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We develop a methodology to design a stimulus optimized to entrain nonlinear, noisy

limit cycle oscillators with uncertain properties. Conditions are derived which guarantee

that the stimulus will entrain the oscillators despite these uncertainties. Using these

conditions, we develop an energy optimal control strategy to design an efficient entraining

stimulus and apply it to numerical models of noisy phase oscillators and to in vitro

hippocampal neurons. In both instances, the optimal stimuli outperform other similar but

suboptimal entraining stimuli. Because this control strategy explicitly accounts for both

noise and inherent uncertainty of model parameters, it could have experimental relevance

to neural circuits where robust spike timing plays an important role.
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1. Introduction

Precise timing of synchronized oscillators is an important aspect of many biological functions. For
example, entrainment of circadian oscillators to a 24-h light-dark cycle is necessary in nearly all
organisms for the maintenance of rhythmic physiological function (Winfree, 2001; Golombek and
Rosenstein, 2010); irregularities in circadian regulation can contribute to a wide variety of diseases
(Canaple et al., 2003; Klerman, 2005; Takeda and Maemura, 2011). Furthermore, pancreatic cells
can be entrained to periodic variations in blood glucose levels, synchronizing the activity of the
insulin secreting cells (Bertram et al., 2007; Pedersen et al., 2013). Also, synchronized patterns of
firing neurons give rise to macro scale brain rhythms which are thought to be relevant to cognition
and perception (Buzsáki and Draguhn, 2004; Jacobs et al., 2007; Lakatos et al., 2008; Ainsworth
et al., 2012), and in specific examples lack of synchrony can contribute to hearing loss in animals
(Wang and Manis, 2006; Henry and Heinz, 2012).

Promoting synchrony by means of entrainment to an external stimulus could facilitate
physiological processes where synchronization is important. Optimal control frameworks can be
used to achieve specific control objectives where timing is the control variable and entrainment
is the goal (Kiss et al., 2007; Harada et al., 2010; Zlotnik et al., 2013). However, these approaches
fall short when heterogeneity in the oscillator properties is large with respect to intensity of the
entraining stimulus. Furthermore, most optimal control techniques cannot explicitly account for
strong noise in the system, which is often inherent in biological systems (especially in neurons
Tuckwell, 2005; Ermentrout and Terman, 2010) degrading the efficacy of an optimal stimulus.

In this work, we use standard phase reduction techniques to model the response of an oscillator
to external perturbations. A phase response curve (PRC) is fit to the phase advance as a function
of the phase at which the stimulus is applied (Kuramoto, 1984; Winfree, 2001; Izhikevich, 2007).
Phase reduction techniques are advantageous because they characterize much of the system’s
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input-output function without the full nonlinear dynamical
equations. Using the PRC, we are able to derive sufficient
conditions for a stimulus to entrain a noisy, heterogeneous
ensemble of phase oscillators. Furthermore, once the sufficient
conditions are identified, we can then design efficient external
stimuli for entrainment. This strategy does not require the
explicit properties of any single oscillator, but only requires
the bounds within which all the oscillator’s PRCs and natural
frequencies must be contained. Using stochastic averaging
techniques (Freidlin and Wentzell, 2012), we can design a
stimulus which creates a potential well of minimum depth near
the in-phase solution between a nominal oscillator and any other
oscillator within the heterogeneous ensemble. Deeper potential
wells will be harder to escape from when the noise is present in
the system, ensuring entrainment. Unlike other approaches we
have used (Wilson andMoehlis, 2014a), the innovation proposed
in this strategy is that the control design explicitly accounts for
noise and heterogeneity present in the biological system.

We test the efficacy of the optimal synchronizing stimulus on
coupled phase oscillator models compared to other entraining
stimuli. We then design optimal stimulus waveforms from
previously collected PRCs and test the resulting optimized
stimulus in vitro on pyramidal neurons from the CA1 region of
the hippocampus. The organization of this paper is as follows.
In Section 2 we derive the necessary framework for designing
stimuli to entrain a heterogeneous population of oscillators. In
Section 3, we apply this control strategy to a numerical model
of a population of heterogeneous phase oscillators. In Sections 4
and 5 we provide experimental methods and results, respectively,
for entrainment of in vitro neurons, and finally in Section 6 we
discuss our findings and make concluding remarks.

