cm
∂V (ψ0)

∂t


r=x

= D
∂2V (ψ0)

∂r2


r=x

− Iion(ψ0)|r=x

+ Istim(x, t). (10)

Through single grid point isostable reduction, provided the state
dynamics are close to γa, we may write (10) as

ψ̇

r=x = 1 + Is(ψ |r=x)Istim(x, t). (11)

Here, ψ |r=x gives the isostable of the local dynamics at the location
r = x, and Is is the local isostable response curve. Note that in
this reduction, both Iion(ψ)|r=x and D ∂2V (ψ0)

∂r2


r=x

guide the local
dynamics along the trajectory γa, and therefore disappear in the
reduction (11).
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As derived in [25], we can calculate Is(ψ) by solving an adjoint
equation

dIs

dt
= −∇F T (x(ψ))Is. (12)

Here, ∇F is the Jacobian, and ∇F T (x(ψ)) is the transpose, or
adjoint, of the real-valued matrix ∇F(x(ψ)), and F(x) represents
state dynamics of the transmembrane voltage and all auxiliary
variables associated with Iion.

Suppose now that the distribution is not exactly at the ideal,ψ0,
but rather can be written as ψ(r, t) = ψ0(r, t) + ϵψϵ(r, t), with
0 < ϵ ≪ 1, so that ψϵ represents a small perturbation from the
ideal distribution. For clarity of notation in the following equation,
we let P ≡ ψϵ |r=x, which is a constant with respect to derivatives
in space. Suppose also that there are no external perturbations so
that Istim = 0. To leading order, the dynamics at a given location x,
starting with (10) can be written as

Cm
∂V (ψ0 + ϵψϵ)

∂t


r=x

= D
∂2V (ψ0 + ϵψϵ + ϵP − ϵP)

∂r2


r=x

− Iion(ψ0 + ϵψϵ)|r=x

= D
∂2


V (ψ0 + ϵP)+ ϵ ∂V

∂ψ
· (ψϵ − P)


∂r2


r=x

− Iion(ψ0 + ϵψϵ)|r=x + O(ϵ2)

= D
∂2V (ψ0 + ϵP)

∂r2


r=x

− Iion (ψ0 + ϵψϵ)|r=x

+ ϵD
∂V
∂ψ

·
∂2ψϵ

∂r2


r=x

+ O(ϵ2). (13)

Finally, Eq. (13) is in the same form as (10), with the term ϵD ∂V
∂ψ

·

∂2ψϵ
∂x2


r=x

taking the place of Istim(x, t). We may therefore rewrite
(13) in the form of (11):
ψ̇0 + ϵψ̇ϵ


r=x = 1 +


Is(ψ0 + ϵψϵ)ϵD

∂V
∂ψ

·
∂2ψϵ

∂r2


r=x

+ O(ϵ2). (14)

Finally, subtracting (11) with Istim = 0 from (14) and Taylor
expanding the Is in orders of ϵ, we have

ϵψ̇ϵ

r=x =


ϵD
∂V
∂ψ

· Is(ψ0)
∂2ψϵ

∂r2


r=x

+ O(ϵ2). (15)

Eq. (15) mandates that for all points at which the isostables are
continuous in space, provided that


ϵD ∂V

∂ψ
· Is(ψ0)


r=x

> 0, any
local isostable gradient will spread through the system diffusively.
Panels C and D of Fig. 4 shows the term ∂V

∂ψ
(ψ) · Is(ψ0) plotted

as a function of ψ for this system at two different scales, with
the transmembrane voltage shown in panel B for reference. We
find that this term is strictly positive, and is particularly large in
magnitude soon after an action potential.

Recall that (15) is only valid for points at which the isostable
distribution is continuous in space. For the point at which
this distribution is not continuous (i.e. at the wavefront) the
dynamics can be reduced using the action potential duration (APD)
restitution curve which gives the next action potential duration,
defined to be the length of time the transmembrane voltage of a cell
remains above resting potential after an action potential is fired, as
a function of the DI, defined to be the amount of time the cell stays
quiescent before the next action potential is fired:

APDi+1 = f (DIi). (16)

Here, because we have a series of action potentials, we refer to
them with an index i. The APD restitution curve and its first
derivative are shown in panels E and F of Fig. 4, respectively. In
this case, the basic cycle length (BCL), defined as the time between
successive action potentials, is fixed, and determined by the wave
speed c and the length of the ring, and therefore BCL = DI + APD.
One can show that (16) has a fixed point DI0 when BCL = f (DI0)+

DI0. As originally shown in [37], this fixed point will be unstable if df
dDI (DI0)

 > 1, and this instability gives rise to the stable period-2
orbit responsible for alternans. We have strategically defined the
isostables in this system so that positive and negative isostable
values can be used interchangeably with DI and APD in Eq. (16),
respectively. Therefore, we can write (cf. [38])

ψϵi+1(x) = −Λψϵi(x), (17)

where Λ =
df
dDI (DI0), and ψϵi(x) and ψϵi+1(x) denote the value

of ψϵ at location r = x before and after a given action potential.
Eqs. (15) and (17) specify a reduced system. The diffusive element
of the system (15) will tend to bring it towards ψϵ(r) = ψϵ , the
average value of the initial distribution, and Eq. (17) describes the
inherent instability of the local dynamics. Therefore, our control
strategy will be to actively drive the system to ψ0(r) + ϵψϵ(r)
where ψϵ = 0. Provided that the diffusion acts much faster than
the inherent instability of the local dynamics, the systemwill settle
close to ψ0. If the diffusion does not act quickly enough, we can
apply the external control a few cycles later in order to gradually
drive the system to ψ0.

