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Organisms have evolved sensorymechanisms to extract pertinent information
from their environment, enabling them to assess their situation and act accord-
ingly. For social organisms travelling in groups, like the fish in a school or the
birds in a flock, sharing information can further improve their situational
awareness and reaction times. Data on the benefits and costs of social coordi-
nation, however, have largely allowed our understanding of why collective
behaviours have evolved to outpace our mechanistic knowledge of how
they arise. Recent studies have begun to correct this imbalance through fine-
scale analyses of group movement data. One approach that has received
renewed attention is the use of information theoretic (IT) tools likemutual infor-
mation, transfer entropy and causation entropy, which can help identify causal
interactions in the type of complex, dynamical patterns often on display
when organisms act collectively. Yet, there is a communications gap between
studies focused on the ecological constraints and solutions of collective
action with those demonstrating the promise of IT tools in this arena. We
attempt to bridge this divide through a series of ecologically motivated
examples designed to illustrate the benefits and challenges of using IT
tools to extract deeper insights into the interaction patterns governing
group-level dynamics. We summarize some of the approaches taken thus far
to circumvent existing challenges in this area and we conclude with an
optimistic, yet cautionary perspective.
1. Introduction
Collective motion is an adaptive strategy found across multiple scales of bio-
logical organization, from cellular migrations to crowds of pedestrians [1–4].
Consequently, research on this subject is generally interdisciplinary and provides
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insights into a broad range of sociallymediated actions, such as
resource acquisition, navigation, riskmitigation and even basic
democratic principles [5]. Yet, while few assumptions are
required to model collective motion, the search for general
‘rules’ that govern these dynamical systems continues [6–9].

Ecological and evolutionary factors have played an impor-
tant role in generating the algorithms governing collective
behaviour, but these forces can also be a source of consternation
for investigators. Collective actions often rely on social
cues, which are inherently ambiguous and ephemeral, and
the benefits associated with group membership are context-
dependent and can quickly become costs (e.g. improved
resource acquisition and vigilance versus density-dependent
competition or energetic losses from false alarms) [10]. While
the macroscopic patterns of such collective actions are well
documented across a wide array of taxa (bacteria [11], insects
[12], fish [13], birds [14] and humans [15]), the nature of the
inter-individual interactions driving them remains an open
question [16,17]. Specifically, while many studies are able to
infer interactions among group members (e.g. [6,18–23]) it
remains challenging to synthesize these lessons across
bodies of work as approaches and conclusions can vary on a
case-by-case basis.

Recently, there has been a renewed interest in the appli-
cation and development of information theoretic (IT) tools
to study interaction patterns in both real and synthetic data.
IT tools are being used to identify statistical structures, infor-
mation flow and causal relationships on topics ranging from
societal trends [24] to leader–follower dynamics [23,25–28]
and predator–prey interactions [29]. IT tools are well suited
for characterizing statistical patterns in time varying, dynami-
cal systems and they have played a prominent role in doing
so across a range of disciplines [30–32]. However, while
there are seminal sources on information theory and the
metrics derived from Claude Shannon’s work (e.g. [33,34]),
these are often tailored to specific disciplines and can be chal-
lenging to interpret and apply due to a failure to recognize
either the mathematical or biological conditions involved in
a given process [35–38]. Consequently, we find the recent
application of IT tools in collective behaviour to be skewed
towards the physical and mathematical disciplines. The
extent to which these tools can help ecologists, psychologists
and evolutionary biologists studying collective behaviour
remains unknown.

The goal of this paper is to provide a brief, practical syn-
thesis on the benefits and pitfalls of applying IT tools like
mutual information, transfer entropy and causation entropy to
quantify interaction patterns in groups on the move. We
begin by highlighting the utility of IT tools through a series
of examples designed to introduce each of the above metrics
in the context of modelling interactions in group movement
data. We then use concrete examples to demonstrate the
benefits and pitfalls of applying IT tools to this type of data.
We conclude by summarizing common challenges in the appli-
cation of these tools and discuss their future potential for the
study of collective behaviour.
2. Decoding collective communications
Information is a fitness-enhancing currency, as all organisms
share essential needs in terms of acquiring resources,
mitigating risk, and reducing uncertainty. The definition of
information in animal communications, however, remains a
contentious topic in biology and how ‘information’ is defined
often clashes with Shannon’s original definition [10,35,39].
Shannon himself had warned his peers against what he saw
as the growing misuse of the theory across disciplines (the
bandwagon effect) [40]. Nonetheless, IT approaches are
rooted in statistical mechanics [41] and therefore have the
potential to provide a model-free means of quantifying statis-
tical associations between data streams, such as the positions
or orientations recorded between individuals over time.

Before proceeding, it is worth clarifying why one should
consider using IT tools if there is a chance of getting mislead-
ing information. After all, there is already a rich variety of
approaches used to quantify inter-individual interactions
(e.g. pair-wise correlations [18,19], force-matching [20],
mixed-models [42], neural networks [43] and extreme-event
synchronization [44]). This methodological diversity holds
the promise of providing robust insights when different
approaches converge on similar conclusions.

There is also merit in adopting common quantities that can
improve current efforts to make comparisons across studies or
systems in the absence of a consensus. Consider the order par-
ameter. It is an intuitive quantity that characterizes a group’s
coordination (or order) and has been widely adopted, yet it
tells us nothing about the underlying interactions that have
generated the observed behaviours. IT tools have the potential
to fill this gap in a number of ways. Mutual information pro-
vides an equitable means of drawing statistical comparisons
between variables that correlations can misconstrue [45–48].
Transfer entropy enables one to isolate influential interactions
[49] and causation entropy can distinguish between direct
and indirect influence [50,51]. Below we demonstrate each of
these properties and we begin by reviewing the source
of these metrics, Shannon’s entropy.
2.1. Information and Shannon entropy
The foundation of modern information theory is Shannon’s
notion of entropy [33], which measures a stochastically fluctu-
ating observable and was originally used to quantify the
uncertainty found in decoding a message. The heading of a
bird in a flock, for example, is a measurable quantity that will
fluctuate due to the complex moment-to-moment decisions a
birdmustmake in response to themovements of its neighbours;
the variability of this quantity can thus be characterized within
Shannon’s formalism. More generally, for a discrete random
variable X with domain x∈X and probability mass function
p(x), Shannon defined the information contained in outcome
x as − log p(x). He selected this logarithmic characterization
so that the information of statistically independent outcomes
would be additive. The expected value of this quantity over
the distribution p(x) is called the Shannon entropy, H(X ), so
named because, similar to its thermodynamic counterpart, it
can be interpreted as an average measure of the amount of
uncertainty or ‘disorder’ in variable X