2. Efficiently Maximizing the Depth of the
Potential Well

Consider the following deterministic phase oscillator

θ̇1 = ω0 + Z(θ1)ǫu(t). (1)

Here, θ1 ∈ [0, 2π) is the phase of a nominal reference oscillator
with natural frequency ω0 and period T = 2π/ω0, Z(θ) is the
phase response curve, and u(t) is an external input, and 0 <

ǫ ≪ 1. Note that we assume that ǫ is small enough so that
higher order noise terms are negligible (c.f. Ly and Ermentrout,
2009; Ermentrout et al., 2011). A second noisy oscillator, θ2,
whose parameters are not fully known, can be represented as
follows:

θ̇2 = ω0 + 1ω +
[

Z(θ2)+1Z(θ2)
]

ǫu(t)+
[

Z(θ2)

+ 1Z(θ2)
]

ǫη(t). (2)

This function is illustrated in Figure 1A. The variable 1ω ∈

[−ǫω−, ǫω+] represents some uncertainty in the natural
frequency, 1Z represents uncertainty in the phase response
curve, and η(t) = N (0, 1) is i.i.d zero mean white noise
with variance 1. However, for the population, we can determine

bounds for the range of the PRCs −E−(θ) ≤ 1Z(θ) ≤

E+(θ) with strictly nonnegative functions E−(θ) and E+(θ).
Intuitively, θ1 in Equation (1) represents the nominal parameters
of an oscillator while θ2 in Equation (2) accounts for the
uncertain terms, which may not be fully known, as well as
noise that might be present in the system. Alternatively, θ2 can
represent a range of properties for a heterogeneous population of
oscillators.

We assume that the reference oscillator is entrained to the
external stimulus so that

∫ T

0

[

ω0 + Z(θ1)ǫu(t)
]

dt = 2π. (3)

Therefore, to guarantee that the noisy, uncertain oscillator is also
entrained, our goal is to design u(t) such that the phase difference
between the two oscillators is small. Defining φ = θ2−θ1, wemay
write

φ̇ = 1ω +
[

Z(θ1 + φ)− Z(θ1)+1Z(θ1 + φ)
]

ǫu(t)

+
[

Z(θ1 + φ)+1Z(θ1 + φ)
]

ǫη(t). (4)

Here, φ gives the phase difference between the nominal oscillator
and the noisy, unknown oscillator so that when φ = 0, both
oscillators are in phase. Asymptotically expanding θ1 in powers
of ǫ yields

θ1 = θ
(0)
1 (t)+ ǫθ

(1)
1 (t)+ ǫ2θ

(2)
1 (t)+ . . . (5)

Note that all terms of Equation (4) are O(ǫ), which implies that

θ
(0)
1 (t) = θ1(0) + ω0t so that θ1(t) = θ1(0) + ω0t + O(ǫ).
For convenience, we take θ1(0) = 0, but note that the analysis
to follow could still be performed for θ1(0) 6= 0. Substituting
Equation (5) into Equation (4) and Taylor expanding terms of
the form Z(·) in powers of ǫ yields

φ̇ = 1ω +
[

Z(ω0t + φ)− Z(ω0t)+1Z(ω0t + φ)
]

ǫu(t)

+
[

Z(ω0t + φ)+1Z(ω0t + φ)
]

ǫη(t)+O(ǫ2). (6)

Through stochastic averaging (Zhu, 1988; Freidlin and Wentzell,
2012) in the limit of small ǫ, we can approximate φ in Equation
(4) by ϕ where

ϕ̇ = 1ω +
1

T

∫ T

0

[

Z(ω0t + ϕ)− Z(ω0t)
]

ǫu(t)dt

︸ ︷︷ ︸

f (ϕ)

+
1

T

∫ T

0

[

1Z(ω0t + ϕ)
]

ǫu(t)dt

︸ ︷︷ ︸

e(ϕ)

+ǫση(t)+O(ǫ2)

= 1ω + f (ϕ)+ e(ϕ)+ ǫση(t)+O(ǫ2), (7)

where f (ψ) represents the known part of Equation (4), e(ψ)
represents the uncertain part of Equation (4), and

