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SUMMARY There is increasing evidence from in vivo recordings in
monkeys trained to respond to stimuli by making left- or rightward eye
movements, that firing rates in certain groups of neurons in oculo-motor
areas mimic drift-diffusion processes, rising to a (fixed) threshold prior to
movement initiation. This supplements earlier observations of psycholo-
gists, that human reaction-time and error-rate data can be fitted by random
walk and diffusion models, and has renewed interest in optimal decision-
making ideas from information theory and statistical decision theory as a
clue to neural mechanisms. We review results from decision theory and
stochastic ordinary differential equations, and show how they may be ex-
tended and applied to derive explicit parameter dependencies in optimal
performance that may be tested on human and animal subjects. We then
briefly describe a biophysically-based model of a pool of neurons in locus
coeruleus, a brainstem nucleus implicated in widespread norepinephrine
release. This neurotransmitter can effect transient gain changes in cortical
circuits of the type that the abstract drift-diffusion analysis requires. We
also describe how optimal gain schedules can be computed in the presence
of time-varying noisy signals. We argue that a rational account of how
neural spikes give rise to simple behaviors is beginning to emerge.
key words: stochastic differential equations, drift-diffusion process, dy-
namical systems, phase oscillators, decision-making models

1. Introduction: Optimal Decisions

Here we summarize a considerable body of work carried
out in our group over the past five years. We are variously
applied mathematicians, neuroscientists, and cognitive psy-
chologists, and our goal is develop a series of linked mod-
els describing the collective neural computations involved
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in decision making and their behavioral outcomes. Much of
our thinking is guided by the notion that computably opti-
mal strategies provide limits to, and may even guide, human
and animal performance. Here we focus on mathematical
methods and modeling strategies, involving stochastic dif-
ferential equations (SDEs), dynamical systems and signal
processing theory. We also sketch the behavioral and neu-
robiological background to this work, and we provide many
references.

We start with a phenomenological drift diffusion (DD)
model for the identification of a noisy stimulus drawn at
random from a pair of options: the two-alternative forced
choice task (2AFC). We derive optimal operating conditions
for this process, presuming that certain DD parameters, de-
scribing cortical function, may be adjusted to suit the stimuli
and task at hand. Neurotransmitter release provides a mech-
anism for such adjustments, and we continue by sketching
how a biophysically-based model of spiking noradrenergic
neurons in the locus coeruleus (LC) can be simplified and
their response to stimuli analyzed. This brainstem area is
believed to modulate gain in cortical circuits. We conclude
by outlining the derivation of optimal gain schedules for a
DD-type process with variable signal, noise and feedback,
and comparing these to direct recordings of LC activity.

The drift diffusion (DD) process, governed by the SDE

dx = ±adt + σdW , with thresholds ± z , (1)

where σ is the standard deviation of a Wiener (white noise)
process W(t) and ±a denote the drift rates corresponding to
the two stimuli, has been used since the 1960’s to model
human reaction time and error statistics in the 2AFC and
other tasks [1]. Not only is it the continuum limit of the
sequential probability ratio test (SPRT), known to be the
optimal decision-maker for 2AFC tasks with accumulat-
ing noisy data [2], [3], but its threshold-crossing behavior
closely matches human behavioral data [4], [5]. Moreover,
direct neural recordings from oculomotor brain areas of
monkeys performing choice tasks has recently shown that
firing rates of groups of neurons selective for the response
corresponding to the chosen alternative rise toward a thresh-
old that signals the onset of motor response in a manner that
seems to match sample DD paths [6]–[8]. Equation (1) can
also be derived from “high level” leaky competing accumu-
lator (artifical neural network) models of neural function, as
noted in Sects. 2, 3 below.

In this application a is the mean growth rate of the log

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers



HOLMES et al.: OPTIMAL DECISIONS
2497

likelihood ratio and x(t) its accumulated value. If the stimuli
are presented with equal frequency, sample paths are started
at x(0) = 0 and a response is recorded when x(t) first ex-
ceeeds +z or falls below −z, thus defining the reaction time
(RT) on that trial. For drift +a, crossing +z denotes correct
responses and crossing −z errors, and vice versa. First pas-
sage time distributions yielding mean RTs, and error rates
(ER) are readily computed for (1) from the backward Kol-
mogorov or Fokker-Planck equation associated with it [9]:

RT =
z
a

tanh
( az
σ2

)
; ER =

1

1 + exp

(
2az
σ2

) . (2)