4. An optimal control strategy for eliminating alternans

Suppose that we have 2M+1 control nodes, equally spaced at a
distance L. Let uN(t) represent the control applied at node N which
is of order ϵ. Using the coordinate system presented in Fig. 5, the
local reduced dynamics at position r , which we denote by ψr , are

ψ̇r = 1 +

M
j=−M

uN+j(t)I(jL − r, ψr)+ O(ϵ2). (18)

Here, the summation represents the effect of input from each
control node. Recall from Fig. 3 that I(d, ψ) is approximately zero
when |d| is sufficiently large. We therefore define β+ (resp. β−) as
the smallest positive integer (resp. largest negative integer) such
that I((β+

+ 1)L − r, ψr) = O(ϵ) (resp. I((β−
− 1)L − r, ψr) =

O(ϵ)) for every r ∈ [−L/2, L/2] and for all values of ψr . This
definition allows us to rewrite (18) as,

ψ̇r = 1 +

β+
j=β−

uN+j(t)I(jL − r, ψr)+ O(ϵ2),

for every r ∈ [−L/2, L/2]. (19)

Suppose that in the region which contains electrodes which have a
larger than O(ϵ2) effect on the isostable coordinates, the severity
of alternans is similar (i.e. APDn − APDn−1 = α + O(ϵ)). Suppose
also that thewave speed in this region of tissue is equal to c+O(ϵ).
This means that if ψr = 0 at t = 0, then ψr+d will reach zero at
t = d/c + O(ϵ).

We assume that each node acts independently, and require that
an O(ϵ) change in the severity of alternans will lead to an O(ϵ)
change in the applied control. In this section, it will be convenient
to shift the isostable coordinates so thatψr0 = 0 corresponds to the
time atwhich ∂V

∂t


r=r0

= 0, during a long action potential (identical
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E

F

Fig. 4. Panel A shows an alternans-free solution of (1), and an underlying isostable distribution for each individual location throughout the network. The scales on the left
and right correspond to the solid and dashed curves, respectively. Panels C and D show the term from Eq. (15) as a function of isostable, with the transmembrane voltage
shown in panel B for reference. Because ∂V

∂ψ
(ψ) · Is(ψ) is predominantly greater than zero, (15) shows that the isostable distribution ψϵ should spread diffusively through

the network. Panels E and F show the APD restitution curve as well as dAPD/dDI. Here, the APD restitution curve is determined using an S1–S2 pacing protocol [36] with
S1 = 250 ms. The BCL in this system is about 175 ms, which gives an unstable fixed point at DI0 ≈ 42 ms.
Fig. 5. The reduced dynamics on the one-dimensional domain are described by
Eq. (19).

to the shift from Section 2). We also assume that each node will
apply control which lasts for a duration of kms, starting when the
isostable at that node reaches ψ = 0. Under these assumptions,
to leading order ϵ the external control applied at each node will be
identical in shape, but time shifted by the time it takes for thewave
to travel between control nodes. This allows us to rewrite (19) as

ψ̇r = 1 +

β+
j=β−

u(t − jL/c)I(jL − r, ψr)+ O(ϵ2),

for every r ∈ [−L/2, L/2], (20)

where u(z) = 0 when either z < 0 or z > k. Asymptotically
expanding ψr in powers of ϵ,

ψr(t) = ψ (0)
r (t)+ ϵψ (1)

r (t)+ ϵ2ψ (2)
r (t), (21)

we find that ψ (0)
r (t) = ψr(0) + t . We will define t = 0 to be the

time at which ψ0 = 0, which can be written more concisely as
ψ0(0) = 0. Therefore ψr(0) = −r/c. Substituting this result into
(20) yields

ψ̇r = 1 +

β+
j=β−

u(t − jL/c)I(jL − r, t − r/c)+ O(ϵ2),

for every r ∈ [−L/2, L/2]. (22)

Recall that our goal is to drive the average of the isostable
distribution in the shaded region of interest in Fig. 5 to the unstable
period-1 orbit. Taking the spatial average of (22) yields

˙ψ =
1
L

 L/2

−L/2
ψ̇rdr

= 1 +
1
L

 L/2

−L/2

 β+
j=β−

u(t − jL/c)I(jL − r, t − r/c)

 dr

+ O(ϵ2), (23)

where ˙ψ is the average rate of change in isostables in the shaded
region.