σ 2 =
1

T

∫ T

0

[

Z(ω0t + ϕ)+1Z(ω0t + ϕ)
]2
dt

=
1

T

∫ T

0

[

Z(ω0t)+1Z(ω0t)
]2
dt (8)
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A

B C

FIGURE 1 | (A) gives a visual representation of the uncertainty allowed in the

phase response curve from Equation (1), i.e., any PRC that can be drawn

inside the shaded region is allowable. (B) shows an example of A(ψ ). gives a

visual representation of the requirements Equations (10) and (11), for any

oscillator with any allowable PRC, the area of each shaded region in (B) must

be at least β. If this is the case, the resulting potential well in (C) will be at least

β high by the time ψ is smaller than −θ− or larger than θ+.

determines the strength of the noise. Note that equivalence
in Equation (8) comes from periodicity in the PRC. The
equation for the probability distribution function associated with
Equation (7) is given by the Fokker-Planck equation (Gardiner,
2004)

∂ρ

∂t
= −

∂

∂ϕ

[

A(ϕ)ρ(t, ϕ)
]

+
1

2

∂2

∂ϕ2

[

Bρ(t, ϕ)
]

, (9)

where ρ(t, ϕ) is a probability density function, A(ϕ) =

1ω + f (ϕ) + e(ϕ) and B = ǫ2σ 2. From this perspective,
it is not possible to maintain indefinite entrainment of the
noisy neuron, because there is always a chance that noise
in the system could push the neuron arbitrarily far from
ϕ ≈ 0. However, to reduce the likelihood of this event, the
problem of entraining a noisy neuron to a periodic stimulus
can be viewed as maximizing the average escape time from
ϕ = 0 over a potential barrier. From this perspective, for
an oscillator whose probability density obeys Equation (9),
∫

−A(ϕ)dϕ can be viewed as a potential function. Therefore,
our goal is to design a stimulus so that there is a potential
barrier with a minimum near ϕ ≈ 0. The escape time
from this barrier can be expected to be proportional to the
exponential of the height of the potential barrier (Gardiner,
2004).

To maximize the escape time we want to design a stimulus
u(t) such that the change in a potential trough near ϕ = 0 and a
potential peak located at either ϕ = θ+ > 0 or ϕ = − θ− < 0
is greater than or equal to β . This requirement can be
stated as:

∫ θ+

0
−A(ϕ)dϕ ≥ β, (10)

∫ −θ−

0
−A(ϕ)dϕ ≥ β. (11)

Here β can be thought of as the minimum height required for
the potential well near ϕ = 0. Alternatively, β in Figure 1B

represents the minimum area in each shaded region required to
produce a potential well with a size of at least β between−θ− and
θ+, as in Figure 1C.

Recall that to leading order ǫ, A(ϕ) = 1ω + f (ϕ) + e(ϕ),
substituting these terms from Equation (7) into Equation (10)
gives

∫ θ+

0

[

1ω +
1

T

∫ T

0

[

Z(ω0t + ϕ)− Z(ω0t)
]

ǫu(t)dt

+
1

T

∫ T

0

[

1Z(ω0t + ϕ)
]

ǫu(t)dt

]

dϕ ≤ −β,

1

T

∫ T

0

[

1ωθ+ +

(∫ θ+

0

[

Z(ω0t + ϕ)− Z(ω0t)
]

dϕ

)

ǫu(t)

+

(∫ θ+

0

[

1Z(ω0t + ϕ)
]

dϕ

)

ǫu(t)

]

dt ≤ −β. (12)

By noting that

∫ θ+

0
−E−(ω0t + ϕ)dϕ ≤

∫ θ+

0
1Z(ω0t + ϕ)dϕ ≤

∫ θ+

0
E+(ω0t + ϕ)dϕ, (13)

we can use this inequality in Equation (12) to conclude that if

1

T

∫ T

0

[

ǫω+θ+ +
[

g+(t)+ Ep(t, u)
]

ǫu(t)
]

dt ≤ −β, (14)

where

Ep(t, u) =

{∫ θ+
0 E+(ω0t + ϕ)dϕ if u ≥ 0,

∫ θ+
0 −E−(ω0t + ϕ)dϕ if u < 0,

(15)

g+(t) =

∫ θ+

0

[

Z(ω0t + ϕ)− Z(ω0t)
]

dϕ, (16)

then Equation (12) and hence Equation (10) must also hold.
Using similar logic, (i.e., manipulating Equation 11 so it is in the
same form as Equation 12, then using the inequality Equation 13)
we can conclude that