H(X) ; �
X

x[X

p(x) log p(x): (2:1)

By convention, one sets 0 log 0 equal to zero so that impossible
outcomes do not cause the sum to diverge. The Shannon
entropy is formally a dimensionless quantity, but, because the
base of the logarithm is arbitrary, it is customary to refer to
different choices of this base as different ‘units’. For instance,
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Figure 1. Shannon entropy. (a) The Shannon entropy in nats for the simplest case of only two possible outcomes, p and 1− p [33]. (b,c) Illustration of how the Shannon
entropy of a standard movement variable, individual orientation, can vary with ecological context. A group of animals can show greater variability in their orientations as
they forage semi-independently of one another in an area (b), but this variability can drop as they travel together towards a common goal (c). On average, the change in
variability between (b) and (c) corresponds to a drop in Shannon entropy, in nats, from (b) H(X ) = 2.04 ± 0.006 to (c) H(X) = 1.32 ± 0.03. Estimates of p(x) were calculated
from 1000 random samples of X, drawn either from a uniform distribution bounded by [0, 2π] or a Gaussian one (mean = 0, sd = 0.25) modulo 2π. Values of x were then
sine transformed and binned to estimate p(x). Bin widths were defined by the optimal width determined in the uniform distribution using the Freedman–Diaconis
algorithm [52]. We then replicated this process 1000 times to estimate the mean and standard deviation of H(X) for each distribution.
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if the natural logarithm (base e) is used, the entropy is said to be
in units of nats, but if the base two logarithm is used, the units
are in bits.

As a concrete example, consider the Shannon entropy of a
coin toss that comes up heads with probability p. Applying
equation (2.1), one finds that

H(p) ¼ �p log p� (1� p) log (1� p), (2:2)

which we plot in figure 1a. The Shannon entropy is maxi-
mized when the coin toss is fair (p=1/2); it is minimized
when the coin is weighted to always come up one way or
the other (p=0 or p=1). In general, for a given possibility
space, the Shannon entropy is maximal when all outcomes
are equally likely and decreases as probability is increasingly
biased towards a particular outcome or subset of outcomes.
The link between the uniformity of a probability distribution
and our intuition for entropic disorder is further illustrated in
figure 1 in the case of context-dependent movement patterns
[53]. Consider a group of social animals meandering around
as they forage within a resource patch (figure 1b) versus
when they travel together between destinations (figure 1c).
In the former condition, individuals are more prone to sto-
chastic movements as they search for food, meaning that
the probability of finding an individual with any instan-
taneous heading is roughly uniform. During the latter,
group members share a common directional goal as they
travel together, so this probability becomes heavily concen-
trated around the direction of collective motion. In this
context, we can show that condition 1 (b) displays a greater
amount of Shannon entropy than condition 1 (c), as it is
harder to guess any given animal’s direction from one instant
to the next in the former case than in the latter.
2.2. Mutual information
Because the study of collective motion is broadly concerned
with connecting group behaviour to the local interactions of
group members, we are often less interested in the absolute
uncertainty in some observable quantity than we are in the
extent of its correlation with another. If two observables X
and Y are statistically independent, then their joint distribution
p(x, y) will just equal p(x) p(y), allowing us to generalize
equation (2.1) to define a joint entropy H(X,Y ) =H(X ) +
H(Y ). If there is some statistical correlation between these
observables, however, then H(X,Y ) will be reduced by some
amount MI(X;Y ):

MI(X; Y) ; H(X)þH(Y)�H(X,Y): (2:3)

We refer to this quantity as the mutual information between
variables X and Y, and it is a measure of how much our uncer-
tainty in one variable is reduced by knowing the other.WhenY
is known, the probability of X is given by the conditional distri-
bution p(x|y), so the mutual information can also be expressed
as the difference betweenH(X ), the total uncertainty in X, and
the conditional entropyH(X|Y ). The reduced uncertainty inX
when Y is known is

MI(X; Y) ¼ H(X)�H(XjY) ¼ H(Y)�H(YjX): (2:4)

The second equality above follows from the fact that equation
(2.3) is unchanged if X and Y are swapped, a symmetry that
exists because MI measures correlation and not causation.

Measuring correlations between variables is one of themost
commonly employed, and often insightful, tools used in the
study of collective motion (e.g. [6,7,18,19]). Yet, individuals tra-
velling in groups have been shown to display high-dimensional
interactions [43], which increases the chances of uncovering
nonlinear associations between observables. Dynamic interac-
tive systems are often replete with nonlinear correlations that
typical comparative metrics, like the covariance or Pearson’s
correlation coefficient, can misconstrue because these quantify
linear relationships. Sometimes these comparative metrics
can help uncover the underlying relationship between two
observables, but this is not always the case.

The way in which mutual information quantifies corre-
lation is fundamentally different from that of other common
comparative metrics, such as the covariance, and we can illus-
trate this with a simple example. Consider a scenario in which
we have data on the movements of a group of ants out on a
foraging expedition from their colony. We would like to
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Figure 3. Covariance versus mutual information. (a) cov(Xn(t), Xn(t− 1)) for
the ant model with n= 5 (red), 10 (green) and 20 (blue). The bottom
dashed curve is the covariance for n= 0 (the lead ant), which serves as a
lower bound. The upper dashed curve is the common curve that each covari-
ance obeys for 0 < t≤ n. (b) MI(Xn(t); Xn(t− 1)) in units of bits for the same
set of values of n. The order of the curves here is reversed, with the n= 0
curve now serving as an upper bound. The inset of (a) shows that the same
ordering can be achieved with the covariance if it is normalized by the pro-
duct of the standard deviations in Xn(t) and Xn(t− 1), but at the cost of
compressing the curves to the unit interval.
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better understand how the inter-individual interactions con-
tribute to the group’s movement patterns. We can model
this as a one-dimensional process in which we define the
position of the lead ant at time t to be x0(t) and the position
of each subsequent ant in line as x1(t), x2(t), etc. We can begin
simply by modelling the lead ant as marching according to a
Gaussian random walk with mean step size ΔX and standard
deviation σ. If our ants are related to one another and thus
share the same behavioural circuitry, we may expect each ant
to more-or-less match the kinetic actions of its predecessor.
As such, we will assume that each ant attempts to choose its
next step to match the size of the most recent step taken by
the ant preceding it. Owing to sensory or mechanical error,
this will be a stochastic process, and, for simplicity, we will
assume that it can also be modelled as a Gaussian random
walk with the same variance as the walk performed by the
lead ant. The mean step size for ant n≠ 0 at time t, however,
will be equal to the size of the actual step taken by the ant in
front of it a moment earlier (n− 1 at time t− 1; see figure 2
for an illustration of the model).