We can use (23) as part of a strategy to eliminate alternans.
Suppose that the next action potentials will be fired T ms after the
present action potentials. Then, wemay guide the system from the
stable period-2 orbit to the unstable period-1 orbit by requiring
(cf. [25]) T

0

˙ψdt = T − ζ (APDn − APDn−1)/2, (24)

which implies the following boundary condition T

0


˙ψ − 1


dt = −ζ (APDn − APDn−1)/2, (25)
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where ζ is a positive constant. Recall that we apply control when
the cells are currently firing long action potentials, so that APDn −

APDn−1 < 0. In Eq. (25), setting ζ = 0 would mean that at the
next action potential, control would never be applied, and the next
action potentials will follow a short action potential trajectory.
If ζ = 2, the result of the control would be to speed up the
isostable dynamics so that on average, the cells would take another
long APD path for the next action potential. Intuitively, assuming
that the distribution of isostables along the unstable alternans free
trajectory lies between these two extremes, some ζ ∈ (0, 2) will
yield a successful control strategy (cf. [20]).

Recall that for t < 0 and t > k, u(t) = 0. This allows us
to conveniently time shift the terms in the integrand of (25) after
substituting (23): T

0


˙ψ − 1


dt =

 k

0

1
L

 L/2

−L/2

 β+
j=β−

u(t)I(jL − r,

t − r/c + jL/c)

 dr

 dt. (26)

For convenience of notation, let f (t) =
1
L

 L/2
−L/2

β+

j=β− I(jL − r,

t− r/c+ jL/c)

dr . By defining an auxiliary equation Ψ̇ ≡ u(t)f (t),

we can cast this as an optimal control problem by minimizing
the cost functional M[u(t)] =

 k
0 u2(t)dt , which gives the power

associated with the stimulus, and can apply calculus of variations
to minimize [39]

C[u(t)] =

 k

0
[u2(t)+ λ(Ψ̇ − u(t)f (t))]dt, (27)

where λ is a Lagrange multiplier. The resulting Euler–Lagrange
equations are

u(t) = λf (t)/2, (28)

Ψ̇ = λf 2(t)/2, (29)

λ̇ = 0. (30)

The optimal control u∗(t) can be found by solving (29) and (30)
subject toΨ (0) = 0 andΨ (k) = −ζ (APDn−APDn−1)/2. By noting
that (30) requires λ to be a constant, and integrating (29) directly,
we can explicitly solve for the required control as a function of
time:

u∗(t) =
−ζ (APDn − APDn−1)f (t)

2
 k
0 f 2(τ )dτ

. (31)

Thus, to leading order ϵ, the optimal control is proportional to
a superposition of appropriately time shifted iIRCs. The PDE (1)
is rather unwieldy and directly calculating an optimal control for
elimination of alternans would not be possible. However, isostable
reduction allows for the derivation of the relatively simple control
scheme (31). Panel A of Fig. 6 shows the calculated optimal control
u(t) when k = 70 and ζ = 1.3, scaled by the severity of
alternans. Perhaps not surprisingly, when the nodes are spaced
closer together, the required control at each node is smaller in
magnitude. For comparison, we also test the non-optimal control
strategy presented in [18]:

u(t) =


ν(V (t)− V (t − δ)) if V (t)− V (t − δ) < 0,
0 otherwise, (32)

where ν is a positive constant and δ is the time between successive
depolarizations of a single cell. Intuitively, (32) works similarly
to (31) by providing a hyperpolarizing stimulus when a region of
tissue has a long alternans, but also requires simultaneous accurate
monitoring of the transmembrane potential.

We test each control strategy on (1) with independent and
identically distributed zeromean, unit intensity white noise added
to the voltage variable. For each control strategy, more power is
initially consumed because the controller is driving the system to
the period-1, alternans-free orbit (see t = 1 to t = 2 in panel C).
After this initial period of time, the controller requires considerably
less energy


E =


j


u2
j (t)dt


to maintain the alternans-free

state, making small adjustments to combat the effects of noise.
Average power is reported as average energy required per second
to maintain the alternans-free state. The approximately optimal
control strategy uses 2 to 4.5 times less energy than the non-
optimal strategy. Results for choices of ζ ∈ [1.1, 1.5] are not
significantly different.

5. Proposed experimental measurement of iIRCs

In the previous example, the optimal control strategy requires
a reasonably accurate estimate of the iIRC. If a good approximation
of the model is known, an iIRC could be calculated using the
adjoint equation (7). However, given the complicated nature of
(1) it may be more accurate to measure the iIRC using strategies
akin to the direct method [40,41], a well established technique for
experimentally estimating phase response curves in periodically
oscillating systems. In oscillatory systems, the direct method is
implemented by applying a perturbation when the system is at
a known phase of oscillation allowing for a single measurement
of the phase response curve obtained by calculating the change in
phase due to the perturbation [42–44]. Multiple measurements at
different phases can be taken to estimate the entire phase response
curve. While each of these measurements depends on factors
such as pacing history [45], stimulus amplitude and duration [46],
and noise [47], they generally give a good understanding of the
perturbed dynamics and are useful for predicting behavior in living
systems [48,49].