For fixed signal to noise ratio (SNR) a/σ, as z increases,
ER decreases but at the expense of longer RTs: this speed-
accuracy tradeoff is well-known in psychology [1]. How-
ever, as suggested by Gold and Shadlen [10], one can explic-
itly compute thresholds that maximize the average reward
rate:

RR =
1 − ER

RT + D + Dpen · ER
; (3)

here the numerator represents the average fraction of correct
responses and the denominator denotes the average time be-
tween responses: the sum of RT, an experimenter-imposed
response-to-next-stimulus interval (RSI) D, and possibly an
additional penalty delay Dpen incurred by errors. (In ap-
plying this formula to data gathered from human or animal
subjects, one must further subdivide RT into the “decision
time” that represents information processing, and an “over-
head time” due to visual processing and motor response la-
tencies [11]. The latter tends to remain fixed for a given
subject, and may be combined with D.)

Substituting Eq. (2) into (3) gives:

RR =

[
z
a
+ D +

(
D + Dpen − z

a

)
exp

(
−2az
σ2

)]−1

. (4)

Of the original DD parameters in Eqs. (2) and (4) only the
two ratios z̃ = z/a and ã = (a/σ)2 (∼ SNR) appear. Regard-
ing ã, D and Dpen as fixed and differentiating with respect
to z̃, one finds that the unique maximum of RR as a func-
tion of threshold for fixed SNR and delays occurs when the
following condition holds:

exp(2ãz̃) − 1 = 2ã(D + Dpen − z̃) ; (5)

note that only the sum Dtot = D + Dpen appears in this ex-
pression. We may solve for z̃ and ã in terms of RT and ER
from (2) to obtain

z̃ =
RT

1 − 2ER
, ã =

1 − 2ER
2RT

log

(
1 − ER

ER

)
, (6)

and substituting Eqs. (6) into (5) yields a speed-accuracy
tradeoff that corresponds to maximizing RR:

RT
Dtot
=


1

ER log

(
1 − ER

ER

) + 1
1 − 2ER


−1

. (7)

Fig. 1 Thick curve shows the optimal performace curve given by Eq. (7),
and histogram bars show data collected from 80 human subjects, sorted
according to total rewards accrued. White bars: all subjects; light gray
bars: lowest 10% excluded; medium gray bars: lowest 50% excluded; dark
gray bars: lowest 70% excluded. Error bars indicate standard error.

This optimal performance curve (OPC) uniquely relates the
normalised reaction time (RT / [D + Dpen]) to ER: no other
parameters appear. Hence data collected for different sub-
jects (who may exhibit differing SNRs, even when viewing
the same stimuli), and for differing RSIs and penalty delays,
can be pooled and compared with the theory. See [11] for
full details.

Figure 1 shows the OPC of Eq. (7) as a bold curve,
the form of which may be understood by noting that the
left hand end, where error rates and normalised reaction
times are both low, corresponds to high SNRs (decisions are
quick and accurate), while at the right hand end the SNR ap-
proaches zero, and the optimum strategy is to guess without
spending time to examine the stimulus, also giving a small
reaction time. In between, the curve describes the optimal
speed/accuracy compromise.

Figure 1 also shows a histogram of behavioral data
compliled from human subjects indicating that those who
score in the top 30% overall on a series of tests with dif-
fering dalays and SNRs follow the optimal curve remark-
ably closely. More detailed data analysis [11] reveals that,
in each block of trials for which stimulus recognition dif-
ficulty (∼ SNR) and RSI are held constant, these subjects
rapidly adjust their thresholds to achieve this. However,
other subjects, and especially the lowest-scoring 10%, dis-
play suboptimal behavior, with significantly longer reaction
times and correspondingly lower ERs. Previous studies have
shown that humans often favor accuracy over reward [12]–
[14], and alternative objective functions have been proposed
to account for this behavior.

For example, one can propose a modified reward rate,
weighted toward accuracy by additionally penalizing errors,
as suggested by the proposal that human subjects experience
a competition between reward and accuracy (COBRA) [13],
[14]:
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RA = RR − q
Dtotal

ER ; (8)

here the factor q specifies the additional weight placed on
accuracy, and the characteristic time Dtotal is included in the
second factor, so that the units of both terms in RA are con-
sistent.