One of the simplest comparisons we can make in this
example is between the position of the nth ant before and
after taking a step, i.e. compare the random variables Xn(t)
and Xn(t− 1). In our example, the easiest way of quantifying
the correlation between these variables is the covariance

cov(Xn(t), Xn(t� 1)) ¼ hdXn(t)dXn(t� 1)i, (2:5)

where 〈X〉 is the expectation value of the random variable X,
and δX≡X− 〈X〉. With a few reasonable assumptions, both
the covariance and the mutual information of the random
variables Xn(t) and Xn(t− 1) can be evaluated analytically
for this model, and we compare these metrics in figure 3 as
functions of time, for several different values of n.

Intuitively, we anticipate that the uncertainty in the size of
each step an ant takes should be limited, whereas the uncer-
tainty in the ant’s absolute position (the summation of a
growing number of stochastic steps) should increase steadily
with time. This implies that an ant’s current and previous pos-
ition, which are linked by a single step, must become
increasingly correlated over time, which the covariance and
mutual information both confirm. They also both agree that
the rate of this growth will be the same for all ants until time
t=n, which is the time it takes for information (i.e. uncertainty)
about the lead ant’s step size to propagate down the file to
the nth ant.

Where the two metrics differ most starkly, however, is in
their characterization of how correlation varies across the
chain at long times. The covariance indicates that for suffi-
ciently long times, it will grow as one moves towards the
back of the line, and the rate of this growth increases without
bound as time passes. The mutual information, on the other
hand, decreases down the chain, after long enough times,
and the rate of this decrease gets progressively smaller with
time. The origin of this discrepancy is an apple to oranges
comparison. This example highlights that both metrics quan-
tify correlation, but they are measuring correlations between
a different pair of variables. The covariance cov(X,Y ) esti-
mates the correlation between the variables X and Y,
whereas the mutual information MI(X; Y ) actually compares
the variables X and X|Y (X conditioned on Y).

In our toy movement model, although both the current
and previous positions of ant n become increasingly uncer-
tain as n increases down the chain, they always remain, on
average, within a distance ΔX of one another. This results
in a growing correlation between the variables Xn(t) and
Xn(t− 1) as one moves down the chain, consistent with the
trend observed for the covariance. The mutual information,
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however, accounts for the fact that as n increases, growing
uncertainty in the step size limits the extent to which know-
ing Xn(t− 1) can reduce our uncertainty in Xn(t). Thus the
mutual information must ultimately decrease as one goes
down the chain. (If it did not, this system would violate the
data-processing inequality [34].) Put another way, whereas
the covariance measures correlations between the current
and previous positions of ant n, the mutual information
measures correlations between the position of ant n and the
size of its steps.

As we mentioned earlier, comparative metrics like
Pearson’s correlation can effectively capture linear associations.
In our simple example, the covariance can also be made to
decrease down the chain if it is normalized by the product of
the standard deviations in Xn(t) and Xn(t− 1) (see the inset of
figure 3a), but this results in a different apples to oranges com-
parison bymapping the values of the covariance from the open
interval [0, ∞) (same as the MI) to the closed interval [0, 1].
Recall that more complex systems often exhibit higher
order, nonlinear correlations that cannot be captured by the
covariance, whether it is normalized or not. The mutual infor-
mation, however, has been proven to capture all higher order
correlations between two random variables [45–47].

Like other measures of correlation, mutual information is
principally a comparative metric, best suited for probing the
relative strength of statistical associations.While one bit of infor-
mation can be concretely characterized as the amount needed
to encode a single, unweighted binary decision (yes/no, on/
off), mutual information cannot determine which bits of infor-
mation two variables share. Nonetheless, MI has proven to be
rather useful in a range of relevant settings, from identifying
critical phase transitions in a flocking model [54], measuring
the complexity of visual cortical networks [55] and linking
neural firing rates with motor actions [56,57].

2.3. Transfer entropy
The symmetric structure ofmutual information (equation (2.3))
precludes it frommeasuring directed influence. Two birds both
following the same leader will have highly correlated motion,
but they may not directly influence one another. To determine
whether one randomvariable is actually influenced byanother,
rather than merely correlated with it, one can instead use an IT
metric called transfer entropy (TE) [49]. This metric has been
used tomeasure howmovement information cascades through
simulated [25,58] and real [27,59] systems, to study interactions
between animals and robots [29,60,61], and to establish
hierarchy in leader–follower experiments [23,44].

Given two random variables X(t) and Y(t) whose values
change stochastically with time (we call such a variable a
stochastic process), we define the transfer entropy from Y to
X in terms of Shannon entropies as follows:

TEY!X ¼ H(X(t)j{X(t)}t)�H(X(t)j{X(t)}t, {Y(t)}t)
¼ MI(X(t)j{X(t)}t; {Y(t)}t), (2:6)

where {X(τ)}τ is the past trajectory of X, i.e. the set of all values
of X(τ) for all τ< t. As the second equality shows, transfer
entropy is just the mutual information shared between the
process X at time t, conditioned on its past, and the past tra-
jectory of the process Y(t). Equation (2.6) seems rather
complicated to evaluate, but in most applications time will
be discretized and the processes involved will be well
approximated as Markovian, meaning that the set {X(τ)}τ
will only include the value of X at its previous time step.
Arguably, this assumption is often made more for mathemat-
ical simplicity and tractability than for biological realism and
we return to the topic of defining τ later when discussing
sampling intervals in §3.3. Even when the Markov property
does not hold, it may seldom be necessary to condition
over every previous time point. For example, in the ant
model introduced in the previous subsection, the transfer
entropy from Xn−1(t) to Xn(t) only requires conditioning on
the previous value of Xn and the previous two values of
Xn−1, since the nth ant chooses its step size (xn(t)− xn(t− 1))
based on the previous step size of the ant in front of it
(xn−1(t− 1)− xn−1(t− 2)).