Here, we detail how a direct method could be used to
experimentally implement the control strategy from the previous
section in, e.g., Purkinje fibers [20,50] which have been used to
validate alternans control strategies in one-dimensional tissue. Our
approach follows from the interpretation of the iIRC, I(d, ψ), as the
change in the isostable coordinate resulting from a perturbation
at a distance d, with ψ being the isostable coordinate when the
stimulus was applied.

Recall that from the definition (4) isostable coordinates give
a sense of a system’s approach to a stationary solution. For this
reason, measuring differences in the onset of action potentials
(the basis for the direct method in applications with periodic
trajectories) does not provide information about the isostable
coordinates. Instead, one can gauge how a perturbation affects
the isostable using the APD restitution curve [51], which gives
the duration of the next action potential as a function of the time
since a cell has been quiescent (also known as the recovery time or
diastolic interval). Generally, longer recovery timeswill lead longer
action potentials. Here it will be convenient to scale and shift the
isostable coordinates so that ψ = 0 corresponds to the time at
which a cell repolarizes (i.e. reaches 95% of its resting potential)
with ψ̇ = 1 in the absence of forcing so that

APD = κ(ψ). (33)

Note here that the constant shift of the isostable coordinates is
different than it was in Section 2. The APD restitution curve for
this system is shown in panel B of Fig. 7. For a constant pacing
rate P that does not produce alternans, the system will settle to
a state for which the action potentials are constant on a beat
to beat basis which can be found by solving the equation P =
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Fig. 6. Using the iIRC, optimal stimuli to eliminate alternans calculated from (31) for k = 70 and ζ = 1.3 and different node spacings L, are shown in panel A with u given
in units of µA/µF and APDs in ms. Panel B compares the average power (AP) once the controller reaches a steady state, for the optimal strategy (dots) and the non-optimal
strategy from (32) (open circles). At each spacing, the approximately optimal strategy uses between 2 and 4.5 times less energy than the non-optimal strategy. Panel C shows
the total cumulative energy consumption as a function of time for two different node spacings. Panel D shows the spatial transmembrane voltage as a function of time with
L = 1 cm. Alternans can be seen in the tissue when t < 1000 ms, and are quickly eliminated when the controller is turned on. Panels E and F show the transmembrane
voltage and control effort at r = 3 cm.
Fig. 7. In panel A, once the APDs reach their steady state value, a perturbation is given. APD+ is measured as on the following action potential. Panel B shows the APD
restitution curve for this system using an S1–S2 pacing protocol [36] with S1 = 250 ms. Panel C shows individual datapoints for the iIRC obtained from (34) fitted to a
polynomial (black line). Panels D and E show the resulting iIRCs using data from a noisy and noiseless system, respectively.
ψ + κ(ψ) = ψ∗
+ APD∗ [51], where APD∗ = κ(ψ∗). For a

given voltage perturbation, using Taylor expansion, the effective
change in isostable can be determined by measuring the next
action potential duration according to

1APD
κ ′(ψ∗)

= 1ψ + O(1ψ2), (34)

where1APD = APD+
−APD∗, with APD+ being the duration of the

action potential following the perturbation (see panel A of Fig. 7).
Suppose instead of a ring, we have a fiber (1) with no-flux
boundary conditions. With multiple recording nodes and a single
stimulating electrode at one end the following protocol can be used
to experimentally determine the iIRC: (1) At one end of the fiber,
pace at a constant rate P chosen so that alternans do not develop
in the system. (2) After the APDs are close to the steady state value
APD∗, apply a short pulsatile perturbation at time tp with strength
u and duration 1t with the stimulating electrode. (3) For each
recording node at a distance d from the perturbing electrode, let
ψp ≡ tp − ts − APD∗ with ts defined to be the time at which the
recorded cell spiked before the perturbationwas applied. The value
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of 1ψ can be determined from (34) by measuring the duration of
the next action potential. (4) At each recording electrode obtain a
data point IV (d, ψp) =

1ψ

u1t . (5) Repeat steps 2–4 until a IV (r, ψ)
can be obtained with a fit to the data. Panel C of Fig. 7 shows a
polynomial fit to the data obtained using the above procedurewith
white noise of intensity 0.2 added to the transmembrane voltage
Eq. (1) to model system noise and measurement error. Each data
point of the iIRC is calculated with a hyperpolarizing perturbation
of u = −30 µA/µF applied for1t = 4 ms. Panel D shows an iIRC
interpolated using data from recording nodes spaced 0.5 cm apart.
Panel E shows an iIRC determined without noise in the system. In
both cases the obtained iIRC is similar to the one obtained with
the adjoint equation (7), but is less concentrated around d = 0.
Because we assumed that we only have one stimulating electrode,
perturbation timing was chosen to give the best measurement of
the system near d = 0 and no data points in the top-left and
bottom-right corners were obtained.

