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Abstract. This paper shows that canards, which are periodic orbits for which the trajectory
follows both the attracting and repelling part of a slow manifold, can exist for a
two-dimensional reduction of the Hodgkin-Huxley equations. Such canards are associated
with a dramatic change in the properties of the periodic orbit within a very narrow interval of
a control parameter. By smoothly connecting stable and unstable manifolds in an asymptotic
limit, we predict with great accuracy the parameter value at which the canards exist for this
system. This illustrates the power of using singular perturbation theory to understand the
dynamical properties of realistic biological systems.

1. Introduction: The Hodgkin-Huxley equations

In 1952, Alan Hodgkin and Andrew Huxley published a landmark paper in the
field of mathematical neuroscience [1]. Building on careful experimental observa-
tions by themselves and Bernard Katz, they presented a mathematical model for
the generation of action potentials for a squid giant axon based on the dynamical
interplay between ionic conductances and electrical activity. This model consists
of the following equations, now referred to as the Hodgkin-Huxley equations:

dV

dt
= [I − ḡNam

3h(V − VNa) − ḡKn4(V − VK) − gL(V − VL)]/C,

dn

dt
= αn(V )(1 − n) − βn(V )n,

dm

dt
= αm(V )(1 − m) − βm(V )m,

dh

dt
= αh(V )(1 − h) − βh(V )h,

where

αn(V ) = 0.01(V + 55)

1 − exp[−(V + 55)/10]
, βn(V ) = 0.125 exp[−(V + 65)/80],
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αm(V ) = 0.1(V + 40)

1 − exp[−(V + 40)/10]
, βm(V ) = 4 exp[−(V + 65)/18],

αh(V ) = 0.07 exp[−(V + 65)/20], βh(V ) = 1

1 + exp[−(V + 35)/10]
.

Here V is the transmembrane potential (the voltage inside the axon minus that
outside the axon), I is the current injected into the neuron from a microelectrode,
and n, m, and h are dimensionless gating variables which each must be in the
interval [0, 1]. In these equations, voltages are measured in mV , current density
in µA/cm2, capacitance density in µF/cm2, and time in msec. The values of the
constants at 6.3◦C are

ḡNa = 120 mmho/cm2, ḡK = 36 mmho/cm2, gL = 0.3 mmho/cm2,

VNa = 50mV, VK = −77 mV, VL = −54.4 mV, C = 1 µF/cm2,

values which will be used in the following. Note that these equations are written
using modern conventions, and look slightly different from those given in [1]; one
obtains the equations in this paper by letting VHH = −V − 65. In their original
paper [1], Hodgkin and Huxley showed, through numerical integration, that the
dynamics of the Hodgkin-Huxley equations quite successfully matched their exper-
imental observations. More information on mathematical issues associated with the
Hodgkin-Huxley equations is given in [2,3].

The Hodgkin-Huxley equations have been hugely influential, with most serious
mathematical models of the behavior of individual neurons being based on them
in at least one way or another. However, as a set of four coupled, highly nonlinear
ordinary differential equations, the Hodgkin-Huxley equations have proven diffi-
cult to apply detailed mathematical analysis to. More progress can be made by
reducing them to a lower dimensional set of equations. We describe such a reduc-
tion in §2. The numerical bifurcation analysis of these reduced equations suggests
that canards exist for this reduced system. Canards are periodic orbits for which
the trajectory follows both the attracting and repelling parts of a slow manifold,
and are associated with a dramatic change in properties, such as the amplitude and
period, of a periodic orbit within a very narrow interval of a control parameter. In
addition to their intrinsic interest, it has recently been argued that canards provide
a mechanism for the synchronization of neurons at low firing frequencies in a sim-
ilar set of equations [4]. In §3, we give an asymptotic analysis of the reduction
of the Hodgkin-Huxley equations. Specifically, by smoothly connecting associated
stable and unstable manifolds in an asymptotic limit, the parameter value at which
canards exist is predicted. This prediction matches very well with the numerically
obtained value. Concluding remarks, and comparisons to the full Hodgkin-Huxley
equations, are given in §4.