If two processes X(t) and Y(t) are merely correlated, the
past trajectory of Y will tell us nothing more about X(t) when
the past trajectory of X is already known. It is only when Y
directly influences the dynamics of X that there will be a non-
zero transfer entropy TEY→X. This kind of influence is often
interpreted as a flow of information from process Y to process
X, and our antmodel provides an excellent visualization of this
flow. Figure 4 plots the transfer entropy from antm to ant n for
m=5 and several different values of n>m. It takes n−m time
steps for any information to flow from ant m to ant n, so the
transfer entropy is zero until then. After that, the transfer
entropy begins to increase as information from further forward
in the chain passes through ant m and arrives at ant n. After n
time steps, information from the lead ant finally arrives, and
the transfer entropy levels off because there is no further infor-
mation to transmit. Note that because transfer entropy
measures directed influence, it is an asymmetric quantity, and
the transfer entropy flowing from site n back towards site m
is always zero.
2.4. Causation entropy
If transfer entropy distinguishes influence from correlation, it
would be useful to have a metric that further distinguishes
direct and indirect influence. In our ant model, for example,
each ant is indirectly influenced by every ant ahead of it, but
it is only directly influenced by the ant in front of it. We can
determine whether ant m directly influences ant n by asking
the following question: if the past trajectory of every ant
besides ant m is already known, is there anything more that
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the past trajectory of ant m can tell us about the position of ant
n? If so, then ant m has a unique and therefore direct influence
on themotion of ant n. Mathematically, the answer to this ques-
tion can be quantified as a generalization of the transfer
entropy known as causation entropy (CSE) [50,51]

CSEXm!Xn ¼ H(Xn(t)j{Xj(t)} j=m,t)�H(Xn(t)j{Xj(t)} j,t): (2:7)

In the above, {Xj(τ)}j≠m,τ is to be understood as the past
trajectories of all ant positions except Xm. It is straightforward
to demonstrate that the causation entropy in equation (2.7) is
equal to 1/2 bit for m=n− 1, t>1 and is zero otherwise. This
result is sensible, since only neighbouring ants directly inter-
act, and the interactions were assumed to be uniform across
the chain. It takes exactly one time step for information to
flow from an ant to the one directly following it, hence
why there is only causation entropy for t>1. Long time
differences in the step-size variations of each ant are due
entirely to the indirect influence of ants further ahead in
line, as illustrated in figure 5.

Application of CSE to group movement data has clear
potential in terms of testing proposed theories for the various
‘rules’ governing how group members coordinate their
movements. For instance, Lord et al. [26] found that midges
in a swarm did not solely rely on their nearest neighbours
for navigational guidance. Rather, midges appear to have
causal connections that extended further than would be
expected from a strict, or even lax, nearest neighbour rule.

An illustration of the IT metrics of mutual information,
transfer entropy and causation entropy may be found in
figure 6a using standard Venn diagrams. In figure 6b, we
illustrate how the degree of overlap between circles in a
Venn diagram relates to the reduction in the uncertainty of
a given random variable.
3. Identifying communication patterns
Armed with a short primer on how IT metrics likemutual infor-
mation, transfer entropy and causation entropy can be useful in the
analysis ofmovement data, we now illustrate how our previous
examples relate to real-world challenges in the study of collec-
tive motion. In particular, we wish to contrast two examples
designed to highlight the potential benefits and pitfalls of
applying IT tools to group movement data. We begin by illus-
trating a condition in which these tools can be used in concert
to provide a deeper understanding of the inter-individual inter-
actions governing observed group-level dynamics.We then use
the example of studying social recruitment to demonstrate
how IT tools are sensitive to sample size. To help place these
examples into a broader context, we preface each with their
ecological relevance and touch on some current approaches.
3.1. Inferring local interactions from global patterns
Understanding why and how animal groups move the way
they do often begins by looking for patterns in observable
quantities, like the positions or orientations of individuals,
and quantifying how these change across a group with time
or ecological context. Comparing how metrics derived from
such data, like group density or polarity, differ across con-
ditions can reveal evolutionary adaptive advantages that
clarify why such behaviour persists. For instance, social ani-
mals often close ranks when threatened, which can reduce
the average member’s predation risk (the selfish herd) [62,63]
and, when attacked, members may temporarily scatter to
avoid capture, thereby further reducing their risk by confusing
the attacker (the confusion effect) [64,65]. Inspecting group
movement data (either real or synthetic) at a finer spatio-
temporal scale has also generated new insights into some of
the alternative communication strategies that may govern
the movement decisions of group members, as seen in the
empirical and theoretical work on how groups may climb
environmental gradients (figure 7) [72].

Inferring how individuals are coordinating theirmovements
from groupmovement data, however, is often problematic since
the same group behaviour can be produced by different social
interaction strategies or vary with context. For instance,
figure 7 illustrates different mechanisms that may all result in
the same overall group-level behaviour. A comparable analogy
can bemade regarding the interaction patterns in flocks of Euro-
peanstarlings (Sturnusvulgaris). Theseanimals appear todisplay
interactions that are invariant to separation distance while
in flight [6,73], but when starlings are foraging rather than
flying, their interactions appear to decay non-linearly with
increasing separation distance [74]—a pattern that translates
more generally across sensory systems [75]. Similar sensitivities
can be observed in social fish, where certain variables seem
important in driving social interactions under some conditions
(e.g. the role of motion cues) [76,77], but not in others [21]. The
point is that evidence that is both compelling, yet conflicting,
is not uncommon in the study of collective behaviour.

Whilewe do not suggest that IT tools can provide a panacea
to explain context-dependencies, their application can certainly
be instructive. As an example,we study the dynamics of Tamás
Vicsek’s minimal flocking model [78], in which similar group
morphologies can emerge from both global and local inter-
action paradigms, and we demonstrate how IT tools can be
used to provide some insights into the nature of the underlying
interactions in each case.

Briefly, the Vicsek model consists of N agents confined
within an L×L square by periodic boundary conditions.
The agents are represented as points whose positions, ri,



mutual information

Xn(t – 1)|Xn(t) Xn(t)|Xn(t – 1)

Y2

Y1

Y3

Xn(t)|Xn(t – 1)

MI(Xn (t); Xn(t – 1))
Xm(t – 1)

X

Xn–1(t – 1)
TEXmÆXn

CSEXn–1ÆXn|Xm

Xn(t)

transfer entropy

p(X) p(X|Yi)

causation entropy

Xn(t – 1)

(b)

(a)

Xn(t)|Xn(t – 1), Xm(t – 1)

Figure 6. Summary of IT metrics. (a) The three IT metrics calculated for the ant model are summarized here in standard Venn diagram format. Note how in going from
mutual information to causation entropy, the uncertainty in the variable Xn(t) is successively reduced by conditioning it on more and more variables. (b) All the IT metrics
presented in this section make comparisons between a distribution of one variable, generically p(X ), and a second distribution of that variable conditioned on another,
p(X|Yi). The size of the corresponding IT metric depends upon how much that conditioning reduces the uncertainty in X, which, for the normally distributed random
variables in the ant model, is directly related to how much conditioning reduces the width (variance) of the distribution. In the Venn diagram, this reduction corresponds
with the extent to which the area of the circle representing X is reduced by its overlap with the circle representing Yi.
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Figure 7. Collective gradient climbing strategies. (a) When attempting to climb an environmental gradient (intensifying from white to blue) individual errors can be
cancelled out, and, by staying together, a group’s mean direction (dashed arrow) can lead up the gradient (the many-wrongs hypothesis) [66,67]. (b) When
individuals in preferred locations slow down relative to those in lower quality regions (shown by shorter trailing wakes), social cohesion can combine with the
resultant speed differential to rotate the group up the gradient and lead to a case of emergent sensing [68]. (c) In theory, we may also expect variable interaction
strengths based on local conditions (line/arrow thickness). Individuals further up the gradient are less social as they take advantage of their location in the gradient,
while individuals in less favourable locations show stronger social ties as they seek better locations along the gradient [69]. (d ) If individuals are cooperating, those
located up a gradient could also signal to others the quality of the resource based on a local scalar measure (circles) [70]. (e) The preceding examples may also apply
at the cellular level. Cell clusters are polarized radially, with each cell producing a force in the direction of polarization, resulting in a net motion up the gradient
similar to (a) [71].
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and orientations, θi, are randomly assigned at the start of each
simulation fromuniformdistributions [0, L] × [0, L] and [−π, π],
respectively. These particles then move discretely within the
domain at a constant speed vo according to