Using the iIRCs obtained from the noisy and noiseless data, we
can apply the control strategy (31) to eliminate alternans. In this
application, we take t = 0 at each stimulator to be the time
at which ψ ≈ −130 during a long action potential, estimated
by assuming that when a cell fires a long action potential, ψ =

−APD−

L , where APD−

L is the duration of the previous long action
potential. The stimuli obtained from the noiseless (resp. noisy) data
are shown in the top left (resp. bottom left) panel of Fig. 8 with ζ =

1.3. They are qualitatively similar to the stimuli obtained using the
numerically obtained iIRC fromFig. 3. In an identical numerical test
as the one shown in Fig. 6, each applied control strategy quickly
eliminates alternans in the system. Using the stimuli associated
with the iIRC obtained using the direct method requires slightly
less power than the stimuli associated with the iIRC calculated
numerically using (7). An iIRC obtained from a noisy system using
the direct method only leads to a slight increase in overall power
usage.

In an experimental setting iIRCs obtained from the direct
method give the change to APDs themselves in response to a per-
turbation. When the iIRCs are obtained numerically using (7), they
give the change to the approach along the slowest direction of the
stable manifold from a perturbation. Because the control strategy
itself uses the APDs as an indicator of the severity of alternans,
this may explain why experimental iIRCs produce stimuli which
are slightly more efficient. As a final note, measurement of the iIRC
using the direct method requires knowledge of the APD restitution
curve,whichmaynot be available in an experimental setting. If this
is the case, simply assuming f ′(ψ∗) = 1 in Eq. (34) will yield stim-
uli for which the shape is correct but the magnitude is potentially
wrong. The appropriate stimulus could be found, for instance, by
applying the resulting control and modifying the magnitude until
alternans are eliminated.

6. Two-dimensional reduction and control of alternans

The isostable reduction strategies described in the previous
sections extend naturally to higher dimensions; herewe show that
analogous alternans elimination strategies could be implemented
in tissue with higher spatial dimension. To begin, we will assume
that we have a 4 cm square patch of cardiac tissue:

Cm
∂V (x, y, t)

∂t
= D1V (x, y, t)+ (−Iion(x, y)+ Istim(x, y, t)

+ Ipacemaker(x, y, t)). (35)

Here, x and y represent two-dimensional spatial coordinates,
boundary conditions are given by ∂V/∂η = 0 where η is a vector
normal to the boundary (i.e. no-flux), ∆ denotes the Laplacian,
Ipacemaker is a stimulating current included to elicit action potentials
on one side of the domain at regular intervals, and all other
Fig. 8. Top-left and bottom-left panels show the optimal stimuli obtained from
iIRCs using the direct method from a noiseless and noisy system (1), respectively.
The right panel shows the average power required to maintain the alternans-free
state for different node spacings L. Stimuli are obtained using an iIRC inferred from
noisy data (red squares), noiseless data (red ×), and also calculated exactly using
the adjoint equation (7) (black dot). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

variables and model parameters are taken identically to those in
(1). We take Ipacemaker to inject 100 µA/µF pulses of current at
1t ms intervals along the side for which x = 0. In a noiseless
setting, this results in a linear wave front which propagates
through the tissue. Here, we aremodeling isotropic tissue, but note
that it would be straightforward to calculate iIRCs incorporating
tissue anisotropy in tissue conductivity [52]. A square lattice of
electrical simulatorswith spacing Lused to provide Istim is arranged
so that the wave front reaches each row at the same time (see
panel A of Fig. 9). The numerical methods for calculating iIRCs
represented by Eqs. (2)–(9) extend straightforwardly to a two-
dimensional setting. Similar to the protocol used for calculating
iIRCs in one spatial dimension,we shift the isostable coordinates so
that ψxo,yo = 0 corresponds to the time at which ∂V

∂t


(x,y)=(xo,yo)

=

0 during a long action potential. Setting Istim = 0 for the remainder
of the simulation, we allow the system to approach the stationary
solution in order to determine an initial condition for (7), and
simulate (7) in backward time to determine the iIRC in the fully
nonlinear regime. This strategy is used to calculate the iIRCs with
respect to 49 different excitations of the domain. Pulsing rates
between 160 and 210 ms are used in order to determine an
average iIRC for voltage perturbations with respect to the location
(xo, yo) = (2, 2). Results are reported in panels B-E of Fig. 9 as
I(dx, dy, ψ)where I is the averaged iIRC and (dx, dy) = (x−xo, y−
yo). Similar to the one-dimensional calculations, perturbations do
not greatly alter the isostable coordinate of any locations farther
than about 0.8 cm away.

The analysis from Section 3 can be repeated for the two-
dimensional domain to justify a control strategy for elimination of
alternans which drives the system to a state ψ0(x, y) + ϵψϵ(x, y)
where ψ0(x, y) represents the alternans-free state, ϵ is a small
positive constant, and


y


x ψϵ dxdy = 0. In the periodic, one-

dimensional case, we were able to develop a control strategy to
achieve this control goal everywhere on the domain. Here, we will
show that a similar strategy can be used to achieve this control
objective at locations away from the boundary of the domain.
Numerical simulations presented later in this section show that
this strategy is sufficient for elimination of alternans in (35) and
does so using orders of magnitude less energy than comparable
methods.