Maximizing RA as above we obtain a family of OPCs
parameterized by q:

RT
Dtotal

=
E − 2q − √E2 − 4q(E + 1)

2q
, (9)

where

E =


1

ER log
(

1−ER
ER

) + 1
1 − 2ER

 . (10)

If rewards are monetary, one can also postulate a situ-
ation in which errors are rewarded (albeit less lavishly than
correct reponses), or penalized by subtraction of previous
winnings:

RRm =
(1 − ER) − qER

RT + Dtotal
(11)

This leads to the following OPC family:

RT
Dtotal

= (1 + q)



1
ER
− q

1 − ER

log

(
1 − ER

ER

) + 1 − q
1 − 2ER



−1

. (12)

Both Eqs. (9) and (12) reduce to (7) for q = 0, as expected.
Figure 2 shows an example of the second family (12). Equa-
tion (9) gives a similar family, but the maxima move left-
wards with increasing q rather than rightwards as in Fig. 2.

Both of these proposals involve a weight parameter q,
which will typically be subject-dependent, since different

Fig. 2 Optimal performance curves of (12) for the modified reward rate
function RRm of (11) with q varied in steps of 0.1 between −0.2 (lowest
curve) and 0.8 (highest curve). The dashed curve corresponds to q = 0
(Eq. (7)) and the bold solid curve to q = 0.62: the best fit to all the subjects
in the study (white bars). Error bars indicate standard error.

people may place a greater or lesser weight on accuracy,
even if they understand that a specific balance is implied, as
in Eq. (11). Values of q should then be fitted to indivduals or
subgroups of subjects, and the theory becomes descriptive
rather than prescriptive. We are currently assessing such
theories against our original behavioral data [11], and car-
rying out additional experiments, but in Fig. 2 we show that
an average weight (= 0.62) may be assigned to the entire
group.

2. A Biophysically-Based Neural Model

The DD decision theory sketched above, based on the
SDE (1), is an example of a ‘high level’ cognitive model.
By themselves such models can be helpful in formalising
questions in cognitive psychology and brain science more
generally [15], but it is of course desirable to connect them
with biophysically detailed models of the neural substrates
involved in specific behaviors. We now review a recent ex-
ample of such a model, emphasising the mathematical ideas
used to simplify it so that analyses are possible.

As shown in [11], the DD process (1) can be derived
in suitable limits from artificial neural network (connection-
ist) models of neural activity (see [16]–[18] and Sect. 3 be-
low), which are in turn related to firing rate models that may
be derived from biophysically-detailed, spiking, ionic cur-
rent equations [19], [20] describing single cell activity, and
“integrate-and-fire” simplifications thereof [21]–[24].

We have begun studies of specific cortical neural
groups involved in the decision process, as well as others
that, via neurotransmitter release, are responsible for con-
trol and attention selection. As described in the forthcom-
ing review paper [25], the brainstem nucleus locus coeruleus
(LC) plays an important role in the latter [26], [27], releasing
norepinephrine (NE) widely in the cortex when its cells fire
action potentials. Direct recordings in monkeys and pupil-
lometry in humans reveal that the LC displays two opera-
tional modes: a “tonic” state in which the baseline firing
rate in the absence of salient external stimuli is relatively
high and transient responses to stimuli are relatively small,
and a “phasic” state in which baseline rates are lower but
transient responses significantly larger [25]. Tonic modes
are associated with poor performance on choice tasks and
phasic modes with good performance [27]. This has led to
the proposition that, while average levels of NE are impor-
tant in tuning cortical circuits, the transient dynamics also
plays a major role [25].

We model LC with a heterogeneous set of single-
compartment, periodically spiking, ionic current neurons,
originally proposed by Connor et al. [28], and subsequently
reduced to a planar system by Rose and Hindmarsh [29] by
assuming that the fast currents are equilibrated. Details of
this specific case are given in [30]; here we describe the gen-
eral strategy. Ionic current models, pioneered by Hodgkin
and Huxley [31] in their Nobel Prize winning work, take the
general form:
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Cv̇ = Iion(v, w1, . . . , wN) + Iext(t), (13)

ẇi =
γi

τi(v)
(
wi∞ (v) − wi

)
; i = 1, . . . ,N, (14)

where Eq. (13) describes the voltage dynamics, with C de-
noting cell membrane capacitance, Iion the multiple ionic
currents, and Iext(t) synaptic and external inputs. Equa-
tions (14) describe the dynamics of the gating variables wi,
each of which represents the fraction of open channels in
the cell membrane that pass ions of type i, and γi is a pos-
itive parameter. At steady state, gating variables approach
voltage-dependent limits wi∞ (v), usually described by sig-
moidal functions [19], [20].