ri(tþ Dt) ¼ ri(t)þ vi(t)Dt, (3:1)

where the particle velocity is vi= vo (cosθi, sinθi). Particles
update their direction of motion by aligning themselves to
the (self-inclusive) average orientation of all agents falling
within their sensory range, R:

ui(tþ 1) ¼ �
ui(t)

�
R þ Dui: (3:2)
The first term on the right in equation (3.2) represents the
average direction desired and the second is an external
noise term that disrupts the accuracy of the process. The
value of the noise term is drawn from a uniform distribution
[−ηπ/2, ηπ/2], where 0≤ η≤ 2. In this example, we vary only
the interaction range parameter, R, to contrast two extreme
conditions: local versus global interactions. While simplistic,
this approach could be extended to contrast observed
behaviours against those generated by a null hypothesis.

We start by using an order parameter, va, as a comparative
measure of the resulting group coordination. It is defined as
the magnitude of the summed velocity vectors of all particles,
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normalized by their number (N) and speed (vo), so that its
value falls between zero (completely disordered) and unity
(perfectly aligned) [78]. We begin by inspecting the distri-
bution of va for each condition by computing it for each
steady-state time point considered across a hundred replicate
simulations and compiling the results (figure 8a). Under the
global condition, agents are always mutually interacting, so
self-assembly is immediate and effectively complete, deviating
only slightly due to the small amount of noise added. This
results in a distribution that is sharply peaked near va=1. For
the local condition, self-assemblyoccurs through a gradual coar-
sening of locally aligned clusters, which will not always achieve
the sameextent of coordinationobserved in the global condition.
This results in a broader distribution.

The order parameter cannot explain why one system is less
ordered than another, but the mutual information shared
between the orientations of any two agents can tell us quite a
bit about the underlying dynamics. In figure 8b, the narrowly
peaked MI distribution of the more ordered condition tells us
that knowing the orientation of one agent reduces our uncer-
tainty in that of every other agent by roughly the same extent
(the nonzero peak width is due to noise). This is only possible
in the case of a spatially uniform, global social interaction. In
the less ordered condition, the much broader MI distribution
is indicative of interactions that are inhomogeneous. The
mean of the distribution is also larger for this condition,
which can only be reconciled with its lower orientational
order by assuming that a minority of the agents have closely
coupled motion, while the majority remain very weakly
coupled. This is of course precisely what we know to be
true—with local interactions, most agent pairs do not directly
interact, which means those that do have a stronger influence
over each other’s direction of motion.

We can glean additional dynamical information by study-
ing the corresponding distributions in transfer entropy, which
in this context measures the influence that one agent’s current
orientation has on the way another will turn. The narrowly
peaked TE distribution (the red curve in figure 8c) indicates
that interactions in the global condition must be symmetrical,
precluding any sort of leader–follower type dynamics. The
fact that the TE peak is shifted to the right relative to the cor-
responding MI distribution peak in figure 8b also suggests
that the uncertainty in each agent’s orientation is reduced
more by knowing the prior orientations of other agents
than by knowing their current orientations—a consequence
of having causal interactions. In the local condition, the
black curve in figure 8c is roughly bimodal, consistent with
our prediction that there should be a mixture of direct and
indirect influencers.

Finally, we measure the causation entropy between the
orientation of one agent and that of another, conditioned on
the orientations of all other agents, to determine how much
of a unique influence one agent has on another. Figure 8d
shows that in both systems the distribution of CSE is
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narrowly peaked at zero. This is unsurprising for the global
condition, given what we have already deduced about the
uniformity of the interactions; but even with the strongly
heterogeneous interactions of the local condition, no agent
is uniquely beholden to any other for its decision-making.
This begs a couple of interesting questions, though: how
many neighbours should an agent pay attention to in order
to minimize the amount of redundant information, and
how does the agent’s sensory range affect this number?

We can answer these questions using a procedure known as
the optimal causation entropyalgorithm (oCSE),which can find
the minimal set of agents whose orientations, if known, maxi-
mally reduce the uncertainty in the orientation of some
specified agent (for more details, see the electronic supplemen-
tary material, S1) [26,51]. Performing this analysis on each of
our simulation replicates and compiling the results, we plot
the distribution in this optimal number of influential neigh-
bours in figure 9. It seems a bit counterintuitive at first that an
agent has notably fewer influential neighbours in the global
condition, despite having more neighbours overall; but it is
actually consistentwith our prior analysis. In particular, the nar-
rowly peaked distribution of the order parameter (figure 8a) for
the global condition implies that all the agents have orientations
that are narrowly distributed about a single global average,
meaning that knowing only a few of those orientations will be
sufficient to maximally reduce the uncertainty in any other.
In the local condition, where the distribution of orientations is
broader, more influential neighbours are required to achieve
the same reduction in uncertainty.
3.2. Tracking information flow
Another strategy to study communication patterns in groups is
to look for evidence of social recruitment. That is, identifying
whether or not the actions of some individuals provide infor-
mation that appears to recruit others to do the same (positive
feedback). In the case of a group coming to a consensus, the
rate at which individuals act (or make a choice) can take on a
sharply nonlinear formonce a thresholdnumberof groupmem-
bers are involved, which can be considered evidence of a
quorum mechanism [79]. In general, evidence for quorum-like
processes is widespread and models of varying sophistication
that share a sigmoid process have often proven to be a valuable
means of characterizing social recruitment (e.g. ants [7,8,80];
cockroaches [81]; fish [8,76,77]; and humans, [3]).