To begin, consider a stimulator located at (x, y) = (x1, y1)
with associated control signal u0,0(t). Also, let ui,j denote the input
from a stimulator located at (x, y) = (x1 + iL, y1 + jL). Here, i
and j are allowed to be negative. Analogous to the setup in the
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Fig. 9. Panel A gives a schematic of the two-dimensional setup. The wavefront propagates through the domain at speed c. A square lattice of stimulators is placed so that L
is the vertical and horizontal distance between successive stimulators. Panels B, C, D, and E give an averaged iIRC calculated in the two-dimensional tissue at ψ = 0, 20, 40.
and 60.
Fig. 10. The control strategy is designed to modulate the isostable dynamics in a
square patch of tissue centered about a given stimulator. Ultimately, because the
tissue is assumed to be homogeneous, the control goal of eliminating alternans in
a square patch around a stimulator in the center of the tissue will also eliminate
alternans in all locations far from the tissue boundary.

one-dimensional case, Fig. 10 highlights a square patch of length
L centered about the stimulation u0,0 for which we will design a
strategy to control the isostable dynamics. A shifted coordinate
system, rx = x−x1 and ry = y−y1 allows us towrite the perturbed
isostable dynamics of any location in this patch:

ψ̇rx,ry = 1 +

py
j=−ny

px
i=−nx

ui,j(t)I(iL − rx, jL − ry, ψrx,ry)

+ O(ϵ2). (36)

Here, ψrx,ry represents the isostable reduced coordinates at the
spatial position (rx, ry), I(dx, dy, ψ) is the iIRC, and indices nx and
px (resp. ny and py) represent the number of stimulators which
extend in the negative and positive x direction (resp. y direction).
Eq. (36) represents the summation of the input from each control
node and is analogous to (19) from the one-dimensional case.
Because the two-dimensional domain is homogeneous we take
the iIRC to be identical to I(dx, dy, ψ), the average calculated
iIRC shown in Fig. 9. This approximation will be most accurate at
locations far from the boundaries of the domain.

Mirroring the strategy from in Section 4, we can first notice that
I(dx, dy, ψ) is small for sufficiently large values of |dx| and |dx|.
Therefore, for large values of |i| and |j|, I(iL − rx, jL − ry, ψrx,ry)
will be an O(ϵ2) term for every rx, ry ∈ [−L/2, L/2]. We can then
define β−

y ≤ ny, β−
x ≤ nx, β+

y ≤ py, β+
x ≤ px such that

ψ̇rx,ry = 1 +

β+
y

j=−β−
y

β+
x

i=−β−
x

ui,j(t)I(iL − rx, jL − ry, ψrx,ry)

+ O(ϵ2), for every rx, ry ∈ [−L/2, L/2]. (37)
In the region which contains electrodes which have a larger

than an O(ϵ2) effect on the isostable coordinates, we assume that
the severity of alternans is similar (i.e. APDn−APDn−1 = α+O(ϵ)),
and the wave speed in the tissue is equal to c + O(ϵ) where c
is a constant. We require that each node acts independently, and
each control application lasts k ms and begins when the isostable
at the given control node reachesψ = 0.We also explicitly require
that an O(ϵ) change in the severity of alternans leading to an O(ϵ)
change in the applied control. As in Section 4, to leading order ϵ,
the control at each node is identical in shape and time shifted by
the time it takes to travel between each node. Because the wave
progresses at a constant rate in the x direction, Eq. (37) becomes

ψ̇rx,ry = 1 +

β+
y

j=−β−
y

β+
x

i=−β−
x

u(t − iL/c)I(iL − rx, jL − ry, ψrx,ry)

+ O(ϵ2), for every rx, ry ∈ [−L/2, L/2], (38)

where u(z) = 0 for 0 < z < k. We highlight that (38) is
nearly identical to (20) from the one-dimensional case, except
for the rows of stimulators above and below in an additional
dimension. Because of this similarity, we can follow an analogous
set of steps to those which start with (20) and endwith the control
strategy (31), i.e. writing and substituting the order ϵ asymptotic
expansion of ψ̇rx,ry into (38), taking the spatial average of the
resulting equation, appropriately time shifting the terms of the
integrand, and solving the calculus of variations problem to derive
the following approximately optimal control application:

u∗(t) =
−ζ (APDn − APDn−1)g(t)