One can appeal to time scale separation to set fast gat-
ing variables, for which γi/τi(v) is large, at their equilib-
rium values, thereby eliminating the corresponding vari-
ables wi. Similarly, very slow variables can be taken con-
stant in studying mid range dynamics. In this way the rela-
tively high (N + 1)-dimensional dynamics of Eqs. (13), (14)
can be reduced to a phase space spanned by v and a few mid-
range wi’s. This procedure may be justified via geometric
singular perturbation theory [32].

As noted, Rose and Hindmarsh [29] had already re-
duced the Connor model to two variables, v and a single
representative channel variable w. This planar system may
be further reduced to a one-dimensional oscillator via the
phase response curve (PRC) method [33], [34]. This re-
duction, which can also be applied in higher dimensional
cases and to more complex bursting neurons [35], [36], re-
lies on the existence of an attracting, normally hyperbolic
limit cycle Γ [37] (representing the periodic spikes in iso-
lation). One defines a non-uniform “angular” coordinate φ
along the limit cycle and complementary “radial” coordi-
nates that span isochronal (= equal time or equal phase) sur-
faces transverse to Γ and assumes that external inputs and
coupling are sufficiently weak that the original voltage and
gating variables can be written as functions v(φ), wi(φ), with
values determined by phase on the isolated limit cycle. The
isochronal foliation enables one to determine the effects of
instantaneous (delta function), infinitesimal perturbations in
voltage due to external or synaptic inputs in terms of a single
PRC function Z(φ) that encodes the phase shift due to such
a perturbation in terms of the phase at which it is applied.
This function captures and summarizes much of the detailed
ionic dynamics. Moreover, in cases in which the limit cycle
Γ is close to a bifurcation, analytical expressions for Z(φ) in
terms of parameters in the original Eqs. (13), (14) can be de-
rived [33], [38], [39]. Figure 3 illustrates the procedure for
the Rose-Hindmarsh model.

Applied to a heterogeneous coupled LC network sub-
ject to independent additive white noise in external currents,
this yields a set of SDEs each of the form:

dφi =

ωi + Z(φi)(I(t) +
∑

j

f (φi, φ j))

 dt

+ σZ(φi)dW(t) + O(σ2) , (15)

where I(t) and f (φi, φ j) denote inputs due to external stimuli

Fig. 3 (a) Phase space structure for the two-variable Rose-Hindmarsh
model, showing attracting limit cycle and isochrons. The thick dashed and
dash-dotted lines are nullclines for v̇ = 0 and ẇ = 0, respectively, and
squares show points on the perturbed limit cycle, equally spaced in time,
under small constant input current Iext. (b) PRCs for the Rose-Hindmarsh
model: asymptotic form z(φ) ∼ [1 − cos φ] shown solid, and numerical
computations dashed. Adapted from [30].

and from synaptic and electrotonic coupling from other LC
cells, and σdW(t) denotes a Wiener process of variance σ.
Note that all inputs are “filtered” through the PRC Z(φi). See
[30] for further details.

The probability density of phases, p(φ, t), for (15) in
the weakly-coupled limit may be found from the associ-
ated forward Kolmogorov or Fokker-Planck equation [9]
and (semi-) analytical expressions derived for the flux of
phases through φ = φs = 0, corresponding to the cell fir-
ing an action potential. This, in turn allows us to compute
average firing rates of (groups of) LC cells in response to
stereotyped stimuli representative of simple visual recog-
nition tasks [27], [40]. Fitting noise (σ) and oscillator fre-
quency distributions P(ωi) to interspike interval data in the
absence of stimuli, we may then compute firing rate his-
tograms for comparison with experimental data.

Figure 4 illustrates the main result of [30]: that the
magnitude of the transient response to stimulus, relative to
baseline, is inversely proportional to baseline spiking fre-
quency of LC in the absence of stimuli. This partially ex-
plains the correlations between low baseline activity and
strong phasic response on the one hand, and higher baseline
activity and lower response on the other [25], [27].

These results, and others with different stimuli repre-
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Fig. 4 Peri-stimulus time histograms of LC activity for poor (a) and good
(c) performance periods during a target identification task, taken from sin-
gle neurons, averaged over ∼ 100 trials, from [27]. Panels (b,d) show cor-
responding histograms computed by simulating 100 Rose-Hindmarsh neu-
rons (gray bars) and from Fokker-Planck equation for (15) (solid curve),
with analytical decay bounds (dashed curve).

senting more complex decision tasks [30] and different neu-
ral models [39], show that analytically-tractable reduced de-
scriptions of neural groups can be derived from biophys-
ically detailed ion-channel models. A major challenge is
to assemble such groups into ‘global’ models of interact-
ing brain mechanisms known to be active in perception and
decision-making, e.g. the medio-temporal and lateral inter-
parietal areas, superior colliculus and frontal eye fields (MT,
LIP, SC, FEF), involved in motion-detection and response
saccades in monkeys [6]–[8], and to integrate other brain
areas such as LC and thalamus. At the level of connection-
ist models, we have begun to study how gain changes such
as those due to the transient increases of LC spike rates of
Fig. 4 can affect cortical neurons. We briefly review this be-
fore concluding the paper.