1

T

∫ T

0

[

−ǫω−θ− + [g−(t)+ Em(t, u)]ǫu(t)
]

≥ β, (17)

where

Em(t, u) =

{∫ 0
−θ−

−E−(ω0t + ϕ)dϕ if u ≥ 0,
∫ 0
−θ−

E+(ω0t + ϕ)dϕ if u < 0,
(18)

g−(t) =

∫ 0

−θ−

[

Z(ω0t + ϕ)− Z(ω0t)
]

dϕ, (19)
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is a sufficient condition for Equation (11) to be true.
Thus, the control objective of creating a potential well that

is at least β deep can be accomplished by designing a stimulus
such that Equations (14) and (17) are satisfied. We can solve
for an energy-optimal stimulus which accomplishes this goal
with a Hamilton-Jacobi-Bellman (HJB) approach (Kirk, 1998) by
defining the auxiliary state vector z such that

ż =





ȧ

ḃ

θ̇



 =





1
T (ǫω+θ+ +

[

g+(t)+ Ep(t, u)
]

ǫu(t))
1
T (−ǫω−θ− + [g−(t)+ Em(t, u)]ǫu(t))

ω0 + Z(θ)ǫu(t)



 , (20)

where a and b are auxiliary variables which come from the
constraints Equations (14) and (17), respectively. The variable θ
is included so that we can specify the end point conditions

θ(0) = 0 and θ(T) = 2π, (21)

requiring the noiseless oscillator with nominal properties, θ1, to
be perfectly entrained to the external stimulus. Hence, the true
noisy uncertain oscillator θ2 will also be entrained to the external
stimulus when it is inside the potential well at ϕ ≈ 0.

For the initial state z = [0, 0, 0]T , the energy optimal stimulus
will minimize

J(z, u(t)) =

∫ T

0
u2dt + q(z(T)), (22)

where
∫ T
0 u2dt represents the energy consumed by the

stimulus, and q(z(T)) is an end-point cost function where
q(z([a(T), b(T), θ(T)]T)) is small for final states states where
a(T) ≤ −β , b(T) ≥ β and θ(T) = 2π , and large otherwise.
This endpoint cost is chosen to give a prohibitive penalty if
the stimulus u(t) does not satisfy the required constraints
Equations (14), (17), and (21). The energy optimal stimulus,
u∗(t), can be found with standard HJB techniques, and a
related example is given in greater detail in Wilson and Moehlis
(2014a).

As a final note, we examine how the optimal stimulus changes
when the natural frequency ω0 changes and both θ− and θ+ = 0.
To this end, suppose that we have already solved Eqaution (22)
for the optimal stimulus u∗(t) when the natural frequency is
ω0 = 2π/To. Suppose that u∗(t) = ǫ1uo(t), to leading order,
the requirement Equation (3) is

∫ To

0
[ω0 + Z(ω0t)ǫ1uo(t)+O(ǫ21 )]dt = 2π. (23)

Now consider a different natural frequency ω1 = 2π/T1. The
requirement Equation (3) is

∫ T1

0
[ω1 + Z(ω1t)ǫ1u1(t)+O(ǫ21 )]dt = 2π. (24)

Changing variables so that τ = To
T1
t we can rewrite Equation

(24) as

∫ To

0

[

ω0 +
T1

To
Z(ω0τ )ǫ1u1(τ )+O(ǫ21 )

]

dτ = 2π

∫ To

0

[
T1

To
Z(ω0τ )ǫ1u1(τ )+O(ǫ21 )

]

dτ = 0

∫ To

0

[

ω0 + Z(ω0τ )ǫ1u1(τ )+O(ǫ21 )
]

dτ = 2π. (25)

Notice that Equation (25) is equivalent to Equation (23). One
can verify that using the same change of variables, the constraints
Equations (14) and (17) can be made identical for the two natural
frequencies. Thus, the auxiliary state dynamics ż = [ȧ, ḃ, θ̇]T will

be the same, which implies u0(t) = u1(τ ) = u1

(
To
T1
t
)

, which is a

useful property from an experimental perspective.