2
 k
0 g2(τ )dτ

,

g(t) =
1
L2

 L/2

−L/2

 L/2

−L/2

 β+
y

j=−β−
y

β+
x

i=−β−
x

I(iL − rx, jL − ry,

t − rx/c + iL/c)

 drxdry. (39)
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Fig. 11. Panel A shows the stimulus (39) calculated for different values of L. Panel B gives a comparison of the average power required tomaintain an alternans-free state for
the optimal strategy (39) (dots) and voltage difference strategy (32) (open circles). Panels C, D, and E show the difference between successive action potentials immediately
prior to, immediately after, and 1050 ms after the optimal control strategy is turned on. Panels F and G show the transmembrane voltage and applied control at a location
near the center of the tissue. The control is turned on at t ≈ 1000 ms.
Intuitively, the control strategy (39) is similar in spirit to the one
dimensional control strategy (31) taking into account the net effect
of all stimulators in the domain on a square patch of tissue. In
this example, boundary conditions of (35) are not periodic, so g(t)
will not necessarily be the same for all locations in the domain.
Recall that in Fig. 9 the iIRC for a given location is approximately
zero for locations about 0.8 cm away. As a result, any stimulator
index for which |iL − rx| > 0.8 cm or |jL − ry| > 0.8 cm in
the argument of the iIRC from (39) will have a negligible effect
on the integrand. On the square domain, |rx| ≤ L/2 and |ry| ≤

L/2 so that any stimulator index greater than 0.8/L + 1/2 in any
direction will not greatly alter the integrand from (39). As a result,
choosing a stimulator in the center of the domain for calculation
of (39) will yield a stimulus u∗(t) which will eliminate alternans
at all locations sufficiently far from the boundaries. Panel A of
Fig. 9 shows the resulting optimal stimuli for different choices of
L and ζ = 1.5. The shape of each stimulation is approximately
the same, with a magnitude that is approximately proportional to
L2. For simulations of (35), independent and identically distributed
noise is added to the voltage variable. The stimulus Ipacemaker paces
at 1t = 175 ms, and alternans develop in the tissue in the
absence of external control as illustrated in panel C of Fig. 11. The
control strategy (39) is applied to the system with spacing L =

0.5 cm and panels D and E show the difference between successive
APDs immediately after and 1050 ms after the control strategy is
turned on, respectively. The first application of the control stimulus
almost completely eliminates alternans in the system and soon
after, APDs are nearly identical for each beat. Panels F and G show
the transmembrane voltage and the applied control, respectively,
at a location near the middle of the tissue. Similar to the one-
dimensional case, the first control application is large compared to
the successive control applications which maintain the alternans-
free state.We also test the non-optimal control strategy (32) [18] in
the two-dimensional simulations. The average power to maintain
an alternans-free state for each of these strategies is shown inpanel
B, where the energy usage is given by E =


i


j


u2
i,j(t)dt , and

the average power is the energy usage divided by the total time.
In these simulations, the optimal strategy is more than 300 times
more efficient than the non-optimal strategy for each value of L.
Furthermore, the non-optimal strategy does not work for a spacing
of L = 1 cm; the optimal strategy with L = 1 cm is significantly
better than the non-optimal strategy with L = 0.1 cm. This is
a marked difference from the one-dimensional case, where the
optimal strategy performed approximately 3 times better than the
non-optimal strategy. We note that in [18] the authors found a
comparable increase of the strategy (32) when moving from one
to two dimensions. It is possible that in two dimensions, (32) is
not very stable and is less efficient as a result. The optimal control
strategy, which explicitly controls the isostable coordinate of the
system, does not suffer from comparable losses in efficiency.

7. Conclusions

Cardiac alternans have been implicated as a precursor to cardiac
fibrillation, and eliminating them could prevent fibrillation for
those who are at risk for this life threatening arrhythmia. In this
work, we have investigated strategies for elimination of alternans
in a PDE model of cardiac tissue. The physiologically complicated
models of alternans considered here are difficult to work with
directly, but isostable reduction is shown to be useful starting point
from which to develop nearly optimal control strategies for the
stabilization of the underlying period-1 behavior and subsequent
termination of alternans.

The control strategies developed in this work eliminate
alternans using significantly less energy than a previously
proposedmethod [18]. Furthermore, while [18] uses chaos control
methods akin to delayed feedback control [35,53], a model
independent strategy which uses continuous state feedback to
stabilize an unstable periodic orbit, the alternans control strategy
developed in this work does not require continuous feedback.
Rather, it only needs measurement action potential durations at
each control node after an iIRC has been measured.

Isostable reduction can be a powerful strategy for both
understanding and controlling systems with complicated and high
dimensional dynamics. The isostable reduction strategy described
in this work does not require the state dynamics to collapse to a
one-dimensional manifold. For the calculation of the iIRCs in this
work, the state variables differ on a beat-to-beat basis, but the
resulting isostable response curves show little variability between
beats. The isostable reductionmethodology was illustrated in one-
and two-dimensional models of cardiac tissue, but this strategy
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Fig. A.1. The left panel shows isostable values defined by (A.4) for the ODEmodel (A.5). Black lines represent level sets and the fixed point is shown in gray. Three trajectories
are plotted as dashed red lines, with white dots showing their locations for three different snapshots in time. The right panel shows the voltage trace for these same three
trajectories. Notice that while the dynamics are different initially, they begin to converge on the way to the fixed point. These trajectories approach each other long before
the trajectories reach the fixed point, even though |λ1| and |λ2| are similar in magnitude. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
would be straightforward to extend to three dimensional models
withmore complicated spatial geometries at the expense of higher
computational effort.