3. Optimal Gain Schedules

Neurophysiological studies have shown that, among other

actions, NE modulates cortical activity, making neurons rel-
atively more responsive to synaptic inputs while decreasing
their spontaneous (noisy) activity [41]. The resulting en-
hanced synaptic throughput was simulated in a connection-
ist network by increasing gain (g(t), see below) [42]. This
makes precise the conjecture that LC activity influences cor-
tical function [25], and suggests how time-dependent gain
effects may contribute to improved performance, as we now
describe.

A firing rate model for decision-making in 2AFC takes
the form:

dy1 =
[
−αy1 + fg(t) (−βy2 + a1(t))

]
dt

+ g(t)σ(t)dW1, (16)

dy2 =
[
−αy2 + fg(t) (−βy1 + a2(t))

]
dt

+ g(t)σ(t)dW2, (17)

where Wj are independent Weiner processes and the func-
tion fg(t) relating firing rate to inputs is typically sigmiodal:

fg(t)(x) =
1

1 + exp (−4g(t) (x − b))
, (18)

or piecewise-linear, being bounded above (by 1) and below
(by 0). Here we allow time-varying stimuli aj(t), noise level
σ(t) and gain g(t) (the maximum slope of fg(t)) (cf. [16],
[17]).

If decay (leak) α and/or inhibition β are large, then
(16), (17) has a one-dimensional stochastic slow mani-
fold [43] that attracts solutions in a probabilistic sense.
Moreover, linearizing (18) at the point of maximum slope
and subtracting (17) from (16) yields a scalar Ornstein-
Uhlenbeck (OU) process for the difference x = y1 − y2 in
firing rates:

dx = (λx + g(t)a)dt + g(t)σdW , (19)

where λ = g(t)β − α and a = a1 − a2. If g is constant and
the network is balanced in that leak rate equals inhibition
(λ = 0), Eq. (19) reduces to the DD SDE (1) with a = a1−a2.
In this case a balanced firing rate model with constant SNR
closely approximates the optimal DD decision-maker [11],
[18].

The SPRT optimality theory assumes that the two dis-
tributions from which samples are drawn are stationary: ef-
fectively, that a and σ are constant in (1). In practice, visual
and other stimuli may vary on fast time scales, so that one
is faced with decoding a signal that waxes and wanes dur-
ing the decision process. In [18] we address this problem of
varying SNR and, using the linearised one-dimensional OU
SDE (19) with time-dependent coefficients a(t) and σ(t), we
develop general expressions for optimal multiplicative gain
schedules g(t). These implement the matched filter strat-
egy of signal processing [44]. We compute optimal gs for
specific simple cases of stimuli that rise both slowly and
rapidly and, using a linear model of norepinephrine release
as a function of LC firing rate, we find that the transient LC
firing rates thus predicited are qualitatively similar to exper-
imental PSTH records such as those of Fig. 4. See Fig. 5.
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Fig. 5 Comparison of optimal gain theory with empirical data for a target
detection task. (a) Optimal gain schedules for the firing rate model, with a
processing time lag of 0.1 sec following sensory cue and signal that rises
from 0 with constant noise, as shown in (b). (c) The corresponding optimal
time course of LC firing rate. (d) Histogram of LC firing rates recorded in
monkey during good performance, from [27].

This lends further support to the hypothesis that LC activity,
triggered by the arrival of salient stimuli in cortical decision
areas, can tune those areas (as well as motor areas) to im-
prove accuracy and speed responses [25].

4. Conclusion

We have reviewed recent work in modeling neural and be-
havioral responses to stimuli at both the level of biophysi-
cal detail, beginning with ion channel models of Hodgkin-
Huxley type, and at that of abstracted “higher level” con-
nectionist and drift-diffusion SDEs. While numerous gaps
remain between models at these disparate spatial and tem-
poral scales, we believe that the general outlines of an inte-
grated theory of neural function in simple decision-making
tasks are beginning to emerge.
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