3. Numerical Results

For numerical validation of the theory, we apply the methods
from Section 2 to a large population of N = 1000 noisy phase
oscillators,

θj = ωj + Zj(θj)u(t)+ ηj(t), j = 1, . . . ,N. (26)

Here, Zj(θ) is constrained to be within the envelope from the
left panel of Figure 2, which is determined from experimental
calculations of pyramidal neurons from the CA1 region of the
hippocampus. We choose the envelope in this way to mimic
the in vitro experiments performed in the sections to follow.
To determine the PRC for each oscillator, 11 control points are
randomly chosen at equally spaced intervals within the envelope,
and Zj(θ) is linearly interpolated between the control points.
Example PRCs are shown in Figure 2. We note that this envelope
is relatively large, so the variance in ωj is taken to be relatively
small with ωj = ω0 + 1ω, with 1ω ∈ [−0.004ω0, 0.004ω0]
chosen from a uniform distribution. A larger variance in the
natural frequencies could be chosen if the envelope of possible
PRCs is smaller. We also take nj(t) =

√

0.05νjN (0, 1) to be
i.i.d. zero mean white noise with variance 0.05 νj, where νj =
1
2π

∫ 2π
0 Z2

j (θ)dθ .

For calculation of the optimal stimulus, we take the nominal
PRC to be the average of the PRCs taken from multiple CA1
pyramidal cells, which is close to the average between the top
and bottom curves in Figure 2A. We take θ+ = θ− = 0.94,
β = 10−4, and T = 24 ms. The optimal control is shown
as u∗(t) in Figure 2B with the other applied stimuli shown in
Figures 2C–E. Generally, the optimal control seeks to apply a
positive (resp. negative) stimulus when the slope of the PRC
is negative (resp. positive) and when the derivative is large in
magnitude relative to the size of the envelope. For example, a
large positive stimulus is given near the end of the cycle when
the derivative is very negative and the uncertainty is relatively
small; conversely, no stimulus is given near the beginning of the
cycle when the slope is small in magnitude and the uncertainty is
high. We also compare the resulting entrainment when using the
optimal stimulus to the entrainment using a sine wave, square
wave, and square pulse, usin, usq, and upul, respectively, each
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A

F

B

D

C

E

G

FIGURE 2 | (A) shows the envelope in which the PRCs of each of the

phase oscillators fit, shown as thick lines. Examples of individual PRCs

are shown as thin lines. The optimal entraining stimulus u* and three

other stimuli usin, usq, and upul (shown in B–E) are applied periodically

to test their entrainment of the noisy ensemble (Equation 26). (F) shows

a probability density of spike times relative to the phase of the entraining

stimulus, ρ(tspike − t̄ ), where t̄ is the average spike time. We find that the

optimal stimulus yields a significantly tighter distribution of spike times, as

reflected in the coefficient of variation shown in (F) calculated from their

distribution of spike times. We note that the coefficient of variation for

the pulsed stimulus is 0.091, and do not show it on the graph because

it is much larger than the other values.

using an equivalent amount of power. We simulate the system
(Equation 26) for 60T with u(t) taken to be one of these four
stimuli applied periodically and report the time at which the
cells spike (i.e., cross θ = 2π) as a probability distribution ρ
relative to the phase of the periodic stimulus. Results are shown
in Figure 2F. We find that the optimal stimulus gives the sharpest
distribution of spike times. The coefficient of variation (CV) from
a sample of 60,000 spike times are reported in Figure 2G with
error bars representing a 95 percent confidence interval assuming
that the spike time distribution is well approximated by a normal
distribution.

4. Experimental Methods

To test the efficacy of the optimized stimulus waveform
in a biological system, we designed stimulus waveforms to
entrain hippocampal CA1 pyramidal neurons in a brain slice
preparation. PRCs were first measured from several pyramidal
neurons to estimate the variability in the PRC waveform.
Then, optimized stimulus waveforms were designed and applied
to neurons using patch clamp recording techniques. All
experimental procedures were performed following guidelines
from Research Animal Resources of the University of Minnesota
and approved by the Institutional Animal Care and Use
Committee.