In some cases, the sensory mechanisms driving social
recruitment are well established, e.g. quorum sensing in bio-
luminescent bacteria [82], the chemical signals used by
foraging ants [80], or the waggle dance of honeybees [83]. Yet,
the flexibility afforded by sigmoid-like functions also under-
scores the need for caution when interpreting them if the
underlying mechanisms are unknown. For instance, recruit-
ment can arise from a simple threshold mechanism rather
than the need for a quorum [84] or it may arise strictly due to
physical constraints (e.g. density effects from crowding) [4]. In
some cases, organisms will simply react differently under
different circumstances. Consider that social recruitment in
the ant Temnothorax rugatulus can change significantly depend-
ingonwhether theants are locatedsomewhere familiar (outside
their nest) or novel (scouting new locations), even though the
same chemical communication signal is employed [85].

If we find evidence of social recruitment in a given scen-
ario, then IT tools would seem to provide a practical means of
digging deeper into the underlying interaction patterns gov-
erning a recruitment event. However, IT metrics are not
infallible, and the estimation accuracy of the values calculated
from a dataset can vary considerably. To illustrate this discre-
pancy, let us consider our ant model from §2, in which we
know that each ant recruits another to follow it. In this
simple model, we can compute the IT metrics exactly. We
can, therefore, compare these expectations with those com-
puted from a statistical analysis of our simulated trajectories.

We simulated a thousand trajectories lasting 50 time steps
and then computed the mutual information for subsets of the
data compiling 50, 450 and 950 agents for each time. Techni-
cally, data for different values of n and t are drawn from
different distributions, but we can overcome this hurdle by
taking advantage of several simplifying features of the model
(see electronic supplementary material, S2 for details). The
results are plotted in figure 10a, and it is clear that the smallest
dataset (in red) is too noisy to robustly capture the temporal
growth in the mutual information. Of equal note, however, is
that the largest dataset (blue) only modestly improves the
results obtained via the intermediate dataset (green), which
already succeeds in capturing at least the qualitatively correct
trend in the mutual information with time. For continuous
random variables, especially, this may be the best we can
expect to do. Estimating the underlying probability distri-
bution functions of continuous random variables from data is
most straightforwardly done through histogramming, and
this discretization necessarily introduces inaccuracy into the
IT calculation. To reproduce the formally correct result, one
in principle needs to take the limit as the histogram bin size
approaches zero, but populating such a histogram sufficiently
would require an immense amount of data measured at a very
high resolution. We used the Freedman–Diaconis rule in our
numerical computation of the IT metrics in figure 10, as this
method is easy to implement and has been shown to work
well for unimodal distributions [52].

As another example, we also computed the transfer
entropy TEXn�1!Xn (t) for different values of n. In this case, we
simulated a chain of 100 ants for 1050 time steps and took
advantage of the fact that, for t>n, the transfer entropy remains



time

tr
an

sf
er

 e
nt

ro
py

ant number

m
ut

ua
l i

nf
or

m
at

io
n

0

0.5

1.0

1.5

2.0

2.5

3.0

10 20 5030 401 1 20 40 60 80 100
0

1

2

3

4
(b)(a)

Figure 10. IT metrics: theory versus simulation. (a) The mutual information MI(Xn(t); Xn(t− 1)) plotted as a function of time. This quantity is independent of n for t< n,
allowing for data points for multiple agents at the same time to be compiled. The black curve is the analytic result, and the red, green and blue curves correspond to
datasets of 50, 450 and 950 data points, respectively. (b) The long-time transfer entropy TEXn�1!Xn plotted as a function of the ant number n. The black curve is again the
analytic result, and the coloured curves represent datasets of the same sizes as in (a), except that in this case they are compiled over time points for fixed n since the TE is
constant for times t> n.

Table 1. Common challenges and approaches.

challenges approaches

data length and

sampling interval

simulations

a priori information

movement scale

optimization routines

discretization binning optimization

Kraskov method

equivalency

avoid data aggregation

stationarity

standard time-series approaches

preference for relative over absolute

quantities

sub-setting or optimal partitioning

time-varying metrics

reliability

comparative approach

null models

analytical expressions

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190563

10
constant at its maximal value, thereby allowing us to compile
data across time points t>100 for each adjacent pair of ants.
This theoretical limiting value of the transfer entropy, which
is formally equal to (1/2) log (1 +n), is plotted in figure 10b
for three datasets pooling across 50, 450 and 950 time points.
The quality yielded by the three datasets follows the same
trend as with theMI, which is surprising since transfer entropy
usually requires estimating a joint distribution involving at
least three random variables (compared to two for the MI). In
fact, recall from §2.3 that the transfer entropywe computed for-
mally depends upon four random variables: Xn(t), Xn(t− 1),
Xn−1(t− 1) and Xn−1(t− 2). Datasets of the same size as those
used to compute the MI ought to be insufficient for populating
a four-dimensional histogram, but in this special case we
have made use of the fact that TEXn�1!Xn is equal to MI(ΔXn(t);
ΔXn−1(t− 1)), effectively reducing the number of random vari-
ables from four to two. While this is only possible because the
underlying dynamics of the model are based on step sizes as
opposed to absolute positions, this is not an uncommon feature
of collective motion and may, therefore, be useful in other
scenarios. In general, an organism’s absolute position will
necessarily drift as it moves with its group, but quantities like
its velocity or its distance to another organism, both of which
depend upon a difference in positions, will often be more nar-
rowly distributed and have a better chance of being stationary.

3.3. Caveats and concerns
As demonstrated in our last example, the IT tools we covered
here, while potentially a powerful means to study infor-
mation exchange in groups, are not universally appropriate
and even Shannon urged caution among his peers [40]. IT
tools can be deceptively difficult to apply and interpret, lead-
ing investigators to spurious conclusions [35–38]. Table 1
enumerates some of the most common challenges investi-
gators encounter when attempting to use IT metrics and
provides several possible solutions or workarounds for
each. Each entry in the table is discussed and expanded
upon in the paragraphs that follow.

3.3.1. Data length
The simplest problemone can encounterwith adataset is that it is
not a representative sampling of the relevant possibility space.
This canbeaprobleminanystatistical analysis, but it is especially
severe in situationswhere two ormore randomvariables need to
be compared to one another, as is often the case in information
theory. Even if one has adequately sampled the two random
variables individually, their joint distribution, which is needed
to compute comparative IT metrics like the mutual information,
may still be sampled only sparsely. This problem is only
exacerbatedwhen one considersmetrics like the transfer entropy
or causation entropy, which require thorough samplings of joint
distributions of three or more random variables. This increas-
ing difficulty in sampling higher dimensional multivariate
distributions is often called the ‘curse of dimensionality’ [86].
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The most obvious way to lift this curse is to take more
measurements from the system, by either performing a
longer experiment, sampling more frequently or performing
additional replicate experiments. The increased availability of
various recording technologies would seem to address
this data length problem by allowing investigators to log data
at relatively high spatial and temporal frequencies for
extended periods of time (ranging from seconds to days)
[22,26,27,76,77,87,88]. Post-processing efforts to reduce errors
from biological or mechanical processes, however, invariably
reduce the amount of useable information and hours of data
recording may result in tracks that, on average, last for less
than a minute [89]. To date, most applications of IT metrics
have been in laboratory studies where data length can be a
more tractable problem [26,44], yet even here the amount of
usable data points can be limited when the spatial or temporal
event of interest is relatively small (e.g. maze studies [18,76]).
In such cases, it may be possible to circumvent any data
length issues by using a priori information to define the possi-
bility space. For instance, in §3.2, we were able to use our
knowledge of the system to both aggregate data across individ-
uals and reduce the possibility space required for our ITmetrics.
While pooling data across individuals or events can be a
commonstrategy foraddressing one’s data needs, this approach
should be considered carefully (see §3.3.4).