2. Reduction of the Hodgkin-Huxley equations

Here we consider a reduction of the Hodgkin-Huxley equations to a set of two
coupled (but still highly nonlinear) ordinary differential equations described in [3],
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cf. [5]. This reduction leads to equations whose dynamics approximate the dynam-
ics of the full Hodgkin-Huxley equations quite well, and which allow an intuitive
understanding of the mathematics of action potential generation [3].

It is first noted that the equations for the gating variables n, m, and h can be
written in the form

τj (V )
dj

dt
= j∞(V ) − j, (1)

where

j∞(V ) ≡ αj (V )

αj (V ) + βj (V )
, τj (V ) ≡ 1

αj (V ) + βj (V )
, (2)

with j ∈ {n, m, h}. It is found that the time constant τm is much smaller than τn

and τh over the entire relevant range of V .
Thus, m evolves faster than n or h. This suggests that we replace m(t) in the

Hodgkin-Huxley equations by m∞(V (t)), an approximation shown to be reason-
able through numerical simulations.

Next, it is observed numerically that when the solutions to the Hodgkin-Huxley
equations correspond to periodic action potentials, the following equation approx-
imately holds:

n(t) + h(t) ≈ 0.8. (3)

Note that Equation (3) should be viewed as an observation - it has no rigorous
mathematical or biological basis. We choose to eliminate the gating variable h by
taking h(t) = 0.8 − n(t).

With these simplifications, we obtain the following two-dimensional system of
equations:

dV

dt
= {I − ḡNa[m∞(V )]3(0.8 − n)(V − VNa)

−ḡKn4(V − VK) − gL(V − VL)}/C, (4)

dn

dt
= αn(V )(1 − n) − βn(V )n. (5)

Figure 1 shows a bifurcation diagram for equations (4) and (5) with I treated as
the bifurcation parameter; this was calculated using AUTO97 [6]. It is found that
a stable fixed point (with Vmax − Vmin = 0, corresponding to a steady voltage and
the absence of action potentials) exists for small values of I . This loses stability in a
subcritical Hopf bifurcation as I increases through I = 8.82. The resulting branch
of periodic orbits bifurcates to smaller values of I , and undergoes a saddlenode
bifurcation at I = 6.36, leading to a stable periodic orbit corresponding to sta-
ble, periodically firing action potentials; see Figure 2 for phase space projections of
these periodic orbits, and Figure 3 for a timeseries for V for the stable periodic orbit
at I = 6.5. Both the fixed point and a periodic orbit are stable for 6.36 ≤ I ≤ 8.82.
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Fig. 1. Bifurcation diagram for equations (4) and (5). Solid and dashed lines correspond to
stable and unstable solutions, respectively. The letters refer to the phase space plots shown
in Figure 2
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Fig. 2. Projection of periodic orbits at points on the branch indicated in Figure 1. The dashed
(resp., dotted) line shows the V -nullcline (resp., n-nullcline). The point labelled M is at the
local minimum of the V -nullcline

We find that the periodic orbit along this branch changes its properties very
dramatically in a very narrow interval of the bifurcation parameter I . This, and the
fact that the periodic orbits in Figure 2 “hug” the “middle” part of the V -nullcline,
suggests that the periodic orbits near I = 6.36 are canards, i.e., periodic orbits for
which the trajectory following both the attracting and the repelling parts of a slow
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Fig. 3. Time series for the stable periodic orbit at I = 6.5, indicated as (f) on Figures 1
and 2

manifold. Canards were first found in a study of the van der Pol system using tech-
niques from nonstandard analysis [7,8], and have since been studied for a variety
of chemical, biological, and other systems; see, e.g., [9–16] and other references
in [17]. In particular, see [10,11,13] for studies of canards for the FitzHugh-Nagumo
equations, which can be viewed as idealizations of equations (4) and (5) obtained
by assuming that the V -nullcline is cubic and that the n-nullcline is linear. In the
next section, we will predict the value of I at which the canards (and the associated
saddlenode bifurcation) occur for equations (4) and (5), using singular perturbation
techniques and help from Mathematica.