4.1. Electrophysiology Recordings
Hippocampal brain slices were prepared from Sprague Dawley
rats aged 14–21 days old. Rats were deeply anesthetized using
isoflurane before decapitation and extraction of the brain.
Following extraction, the brain was chilled in artificial cerebral
spinal fluid (aCSF) composed of (inmM): 125 NaCl, 25 NaHCO3,

11 D-glucose, 3 KCl, 1.25 NaH2PO4, 2 CaCl2, and 1 MgCl2.
Transverse slices of the hippocampus were sectioned 400 µm
thick using a Vibratome. Slices were oxygenated with 95% O2

and 5% CO2 and incubated at 37 ◦C for at least 1 h. Slices
were visualized using differential interference contrast optics
(Olympus, Center Valley, PA) while in a chamber with circulating
aCSF. Patch-clamp electrodes (3–6 M�) were pulled from
borosilicate glass (P-97 micropipette puller; Sutter Instrument)
and filled with intracellular recording fluid composed of (in
mM): 120 K-gluconate, 10 HEPES, 1 EGTA, 20 KCl, 2 MgCl2,
2 Na2ATP, and 0.25 Na3GTP. Recordings from whole-cell
patch clamped CA1 pyramidal neurons in the hippocampus
were made using a current-clamp amplifier (MultiClamp 700B;
Axon Instruments, Molecular Devices, Sunnyvale, CA). Data
were collected using the Real-Time eXperimental Interface
(RTXI) software publicly available (www.rtxi.org) and sampled at
5 kHz.

4.2. Estimating PRCs from neurons
To estimate PRCs from CA1 pyramidal neuron neurons, stimuli
were applied at different phases of the neuron’s interspike interval
and deviations from the unperturbed period wasmeasured. PRCs
were estimated as previously described in Nabi et al. (2013),
c.f. Netoff et al. (2012). Briefly, short-duration (0.02–0.4 ms)
current pulses (300–400 pA) were injected into the periodically
firing neuron through the patch clamp electrode to elicit a
significant phase change without inducing an action potential.
Each data point was obtained by stimulating at a random phase
θ , and measuring the change in spike time with the resulting
value Z(θ) equal to 1θ/Q, where 1θ is the change in phase
and Q is the charge injected by the pulse. Constant drive or an
oscillatory input to these neurons causes them to fire periodically.
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To compensate for drift in the neuron’s natural firing rate over
the experiment, a proportional-integral (PI) controller was used
to adjust the current applied to the neuron slowly to maintain
the neuron at a target firing rate (Miranda-Dominguez et al.,
2010). Spike advance as a function of the stimulus phase was fit
with a low order polynomial constrained to zero at the beginning
and end of the phase by minimizing least squares error (Matlab’s
fminsearch). Examples of PRCs are shown in Figure 3. We note
that the waveform optimization presented in Section 2 requires
the mean phase advance estimated by the PRC to be within the
envelope, but the phase advance on any particular cycle can be
outside the envelope, due to noise.

4.3. Stimulus Waveform
PRCs from ten CA1 pyramidal cells, collected for previous
experiments under similar conditions described here (Miranda-
Dominguez and Netoff, 2013; Nabi et al., 2013), were used
to design optimal stimulus waveforms. The PRCs used for
optimization had slightly different shapes, so four envelopes and
their corresponding stimulus waveforms were calculated; shown
in Figure 3. The parameters used in this optimization were θ+ =

θ− = 1.89, and β = 0.0024. We assume that we have direct
control over the natural frequency of the neuron with the PI
controller and set 1ω = 0. Each optimal waveform was defined
by an envelope containing all PRCs within that group of cells.
For each envelope, one optimal and two suboptimal stimulus
waveforms with equal energy were generated. The suboptimal
waveforms were created by either inverting and time-shifting the
optimal waveform, or by stretching out the positive portion of
the optimal waveform and renormalizing to preserve the total
energy. For the in vitro experiments, whole-cell patch clamp
recordings were made from CA1 pyramidal neurons. For each
cell, Matlab was used to determine which envelopes the measured
PRC fit within. The stimuli for the envelope with the best margins
for each cell were applied as current through the patch clamp
electrode. For some cells, PRCs fit within multiple envelopes,
and all were tested if possible. Each of the three waveforms
were applied continuously for at least 30 s to a few minutes. The
stimulus waveform was applied at the target frequency of the
neuron, set at 10Hz using the PI controller, for the duration of
the experiment. The peak-to-peak amplitude of the waveform
was less than 1nA. The sequence in which the waveforms were
applied was selected at random. In most cases the PI controller to
hold the neuron at the target firing rate was on while the stimuli
were being applied, however in a few cases the PI controller
was turned off to ensure it was not affecting the synchrony.
The amplitude of stimulation was chosen so that the stimulus
waveform could be seen in the baseline membrane potential
without eliciting a spike. The experimenter was blinded to which
stimulus was optimal until after completion and analysis of all
experiments.