3.3.2. Sampling interval
The time interval between samples is closely linked to the issue
of data length and plays an important role in determining both
the amount and type of information available. This parameter
will be defined by the rate at which the biological process of
interest changes over time and it invariably impacts the
values of the IT metrics. Sampling at too coarse an interval
risks averaging over important dynamics, while sampling at
too fine an interval can suggest more instances of a given
state than are present. Both under- or over-sampling a time
series can result in IT metrics identifying spurious links
[37,90]. At the scale ofmoment-to-moment decisions, sampling
intervals can be inferred from trends in the organisms’ move-
ments that suggest how often individuals make course
adjustments [26,60]. They have also been selected by sensitivity
analyses [44] and optimization routines [27].

Other factors, like the scale of biological organization in
question, the type of animal society being studied, or the eco-
logical context in which the data are collected can also be
expected to influence the various types of structural patterns
that are revealed at different time scales. Animals with prior
directional information in migrating populations, for instance,
may have greater influence on the long-term movements of a
group, but other individuals may display short-term influence
during daily foraging expeditions [89,91]. Evidence of such
age-structured effects on a social group’s movement dynamics
is found across a wide range of animals [72].

3.3.3. Discretization
The problems associated with data sampling are compounded
by the fact that many, if not most, of the quantities of interest in
the study of collective motion are continuous rather than dis-
crete random variables. Positions, velocities and orientations,
for example, are all continuous quantities whose likelihoods
are formally determined by continuous probability distri-
bution functions. Estimating one of these functions from a set
of data is accomplished most straightforwardly by discretizing
the random variable in question and treating its normalized
histogram as a probability mass function. Some choices of dis-
cretization will yield more accurate approximations to the true
distribution function, and numerous discretization schemes
such as the empirically derived Freedman–Diaconis rule [52]
and Scargle’s Bayesian blocks algorithm [92] have been devel-
oped to try to optimize this choice. Exploring how bin size
impacts an IT metric of interest using simulations is also a sen-
sible means of verifying bin size [44]. Another approach has
been to select bin sizes based on the biometrics of the subject
animals (e.g. setting binwidths to body lengthswhen discretiz-
ing speed data) [93].

The fundamental problem is that whereas simple statistics
like the mean will be relatively insensitive to the details of the
discretization scheme, so long as key features like peaks are
adequately represented, the value of the Shannon entropy
depends explicitly upon the number of discrete bins in the his-
togram. For continuous random variables, metrics like mutual
information can be shown to only approach their formally cor-
rect values in the limit where the bin width approaches zero
[34], a problem we demonstrated in the previous section with
the numerical MI evaluation in our ant model. Shrinking the
bin width to arbitrarily small sizes can lead to other problems,
however. First, a histogram with more bins requires a larger
volume of higher resolution data to adequately sample it.
Second, the Shannon entropy actually diverges as the bin
width shrinks to zero, and, although these divergences will
always cancel out in the computation of quantities like
mutual information, the subtraction of two very large numbers
can result in computational precision errors.

One notable technique that avoids discretization entirely is
the Shannon entropy estimator first devised by Kozachenko
and Leonenko [94], which relies on a k-nearest neighbours
algorithm instead of a histogram. Kraskov et al. [36] later gen-
eralized this method to estimate the mutual information. Far
from a magic bullet, this method still relies upon a dense
sampling of the possibility space, as one of its key approxi-
mations is that the probability distribution is constant over
the volume containing each data point and its k-nearest neigh-
bours. If the dataset is too sparse, this approximation obviously
breaks down. The choice of k can also be more of an art than a
science. Nonetheless, this method has been shown to provide a
marked improvement in the results of transfer entropy calcu-
lations compared to methods that rely upon discretization
schemes [95].
3.3.4. Equivalency
When time-series data from n different processes (or animal
tracks) are aggregated together in an attempt to better sample
the dynamics, the assumption is implicitly being made that
these processes are equivalent, i.e. each of the n processes is
sampling the same underlying probability distribution. In
some cases, investigators may be able to estimate the probabil-
ities for each individual using only data from that individual’s
track record [28,44], but keeping these tracks robustly differen-
tiated becomes increasingly difficult as the size of the group and
the complexity of the motion grows. When applying IT tools to
larger groups, investigators may choose to restrict their efforts
to a subset of the group [26] or aggregate the data across all indi-
viduals [27]. At the population scale, investigators may be
forced to combine data [96] or rely on data that has already
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been aggregated [24]. Relying on individual trajectories to
infer the underlying probabilities is preferable, while focusing
on a subset of individuals raises the question as to how
representative the sub-samples are of group-level structures.

For some insight intowhen it is reasonable to treat different
individuals as equivalent, we look once more to our simple
ant model. The distribution of the position of ant n at time t,
p(Xn(t)), can be shown to be a normal distribution with a var-
iance that depends explicitly upon both t and n. If one were
to try to deduce the form of this distribution from a time-series
trajectory of the model, one might be tempted to aggregate the
data for each time point and each ant together so as to maxi-
mize the sample size. But because the underlying
distribution is not stationary, data from different time points
actually sample from different distributions. The same holds
for data points corresponding to different ants, because,
formally, the ants are not statistically equivalent.

The result of naivelyaggregatingdata across timepoints and
agents is illustrated in figure 11 for the ant model distribution
p(ΔXn(t)). The data points from a trajectory of the system can
be formally shown to sample from N different Gaussian distri-
butions, where N is the total number of ants; the figure plots
these distributions in different colours for N=5. If all the data
points of the trajectory are assumed to sample from the same
distribution, the distribution that will be deduced from the
analysis is actually the mean of the N underlying distributions,
plotted in black in the figure. Pooling data across individuals
should in principle only be done when this ‘mean’ distribution
is expected to be a sufficiently good approximation to the distri-
bution of each agent, but it is not apparent how severe a
departure from this condition is necessary before one can
expect deleterious effects on IT estimates.