3. Analysis of canards for the reduced equations

When equations (4) and (5) exhibit periodically firing action potentials, it can be
verified numerically that

∣
∣
∣
∣

dV

dt

∣
∣
∣
∣
�

∣
∣
∣
∣

dn

dt

∣
∣
∣
∣
. (6)

Therefore, the dynamics of V are much faster than the dynamics of n. We call
V a fast variable and n a slow variable. This suggests that it might be possible to
understand the dynamics of this system using techniques from singular perturbation
theory. We rewrite equations (4) and (5) as

dV

dt
= f (V, n; I ), (7)

dn

dt
= εg(V, n), (8)

where

f (V, n; I ) = {I − ḡNa[m∞(V )]3(0.8 − n)(V − VNa) (9)

−ḡKn4(V − VK) − gL(V − VL)}/C,

g(V, n) = αn(V )(1 − n) − βn(V )n. (10)

Here we are using a common trick in asymptotic analysis, namely we will treat ε

as a small parameter when doing expansions, but in our final formulas will plug in
ε = 1; see, e.g., [18].
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If ε is set equal to zero, then the V -nullcline is a curve of fixed points. This curve
is normally hyperbolic on the pieces for which its slope is bounded away from zero,
i.e., away from the local minimum M and local maximum of the V -nullcline in
Figure 2. For ε = 0, the “left” and “right” parts of the V -nullcline are found to be
stable to transverse perturbations, while the “middle” part is found to be unstable
to transverse perturbations.

Invariant manifold theorems then imply that for ε sufficiently small, invariant
manifolds persist within O(ε) of these normally hyperbolic pieces of the V -null-
cline, with the manifolds inheriting their normal stability properties from the sta-
bility properties of the pieces of the V -nullcline [19–21]. There will thus be a slow
manifold MS , with stable foliation, within O(ε) of the “left” part of the V -nullcline,
a different slow manifold, with stable foliation, within O(ε) of the “right” part of
the V -nullcline, and a slow manifold MU , with unstable foliation, within O(ε) of
the “middle” part of the V -nullcline. The manifolds MS and MU can be extended
beyond the point M according to the flow, but the extensions may leave an O(ε)

distance of the V -nullcline, and may also lose their normal stability properties.
Generically, the distance between MS and MU is nonzero near M . Sketches of

the relative positions of these invariant manifolds near M are shown in Figure 4 for
different parameter ranges; these sketches also include fixed points and/or periodic
orbits which must be present for this system. The distance between MS and MU

near M changes as parameters are varied, and it is possible for particular param-
eters that the manifolds MS and MU will connect smoothly. Following [12], the
resulting invariant curve is called a canard manifold. In this situation, nearby tra-
jectories follow the canard manifold both along its attracting and repelling parts.
Using asymptotic expansions, we will approximate the value for I at which canards
exist by requiring the existence of a canard manifold which stays within O(ε) of
the V -nullcline. This procedure closely follows that given in [12] and [17].

We begin by noting that trajectories for equations (7) and (8) must satisfy

f (V, n; I )
dn

dV
= εg(V, n). (11)

We now expand

I = I0 + εI1 + · · · (12)

n = n(V ; I ) = n0(V ; I0) + εn1(V ; I0, I1) + · · · (13)

f (V, n; I ) = f0(V , n0; I0) + εf1(V , n0, n1; I0, I1) + · · · (14)

g(V, n) = g0(V , n0) + εg1(V , n1) + · · · (15)

The curve n(V ; I ) will be our approximation to the canard manifold.
At O(ε0), equation (11) becomes

f0
dn0

dV
= 0. (16)

In order for n0 to be nontrivial, this requires that f0 = 0. This implies that

I0 − ḡNa[m∞(V )]3(0.8 − n0)(V − VNa) − ḡKn4
0(V − VK)−gL(V − VL) = 0,

(17)
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MS
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M

MU

M

MS

MU

M

MS

(b)(a)

(c)

Fig. 4. Sketch of the relative positions of the stable and unstable manifolds near M for
ε > 0. The V -nullcline is shown as a thin dashed line. The trajectory follows the stable
manifold MS , and after passing near M may either (a) cross the V -nullcline and tend toward
the stable fixed point, or (b,c) undergo a large excursion before returning to a neighborhood
of MS , giving a large relaxation-oscillation periodic orbit. In (b), there is also an unstable
small periodic orbit which surrounds a stable fixed point. The sketches for (a), (b), and (c)
are appropriate for equations (4) and (5) with I < 6.36, 6.36 < I < 8.82, and I > 8.82,
respectively

a quartic equation that can be solved symbolically using Mathematica to give
n0(V ; I0). The resulting equation is too long to be given here. (Actually, there
are four possible solutions; the appropriate one lies in the biologically relevant part
of phase space.)