The ability to determine iIRCs is essential to the isostable
reduction strategy and the subsequent control strategy for
eliminating alternans, a calculation which we have demonstrated
by using the adjoint equation (7) in a numerical model. However,
in live tissue experiments it is likely that we would not have
access the full dynamic equations required to use adjoint methods.
We suggest a protocol akin to the direct method for calculating
phase response curves [40,41] bywhich an iIRC could bemeasured
in vitro. Numerically, we find that iIRCs measured directly are
similar to those calculated from (7), yielding control stimuli which
terminate alternans effectively. In this manuscript, we assume
the ability to inject current directly into the cellular membrane,
something which would not be feasible in practice. Nevertheless,
the method of calculating iIRCs only requires the knowledge of
the system to a given type of perturbation, and the measurement
strategies presented in Section 5 would extend naturally if, for
instance, stimulation is applied with a bipolar electrode.

This control strategy is certainly not without limitations.
Foremost, it would be difficult to implement control with a
grid of actuators for in vivo applications as in Section 6, and
it would be of interest to adapt this control strategy to utilize
the minimum number of control nodes possible to eliminate
alternant behavior. Furthermore, the present control strategy does
not explicitly take into account heterogeneities at the cellular level
or more realistic spatial geometries in live cardiac tissue, both of
which may alter the efficacy of the proposed control algorithm.
Recent studies have implicated alternant calcium dynamics as a
driving force behind APD alternans [54–56]. While the dynamics
of the models considered in this work are deterministic, at a
microscopic cellular level, calcium dynamics are often modeled
as stochastic events [57–59]. While current isostable reduction
techniques cannot explicitly handle stochastic dynamics, their
continued developmentwith this goal inmindwould be of interest
in the investigation of calcium alternans.
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Appendix. An intuitive example of isostable coordinates: illus-
tration for a planar ODE

While the definition of isostable coordinates is necessarily
different between ODEs (as presented in [24]) and PDEs (as
presented in the current manuscript and in [26]), much of the
underlying intuition about isostables is the same for each type
of system. Here we provide an illustrative example of isostable
coordinates in a planar excitable ODE system similar to the analysis
that originally appears in [60].

Consider the following ODE

ẋ = F(x), x ∈ R2. (A.1)

Suppose that (A.1) has a stable fixed point at x0. Then near the fixed
point

ẋ = A(x − x0)+ O((x − x0)2), (A.2)

where A ∈ R2×2 is the Jacobian of the vector field evaluated at
x0. Suppose that λ1 and λ2 are the eigenvalues of A corresponding
to eigenvectors v1 and v2, and that |λ1| < |λ2|. Near the fixed
point, higher order terms are negligible, and based on the solution
of the linear equation (A.2) one can show that in the limit as time
approaches infinity,

(ϕ(t, x(0))− x0) ∝ v1, (A.3)

where ϕ(t, x(0)) is a solution to (A.1) with initial condition x(0)
(also known as the flow). Eq. (A.3) results from components in the
v2 direction decaying faster than component in the v1 direction.
We can use this information to define scalar isostable coordinates
in the basin of attraction of x0 (cf. [24,60]):

ψ(x) =
1
λ1

log

lim
t→∞


e−λ1tzT (ϕ(t, x)− x0)


. (A.4)

Here, z ∈ R2 is some observable for which ztv1 ≠ 0. Note the
similarity between the definition (A.4) for ODEs and definition (4)
for PDEs from themain text. Intuitively, inside the brackets of (A.4),
an exponentially growing term is multiplied by another term that
is shrinking exponentially at the same rate; as time goes to infinity,
this product approaches a nonzero constant. Taking the logarithm
and normalizing by λ1 provides a coordinate system for which
dψ/dt = 1.

As an illustration, consider a FitzHugh–Nagumo based model
for an excitable system, which can be used as a minimal model to
represent the activity of a single cardiomyocyte [61]:

V̇ = c1V (V − a)(1 − V )− c2Vw,
ẇ = b(V − dw). (A.5)

Here V represents the transmembrane voltage, w is a gating
variable, a = 0.13, b = 0.013, c1 = 0.26, c2 = 0.1, and d = 1.
This system has a stable fixed point at x0 = [0, 0]T , and because
it is excitable, a perturbation above a certain threshold from the
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fixed point can yield an excursion well beyond that threshold.
Linearizing about this fixed point yields eigenvalues λ1 = −0.013
and λ2 = −0.0338. Using this information to calculate isostables
for this systemand taking zT = [1 1] yields the left panel of Fig. A.1.
The right panel gives the trajectories of three initial conditions
which start on the same isostable value.

Viewing (A.5) from the perspective of isostables, the trajectories
which start on the same isostable begin to converge, even before
the voltage-like variable reaches its resting value. This ODE
example provides a basis for understanding the utility of isostable
reduction in PDEs. By understanding the isostable field in of a
complicated, infinite-dimensional PDE, we can work with it in a
lower dimensional space as illustrated in Section 2.
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