3.3.5. Stationarity
Stationarity suggests that the randomvariable(s) of interest that
characterize the motion of an individual must be at a steady
state. This assumption will impact IT estimates for both indi-
vidual and aggregated data and there are a number of
resources on identifying and dealing with issues of stationarity
in times series [97,98]. In the aggregated case, such as with
our Vicsek model example, the metric in question (orienta-
tion) tends to fluctuate randomly in time about a sharply
peaked average, suggesting that its distribution is stationary.
In some cases, we will not see such a clear signal, as a
group’s behaviour will vary (i.e. drift) over time, and we
must then attempt to find an optimal partitioning of the time
series into datasets that are as long as possiblewithout obscuring
transitions between qualitatively distinct behavioural regimes
[26,28,90,99]. We may also expect that persistent stationarity
issues could be due to periodic patterns in an organism’s
gait, in which case identifying and removing such trends may
alleviate the problem.

Sometimes if a variable of interest is demonstrably not
stationary, differencing can help. Consider that the distribution
p(Xn(t)) in our ant model is non-stationary, since the absolute
position of each ant becomes increasingly uncertain in time;
but the step size distribution p(ΔXn(t)) becomes stationary for
t>n since the variance in an ant’s step size is ultimately just
the sum of those of the ants in front of it. The value of such dif-
ferencing may also result in a more biologically meaningful
metric, as individuals appear to respond preferentially to the
rate at which something is changing in their surroundings,
rather than their current state (e.g. a preferential response to
dynamic over static cues; fish [100] and humans [101]).
Motion cues are an example of a dynamic visual feature that
captures attention and such cues play an important role in
influencing the neuromotor-actions of organisms (insects
[102,103], fish [104–106], humans [107–109]).

A weaker condition for stationarity is essentially a ‘mean-
field’ assumption that each agent should interact over time
with the same average environment as every other agent.
At any given time, each Vicsek agent, for example, will deter-
mine its next orientation by averaging over a different set of
neighbouring orientations. If the system is sufficiently
dense, however, the stochastic fluctuations of these random
variables about the same mean will cancel each other out
over time, making the mean-field assumption reasonable. It
clearly does not hold for the ant model, on the other hand,
since the hierarchical nature of the dynamics ensures that
no two ants see an equivalent interaction environment. Simi-
larly, when ants recruit others via a pheromone, the
concentration of that chemical attractant will vary with traffic
level, so that any mean-field assumption would fail over a
long enough timeline.
3.3.6. Reliability
In addition to the standard data preprocessing caveats
reviewed above, there are also concerns related to the reliability
of transfer and causation entropy values that should be con-
sidered when applying these metrics. For example, Smirnov
demonstrated that if the temporal discretization of a dataset
is too coarse to capture certain fundamental time scales of
the sampled dynamics, one can end up computing non-zero
transfer entropies between stochastic processes that are not
causally linked [37]. Butail et al. [60] found support for these
concerns in their attempts to use TE to quantify the extent to
which fish-shaped robot confederates influenced the motion
of actual fish; but, through repeated tests and parameter
exploration, they were ultimately able to show a significant
directional trend that matched their expectations. The draw-
backs in using transfer entropy to identify persistent trends
in leadership can also be reduced by combining TE with
other statistical metrics, such as correlations and extreme
event synchronization [23,44]. Missing covariates can also
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lead to spurious conclusions by suggesting associations
between individuals whose apparent interactions arise only
because they are each responding to another, unseen process.
The gradient tracking examples in figure 7, for instance,
illustrate how an underlying process can contribute to the
group’s movement patterns. Runge [90] discusses the issue of
missing (or latent) processes and discusses some potential
solutions to identifying spurious links among entities.

Even the fundamental interpretation of transfer and causa-
tion entropy as measures of information flow has been called
into question, based on the fact that conditioning one
random variable on another is not formally equivalent to sub-
tracting out its influence. James et al. [38] were able to contrive
some simple examples where TE could not correctly account
for the directed influence present, but they relied on situations
where the uncertainty in a process is not reduced by knowing
its past trajectoryorwhere twoprocesses can consistently influ-
ence a third process simultaneously but not individually.
Fortunately, these particular conditions are unlikely to hold
for organisms acting collectively, where knowledge of an indi-
vidual’s past behaviours generally plays a prominent role in
understanding current and future behaviours. Likewise, the
qualitative dynamics of group cohesion are generally assumed
to not depend upon irreducibly polyadic interactions, i.e. three
or higher-body interactions that cannot be reduced to a sum of
two-body interactions. This assumption has been validated in
small to medium fish shoals [20], though it has not been
ruled out that such interactions might be necessary to account
for some more complex types of emergent social behaviour.
Nonetheless, it is worth keeping in mind that IT metrics are
better thought of as statistical scores than measurable observa-
bles. As such, we should proceed with due caution when
applying and interpreting IT metrics, particularly when
using them as primary response values in statistical analyses.
The fickle nature of p-values [110] could just as easily be
applied to IT metrics.
4. Conclusion
Identifying how the members of a group interact and coordi-
nate their activity is a fundamental question of complex, self-
organizing societies. Historically, some of the best examples
for collective behaviour have come from the eusocial insects,
where we find established connections between the individ-
ual sensory mechanisms and behavioural strategies that
help shape the patterns we observe at the system level. Trans-
lating these lessons to other iconic examples of collective
behaviours, like those observed in vast shoals of fish, mur-
murations of birds or crowds of pedestrians, has been far
more challenging. Each ecological example of collective be-
haviour presents its own unique investigative challenges
and any set of tools that may provide new insights merits
attention. In this paper, we have discussed several tools
based on Shannon’s information theory that are designed to
quantify communication patterns, and we have demonstrated
some of the benefits and pitfalls of applying these IT tools to
group movement data.

Designing interaction rules based on mathematical and
biological principles to replicate certain collective motions is
a forward problem and a mature area of scholarship. Discern-
ing interaction rules from data gathered on collective
patterns, however, is a more recent and challenging class of
inverse problems, and IT methods are one promising way to
advance our understanding in this area. Advances in track-
ing technology [111], machine learning [112] and virtual
reality [113,114] will further enable us to draw ties between
individual- and group-level processes by streamlining data
collection and advancing our experimental control over
these dynamical systems. We must keep in mind, however,
that while Shannon’s framework itself is over half a century
old, its application to the study of collective phenomena is,
by comparison, only in its infancy. The challenges we have
outlined make it clear that reproducible insights will rely
on a combination of these model-driven and model-free
approaches. We have used simple examples to highlight
some of these issues, but the solutions we have provided
are only a starting point for further research efforts.
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