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a b s t r a c t

We study periodic orbits associated with heteroclinic bifurcations in a model of the Faraday system
for containers with square cross-section and single-frequency forcing. These periodic orbits correspond
to quasiperiodic surface waves in the physical system. The heteroclinic bifurcations are related to a
continuum of heteroclinic connections in the integrable Hamiltonian limit, some of which persist in the
presence of small damping. The dynamics in the neighborhood of one of the heteroclinic bifurcations
are examined in detail using approximate Poincaré maps, with predictions that agree with numerical
computations. The results suggest a great richness of possible dynamics of Faraday waves even in simple
geometries and with single-frequency forcing.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The instability by which gravity-capillary waves are excited on
the free surface of a viscous fluid through periodic vibration of the
container in the vertical is known as the Faraday instability [1].
In most cases, the first waves to appear are periodic subharmonic
standing waves with a period equal to twice the forcing period.
These surface waves may settle into a simple pattern (squares
or hexagons, for example), or exhibit more complex behavior,
depending largely on the influence of mode interactions. In small
aspect ratio systems, the excitedmodes (and hence the asymptotic
behavior of the system) are primarily selected by the shape of the
container [2–5]. In large aspect ratio systems, mode competition
is more easily generated (and controlled) by the use of multi-
frequency forcing [6]. A number of experiments (see, e.g., [7–10])
have used such multi-frequency forcing to produce novel patterns
including superlattice patterns, quasipatterns, and oscillons.
Even in the classic case of single-frequency forcing, a variety

of intriguing dynamics is possible, and much remains to be
understood, particularly with regard to container geometry
and mode interactions. Experimentally, Ciliberto and Gollub [2]
investigated the competition between two nondegenerate modes
(i.e., modes unrelated by symmetry) in a container with circular
cross-section, and found that chaotic waves may result. In order to
achieve the desired mode competition both the forcing frequency
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and amplitude had to be tuned carefully. Mode competition
occurs somewhatmore easily in containers of square cross-section
because all modes occur in pairs, related by a reflection through
the diagonal. Simonelli and Gollub [3] (hereafter SG) considered
the interaction between the (3, 2) and (2, 3) modes for a container
with square cross-section, and observed only standing waves as
attractors. Occasional quasiperiodic and chaotic time dependence
was also found, but this was dismissed as the result of non-
square imperfections in the container. In this paper we show
that quasiperiodic and chaotic waves can in fact occur in a
model of the SG experiment in a perfectly square container, and
that such waves are associated with heteroclinic bifurcations in
the model equations. We remark that quasiperiodic and chaotic
surface waves have also been found in a model of a different
mode interaction, involving the (1, 0) and (0, 1) modes, also
for a container with square cross-section [4]. That model is of
the same form as the one considered in this paper, but with
different coefficient values. It is shown in [4] that one branch
of quasiperiodic surface waves arises via a Hopf bifurcation, but
other bifurcations of quasiperiodic surface wave solutions are
not characterized in detail. For completeness, we mention that
SG also considered the effect of making the container slightly
rectangular. Here the degeneracy between the modes is broken,
and quasiperiodic and chaotic surface waves are present near
onset.
In this paper we focus on the Faraday instability for contain-

ers with perfectly square cross-section. We use the model derived
in Feng and Sethna [11] (hereafter FS) and described in Section 2,
which includes a linear damping term to account phenomenolog-
ically for dissipation in the system [12]. In Section 3, we consider
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Fig. 1. Bifurcation diagrams for a container with square cross-section (a) as predicted by the model from FS, and (b) as observed in the experiments by SG. Solid (dashed)
lines denote stable (unstable) solutions, and r ≡ |z1|2 + |z2|2 . The model predicts that the stable solutions for large f are MM, but the experiments find these to be PM.
parameters based on the experiments described in SG, and numer-
ically locate various stable periodic orbits in this model; these cor-
respond to stable quasiperiodic surface waves, and persist over a
range of damping strengths. Such waves were not found in pre-
vious theoretical studies of the SG experiment [5,13] and resem-
ble the quasiperiodic waves found but dismissed by SG. These
waves terminate in heteroclinic bifurcations,which are themselves
related to a continuum of heteroclinic connections belonging to
the integrable Hamiltonian limit, discussed in Section 4. The per-
sistence of such heteroclinic connections in the damped, forced
problem is considered in Section 5, while the dynamics in the
neighborhood of a specific heteroclinic bifurcation are examined
using approximate Poincarémaps in Section 6. Concluding remarks
are given in Section 7.