4.4. Entropy Estimation
Entropy values calculated from spike density histograms
(Figure 5) were used to compare how well a stimulus entrained
the neuron. Data were analyzed using Matlab. For entropy
calculations, we subdivide phases into B equally spaced bins and

denote P(i) as the probability that a spike occurs in bin i. An
entropy bias term was used to correct for the different number
of spikes in each trial (Roulston, 1999):

Entropybias =
B− 1

2N
, (27)

where N is the total number of spikes. To calculate the unbiased
normalized entropy measure from each spike density histogram,
the entropy, accounting for the bias, was normalized by the
maximum possible entropy:

Entropy =

B∑

i= 1
P(i) ln P(i)− Entropybias

B ln 1
B

. (28)

The standard error of the entropy was estimated as follows
(Roulston, 1999):

SEM =

√
√
√
√

1

N

B
∑

i= 1

(ln(1− P(i))+ Entropy)2P(i)(1− P(i)). (29)

Statistical comparisons between entropy values were made using
the Student’s t-test, and p < 0.05 were considered significant.

5. Experimental Results

Stimulus waveforms were applied to ten CA1 pyramidal neurons.
An example cell can be seen in Figure 4. The PRC from this
example neuron fit within envelope 3 best. For each stimulus
the coefficient of variation of the interspike intervals, and the
entropy of the spike times with respect to the phase of the
stimulus waveform was measured. In this cell, the optimal
stimulus waveform resulted in the lowest coefficient of variation
in the interspike intervals, indicating that the cell fires more
periodically than with the suboptimal waveforms. Furthermore,
the optimal stimulus waveform had the lowest entropy of spike
times with respect to the stimulus phase, indicating that the
neurons phase locked to the optimal stimulus better than the
suboptimal stimulus waveforms.

The optimal stimulus was the best, compared to the
suboptimal waveforms with the same amount of power, at
entraining across all recorded neurons where the stimulus had
a significant effect on the entropy (Figure 5). Figure 5 shows the
entropy values for stimuli across all cells. Stimuli from envelope
1 were applied to seven cells. For six out of the seven cells,
the entropy values for the optimal waveform were significantly
lower (p < 0.05) than the non-optimal waveforms, as tested
with a Student’s T-test. For cell number 1, the entropy remained
high across all stimuli without any noticeable effect from any
of the waveforms, perhaps because the stimulus amplitude was
too low. Stimuli from envelope 2 were applied to one cell, from
envelope 3 were applied to four cells, and from envelope 4
were applied to one cell. For each of these cells, the entropy
values were significantly lower for the optimal waveform than the
suboptimal waveforms. We conclude that the optimal stimulus
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FIGURE 3 | Four envelopes with separate optimal waveforms were

used to determine which stimuli to use on a given cell. The left panels

show envelopes in gray with corresponding optimal stimulus waveforms

directly below. On the right panel, a PRC (blue) calculated from individual

measurements of 1θ/Q (dots) from a CA1 pyramidal neuron fits within the

black curves of envelope 1.

FIGURE 4 | Example cell using envelope 3. Response to optimal

stimulus is plotted in left column and two suboptimal stimuli applied in

right columns. Top Row: voltage trace (black) and applied stimulus

waveform (red). Second row: Histograms of inter-spike-intervals.

Coefficient of variation (CV) values are indicated. Third row: phase of the

stimulus at each action potential (black dots) with stimulus waveform

(red). Bottom row: spike density histogram with respect to stimulus

phase. Entropy values ± SEM are indicated.

waveform was the most effective at entraining the neurons to
the stimulus. In three cells experiments were done without the
PI controller to control the firing rate to confirm that the PI
controller was not affecting the findings; the results in these
cells were consistent with the experiments done with the PI
controller.