At O(ε), using the fact that f0 = 0, equation (11) becomes

f1
dn0

dV
= g0, (18)

which can be rearranged to give

f1 = g0

dn0/dV
, (19)

where

g0 = αn(V )(1 − n0) − βn(V )n0. (20)

In order to keep f1 bounded (as required for the asymptotic expansion to be valid)
we need g0 to vanish at the value for V at which dn0/dV = 0. This gives a
set of two algebraic equations which can be solved for I0 and V , and which are
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equivalent to choosing I0 such that the n-nullcline intersects the V -nullcline at its
local minimum, cf. [12,17]. Solving these numerically with Mathematica, we find

I0 = 6.52, V = −61.12.

Using this value for I0 and the appropriate solution to (17), equation (19) gives
an (analytical) formula for f1. We do not give the formula here because of its length.

Of course, f1 can also be obtained by direct expansion of f (V, n; I ). We obtain

f1 = {I1 + ḡNa[m∞(V )]3n1(V − VNa) − 4ḡKn3
0n1(V − VK)}/C. (21)

Equating (19) and (21), we obtain the following equation for n1:

n1 = Cg0/
dn0
dV

− I1

ḡNa[m∞(V )]3(V − VNa) − 4ḡKn3
0(V − VK)

. (22)

At O(ε2), again using the fact that f0 = 0, equation (11) becomes

f1
dn1

dV
+ f2

dn0

dV
= g1, (23)

where

g1 = −αn(V )n1 − βn(V )n1. (24)

This can be rearranged to give

f2 = g1 − f1dn1/dV

dn0/dV
. (25)

In order to keep f2 bounded (as required for the asymptotic expansion to be valid)
we need the numerator p ≡ g1 − f1dn1/dV to vanish at the value for V at which
dn0/dV = 0, namely V = −61.12 as determined above. This gives an algebraic
equation for I1. However, it is found that it is difficult to accurately calculate p

with Mathematica near this value for V : g0 and dn0/dV tend to zero here, and
both f1 (see (19)) and g1 (see (24) and (22)) depend on the ratio of these quantities.
We thus find I1 by setting p equal to zero for nearby values of V , and fitting a
quadratic function to obtain the value of I1 at V = −61.12; see Figure 5. This
gives I1 = −0.21. (Alternatively, one could use L’Hospital’s rule to evaluate the
limit of g0/(dn0/dV ) for use in (19) and (22), as done for example in a similar
calculation in [17].) Thus, the value for I at which the canard manifold exists, to
this order, is

I = I0 + εI1 + · · · ≈ 6.52 + (1)(−0.21) = 6.31. (26)

This matches quite favorably with the numerically obtained value of I = 6.36
at which canards are found for equations (4) and (5). We do not attempt here to
continue of asymptotic analysis to higher order in ε.
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61. 6 61. 5 61. 4 61. 3 61. 2 61. 1 61 60. 9 60. 8 60. 7
0.225

0.22

0.215

0.21

0.205

0. 2

V

I1

Fig. 5. The dots show the values of I1 for which the function g1 − f1dn1/dV vanishes for
different values for V , and the line shows the quadratic fit which allows us to determine the
value of I1 for which the function vanishes when V = −61.12

4. Conclusion

We have shown numerically that canards, i.e., periodic orbits for which the trajec-
tory follows both the attracting and repelling part of a slow manifold, can exist for a
two-dimensional reduction of the Hodgkin-Huxley equations described in [3]. Such
canards are associated with a dramatic change in properties, such as the amplitude
and period, of the periodic orbit within a very narrow interval of a control parameter.
By smoothly connecting stable and unstable manifolds in an asymptotic limit, we
predicted with great accuracy the parameter value at which the canards exist for this
system. This analysis illustrates the power of using singular perturbation theory to
understand the dynamical properties of realistic biological systems. Indeed, similar
techniques can be used to predict parameter values at which canards and/or bifurca-
tions exist for many systems of biological and physical interest; see, e.g., [11,12,18,
17]. The canards identified in this paper are loosely related to those described in [4]
for a similar set of equations which includes an additional slow synaptic variable;
that paper argues that canards can provide a mechanism for the synchronization of
neurons at low firing frequencies.