2. Amplitude equations

Weconsider a fluid in an open container of square cross-section,
with sides of length L, containing a fluid of depth H . The container
is vibrated verticallywith frequency 2�, and the forcing amplitude
is assumed to be O(ε), where ε � 1, comparable to the damping
and detuning. Following FS, if the flow is taken to be irrotational
and incompressible, and the effects of surface tension ignored, then
near onset the velocity potential can be expanded in terms of two
interacting modes in the form

φ ∼ ε1/2g(z)
{
z1(τ ) cos

(nπx
L

)
cos

(mπy
L

)
+ z2(τ ) cos

(mπx
L

)
cos

(nπy
L

)}
eiΩt + c.c.+ O(ε), (1)

where z1 and z2 are the (complex) amplitudes of the two modes,
g(z) is the common vertical eigenfunction and τ is a slow time
(τ ∼ εt). This ansatz leads to the amplitude equations (see FS)

ż1 = (λ+ iω)z1 + f z̄1 + iA(|z1|2 + |z2|2)z1 + iB|z1|2z1 + iCz̄1z22 , (2a)

ż2 = (λ+ iω)z2 + f z̄2 + iA(|z1|2 + |z2|2)z2 + iB|z2|2z2 + iCz̄2z21 . (2b)

In these equations all terms are formally of order one, and all
O(ε1/2) corrections have been omitted. Thus f is the scaled strength
of the forcing (which may without loss of generality be taken
to be real and positive), ω is the scaled detuning (ω > 0
implies that the system is being driven at a frequency less than
twice the natural frequency of the excited modes) while λ is
a (negative) scaled phenomenological damping parameter; the
overdot denotes differentiation with respect to τ . The coefficients
A, B, C are likewise real and O(1); expressions for A, B, C in terms
of H, L,m and n may be obtained from the results of [11], noting
that equation (2.14c) of that paper is misprinted (in particular, a 1
should be added in the square bracket).
The SG experiment corresponds to H = 2.5 cm, L = 6.17 cm,

m = 2, and n = 3; in the FS model, this gives A = 2.65,
B = −22.06, and C = −27.47, values which are consistent with
the values found in [5,13], although scalings different from those
in FS are used in these references. For this comparison we use the
formulae in [5] omitting surface tension. With these coefficients
the predicted bifurcation diagram for the SG experiment withω >
0 is sketched in Fig. 1(a). Here the trivial state corresponds to the
absence of surface waves, (z1, z2) = (0, 0), while the pure mode
(PM) states correspond to equilibria of the form (0, z2) or (z1, 0),
where |z1| = |z2| 6= 0, and the symmetric mixed mode (MM)
states correspond to equilibria of the form (z1,±z1), z1 6= 0;
asymmetric general mode (GM) states in which both z1 and z2
are nonzero and z1 6= ±z2 are not present for these parameter
values. The bifurcation analysis of these fixed points is given
in [5,11,13].
Fig. 1(b) shows the experimentally obtained bifurcation dia-

gram. The difference between the two diagrams is significant and
remains unexplained. To shed light on the possible origin of this
discrepancy it is helpful to examine the derivation of the ampli-
tude equations for the (2, 3), (3, 2)mode interaction from a more
general point of view. To this end we consider a general mode in-
teraction in a square domain subject to the assumption that the
competing modes are related by symmetry and hence are in exact
1:1 temporal resonance, and that thesemodes have opposite parity
under reflection in either midplane. The equations describing this
mode interactionmust be equivariant with respect to the groupD4
generated by the actions

κ1 : (z1, z2)→ (−z1, z2), γ : (z1, z2)→ (z2, z1).