6. Discussion

In this paper we have developed an approach to generate

an optimal stimulus waveform to achieve entrainment of a
noisy, heterogeneous group of phase oscillators. The waveforms

were tested in computational in silico models and in vitro
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FIGURE 5 | The optimal stimulus waveform is significantly better at

entraining neurons to the stimulus across cells. Entropy values for each

stimulus applied are shown for 10 cells. Some cells had stimuli from more

than one envelope applied. Envelopes are indicated by different patterns,

with envelope 1 being the solid fill. For each envelope, three stimuli were

applied: the waveform optimized for entraining the neuron (dark gray) and

two sub-optimal waveforms (gray and white). Certain cells did not have the

PI controller on to control the firing rate of the neuron (underlined). Significant

differences between the optimal stimulus waveform and the other waveforms

at p < 0.05 are indicated by *.

neurons. The optimal waveform for entrainment was determined
by maximizing the average escape time from a potential
well near the entrained solution for any oscillator within the
ensemble. We note that this optimal control methodology
only requires bounds, Equations (14) and (17), in which all
oscillators in the population must be contained. While a
stimulus waveform may be designed to entrain a particular
oscillator in the population, the resulting stimulus may not
entrain another oscillator within the population resulting in
poor entrainment overall. Our method uses a worst case
scenario approach to optimization which guarantees that each
individual oscillator will be well entrained by the resulting
stimulus leading to better entrainment at an ensemble level
rather than optimizing the waveform for a single representative
cell within the population. Allowing for uncertainty in PRCs
could be particularly useful in neurons because there is often
a great degree of variability in PRCs between samples, as seen
in this study as well as in Ota et al. (2011); Wang et al.
(2013).

While the numerical methodology developed in this work
generates energy-optimal stimuli to achieve entrainment of an
ensemble, it is difficult to experimentally prove that a given
stimulus is truly optimal. However, the experimental evidence
suggests that the resulting stimuli are probably at least close to
optimal. Experimental results in silico in Section 3 demonstrate
that our optimized stimulus resulted in better entrainment in a
heterogeneous population of oscillators than other waveforms.
We also tested this method in vitro using CA1 pyramidal
neurons from the hippocampus. In neurons the optimal stimulus

performed better than the other suboptimal stimuli with the
same power for every cell recorded. This is reassuring because
the optimal stimulus is only guaranteed to be optimal for
heterogeneity of neurons within an ensemble, but not necessarily
for heterogeneity of dynamics within an individual neuron
over time. To reconcile the differences between intracellular
vs. intercellular heterogeneity, we postulate that the intrinsic
properties of the CA1 hippocampal cells, and hence their PRCs,
might be slowly changing throughout each trial. Another recent
study (Thounaojam et al., 2014) suggested that the natural
frequencies of periodically firing neurons can drift over time. A
methodology that explicitly accounts for uncertainty in the PRCs
across time can help ensure entrainment over the entire duration
of the experiment.

In this study, we have performed optimization just for
energy minimization but note that strategy could be modified
to account for other important constraints by adding terms to
the cost function (Equation 22). For example, as we have done
in other papers, a cost function could be modified to require
charge balanced stimuli (Nabi et al., 2013) or to limit harmful
Faradaic reactions (Wilson and Moehlis, 2014b). These and
other considerations could be handled on an application specific
basis.

A major benefit of this optimization is that it only requires
knowledge the phase response properties of an oscillatory system,
which can be measured experimentally. The full dynamics of the
CA1 hippocampal neuron results from a complex interaction of
ionic currents flowing across a cell membrane (Ermentrout and
Terman, 2010). While it may one day be possible to estimate the
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full dynamics of neurons in vitro to design an better controller,
for example with a Kalman filter (Schiff, 2010; Ullah and Schiff,
2010), phase reduction provides a convenient and experimentally
obtainable means of understanding an oscillatory system, even
when underlying system dynamics are inaccessible. Furthermore,
because the methodology developed in this paper explicitly
accounts for heterogeneity in model parameters, different stimuli
could be designed accounting for variability across the a small
sampling of PRCs.

While this method was tested using electrical stimulation of
neurons, the approach could be generalized to many different

kinds of stimulation modalities and oscillators. With an optimal
stimulation waveform tailored to the dynamics of the system’s
response to the stimulus, entrainment of the oscillators may
be done with greater reliability and less energy than other
stimulus waveforms, such as periodic pulsing or sine wave
stimulation.
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