The basic bifurcation behavior for the reduced equations considered here is
that a fixed point loses stability in a subcritical Hopf bifurcation, with a “small”
unstable periodic orbit bifurcating to lower values of I . As the periodic orbit branch
is followed, it reaches a value for I at which the periodic orbit rapidly changes to
a “large” periodic orbit by passing through canards. At almost exactly the same
parameter value at which the canards exist, there is a saddlenode bifurcation of the
periodic orbits, so that as the branch is followed beyond this bifurcation there is
a stable, “large” periodic orbit. This is typical behavior for systems undergoing a
singular subcritical Hopf bifurcation [10].

It is natural to ask if this bifurcation and canard behavior is present in the full
Hodgkin-Huxley equations. See Figure 6 for the bifurcation diagram with I treated
as the bifurcation parameter, computed using AUTO97 [6]; this is consistent with
results from [22]. The vertical axis shows Vmax −Vmin for the solutions, and stable
(resp. unstable) solutions are indicated by solid (resp. dashed) lines. A stable fixed
point (with Vmax − Vmin = 0, corresponding to a steady voltage and the absence
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Fig. 6. Bifurcation diagram for the Hodgkin-Huxley equations. Solid and dashed lines cor-
respond to stable and unstable solutions, respectively. The circle and diamonds indicate the
locations of Hopf and saddlenode bifurcations, respectively. The letters refer to the phase
space plots shown in Figure 7

of action potentials) exists for small values of I . This loses stability in a subcritical
Hopf bifurcation as I increases through I = 9.78. The resulting branch of periodic
orbits bifurcates to smaller values of I , and undergoes saddlenode bifurcations at
I = 7.85, I = 7.92, and I = 6.26, the last of which leads to stable periodic orbits
corresponding to stable, periodically firing action potentials; see Figure 7 for phase
space projections of these periodic orbits. Both the fixed point and a periodic orbit
are stable for 6.26 ≤ I ≤ 9.78.

Comparing Figures 1 and 6, and 2 and 7, we see that there are certainly simi-
larities between the bifurcation and dynamical behavior for the full Hodgkin-Hux-
ley equations and the reduced equations. However, the transition from “small” to
“large” periodic orbits occurs over a much larger range of values for I for the full
Hodgkin-Huxley equations. This discrepency leads us to re-examine the assump-
tions leading to equations (4) and (5). The first assumption was that m could be
replaced by m∞(V ); Figure 8, which compares these quantities for two periodic
orbits from Figure 6 and 7, shows that this is reasonable. The second assumption,
that n + h = 0.8, is more suspect, as seen in Figure 9. Other linear relationships
between n and h have been proposed, such as 5n/4 + h = 1; using this to elim-
inate h as in the derivation of (4) and (5) gives reduced equations with a similar
bifurcation diagram, but with the canards and associated saddlenode bifurcation
occurring at I = 3.36. Using the better approximation of 5n/4 + h = 0.9 (see
Figure 10) gives canards and the associated saddlenode bifurcation at I = 6.14, to
be compared with the value of I = 6.26 for the saddlenode bifurcation of periodic
orbits for the full Hodgkin-Huxley equations. This is of comparable accuracy to the
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Fig. 7. Projection of periodic orbits at points on the branch indicated in Figure 6
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labelled (c) and (f) in Figures 6 and 7. The horizontal axis shows t normalized by the period
T of the appropriate periodic orbit

result the saddlenode bifurcation of periodic orbits for the approximate equations
(4) and (5) occurs at I = 6.36.

A study of the appropriate nullcline surfaces and stable and unstable manifolds,
perhaps with the assumption that m can be replaced by m∞, might help to clarify
the relevance of canards for the full Hodgkin-Huxley equations.
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