We further assume that the system is forced at twice the
natural frequency of these modes and that this forcing is weak
and hence breaks the time-translation symmetry only at linear
order. Together these assumptions lead to amplitude equations
whose third order truncation takes the form of Eqs. (2) albeit
with complex coefficients. The resulting equations describe a
parametrically forced Hopf bifurcation with D4 symmetry, and
have been studied in [14,15]. The additional assumption that
viscosity is small so that the cubic terms can be computed
from inviscid theory, now leads to purely imaginary (i.e., energy-
conserving) cubic coefficients, and hence precisely the system (2).
These results indicate that for the mode interaction studied in
SG the form of Eqs. (2) remains unchanged both when viscosity
and contact line motion are included in the derivation. This is
despite the fact that both violate the assumed Neumann boundary
conditions at the walls, and hence render the eigenfunctions non-
sinusoidal. In fact the inclusion of viscosity has another effect as
well—it is responsible for the presence of a streaming flow driven
in viscous boundary layers at the surface, bottom and sides [16–
18]. This is a nonlinear effect of viscosity and is important because
the resulting streaming flow in turn interacts with the surface
oscillations responsible for its presence. Moreover, the generation
of the streaming flow is a singular effect, and the streaming
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Fig. 2. (a) Four stable symmetry-related figure-8 periodic orbits for f = 0.7. PM states, which are saddles, are indicated by crosses. (b) Chaotic attractor for f = 0.46784.
flow that is driven by the Reynolds stresses generated in the
viscous boundary layers remains nonzero even in the limit of
vanishing viscosity. Since the largest scales in the streaming flow
are usuallyweakly damped the (unforced) streaming flow typically
decays on a slow time scale unless maintained by the Reynolds
stresses. It is well known that elimination of a weakly damped
mode like the streaming flow via center-manifold reduction can
substantially change the coefficients of the nonlinear terms in the
normal form, although it does not change the form of the resulting
equations [19]. Thus on time scales long comparedwith the viscous
decay time of the unforced streaming flow the Faraday problem
will still be described by Eqs. (2), albeit with (purely imaginary)
coefficients A, B, C that differ, perhaps substantially, from those
computed on the basis of inviscid theory. The required center-
manifold elimination of the streaming flow also reduces the range
of validity of the resulting amplitude equations.
We conclude from this discussion that Eqs. (2) not only describe

a particular idealization of the SG experiment but, in the case
of unbroken square symmetry, the actual experiment itself. On
the other hand the applicability to the SG experiment of the
coefficient values computed by FS and listed above remains
uncertain. It should be mentioned that these conclusions do not
apply to all mode interactions—for some mode interactions the
presence of Neumann boundary conditions and the associated
hidden symmetries [20] is essential for the derivation of Eqs. (2),
and in these cases the inclusion of viscosity and contact linemotion
will change the form of the amplitude equations.
In this paperwe do not attempt to resolve these issues but focus

instead on the properties of Eqs. (2) as derived in FS. Since most of
the dynamical phenomena we identify are a consequence of the
near-Hamiltonian nature of the system and its square geometry,
we expect similar dynamics for other coefficient choices as well.

3. Numerically observed periodic orbits

For our numerical investigations we simplify Eqs. (2) by setting
ω = 1 and C = −1. Provided these coefficients are nonzero
and ωC < 0, this simplification is accomplished by the rescaling
τ → τ/|ω|, (z1, z2)→

√
−ω/C (z1, z2); ifω < 0, z1 and z2 have to

be replaced by their complex conjugates. Wematch the remaining
(rescaled) nonlinear coefficientswith those obtained from the fluid
equations for the SG experiment with m = 2, n = 3 by adopting
the values A = 0.1 and B = −0.8. Finally, we set λ = −0.03
and use f as the control parameter. Physically, this corresponds to
varying the forcing amplitude while keeping the system geometry,
fluid properties, and forcing frequency (i.e., detuning) fixed.
Our results are typically presented in the form of projections on

the (x1, x2) plane, where zj = xj + iyj, j = 1, 2. For convenience,
we also define the symmetry operation

ρ = κ1γ : (z1, z2)→ (−z2, z1),

which describes a rotation by π/2.

3.1. Figure-8 periodic orbits

For f = 0.7, we find four stable, symmetry-related periodic
orbits as shown in Fig. 2(a); because of their shape in this
projection, we refer to these as ‘‘figure-8’’ periodic orbits. Recall
that periodic orbits for the model correspond to quasiperiodic
surface waves in the physical system. These periodic orbits, with
period T = 6.17 at f = 0.7, are symmetric under γ (first
and third quadrants in this projection) or ρ−1γ ρ (second and
fourth quadrants in this projection). Using AUTO [21], we find
that these orbits are stable between a saddle-node bifurcation
at f = 0.7771864 and a symmetry-breaking bifurcation at
f = 0.4862516. This symmetry-breaking bifurcation produces a
branch of stable, asymmetric figure-8 periodic orbits. These remain
stable as f decreases until a period-doubling bifurcation at f =
0.4700954; this is the beginning of a period-doubling cascade
which gives rise to symmetry-related chaotic attractors, one of
which is shown in Fig. 2(b) at f = 0.46784. We note that the basin
of attraction of this chaotic attractor is quite small. Furthermore,
these results illustrate the fact that a symmetric periodic orbit,
such as the original figure-8 periodic orbits, must first undergo a
symmetry-breaking bifurcation before a period-doubling cascade
can occur [22].
The branch of symmetric figure-8 periodic orbits of the type

shown in Fig. 2(a) can be numerically continued in both directions
usingAUTO [21], revealing twodistinct global bifurcationswherein
the orbits collide with pairs of symmetry-related PM equilibria.
One such global bifurcation, hereafter referred to as GB1, occurs at
f = 0.04496453, while the other, GB2, occurs at f = 0.04476048.
The PM eigenvalues near GB1 and GB2 are, approximately, 0.331
and −0.391 within the pure mode subspace, and 0.81 and
−0.87 transverse to this subspace. The shapes of the heteroclinic
connections between PM at GB1 and GB2 are shown in Fig. 3.
The branch of asymmetric figure-8 periodic orbits that arises

in the symmetry-breaking bifurcation at f = 0.4862516 can be
numerically followed to a global bifurcation at f = 0.04493764.
At this bifurcation, the trajectories involve visits to (or near) PM
solutions as shown in Fig. 4(a). This global bifurcation occurs at
a value of f that is very close to the values at which GB1 and
GB2 occur. Although this bifurcation is most likely homoclinic
(otherwise it would be of codimension two), the associated
orbit resembles a composition of heteroclinic connections taken
from those generated at GB1 and GB2; this is shown clearly in
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Fig. 3. Connections between PM equilibria (marked with a cross) at the global bifurcations GB1 (left), with f = 0.04496453, and GB2 (right), with f = 0.04476048.
Connections associated with the specific periodic orbit in quadrant III of Fig. 2(a) are shown in bold.
Fig. 4. (a) Trajectory (solid line) at the global bifurcation at f = 0.04493764, found by following an asymmetric figure-8 periodic orbit. (b) Trajectory (solid line) at the
global bifurcation at f = 0.04493380, found by following the periodic orbit which arises from the period-doubling bifurcation of an asymmetric figure-8 periodic orbit at
f = 0.4700954. The dashed lines show connections which exist at GB1 and GB2 , which occur at slightly different values of f . In this and subsequent figures the numbers
indicate the sequence of approximate heteroclinic connections traced out by the trajectory; where two numbers are given, approximately the same path is traced out twice.
Fig. 4, which includes the connections present at GB1 and GB2
as dashed lines. Likewise, the branch arising from the period-
doubling bifurcation on the asymmetric figure-8 periodic orbit
branch at f = 0.4700954 can be followed to a (homoclinic)
global bifurcation at f = 0.04493380 that resembles another
combination of heteroclinic connections between PM solutions, as
shown in Fig. 4(b).
The bifurcation diagram in Fig. 5 summarizes the above results

for figure-8 orbits, placing them alongside corresponding results
for the star periodic orbits described below in Section 3.2.
We remark that the figure-8 periodic orbits resemble the

periodic orbit shown in Figure 16 of [3], except that the
experimentally observed solution appears to be symmetric under
κ1 rather than γ . From thiswe conjecture that the periodic solution
in [3] might be associated with a heteroclinic bifurcation involving
MM rather than PM solutions. In this connection we recall that
in the experimental system MM solutions are in fact unstable for
sufficiently large f , as shown in Fig. 1(b).

3.2. Star periodic orbits

Another type of stable periodic orbit, shown in Fig. 6(a), can also
be found at f = 0.7; because of its shape in this projection,we refer
to this as a ‘‘star’’ periodic orbit. This periodic orbit, with period
T = 11.97 for f = 0.7, is symmetric under ρ. The action of κ1 or γ
generates a symmetry-related star periodic orbit, which rotates in
the opposite sense. Using numerical continuation, we establish the
stability of star periodic orbits for 0.571786 < f < 0.9955955 and,
on another part of the branch, for 0.8225886 < f < 0.9197870;
see Fig. 5.
The symmetric star periodic orbit loses stability at f =

0.571786 through a symmetry-breaking bifurcation, giving rise to
a stable periodic orbit shown for f = 0.54 in Fig. 6(b). This orbit
is symmetric under ρ2 (rotation by π ). As f decreases, this branch
itself undergoes a symmetry-breaking bifurcation that produces a
stable asymmetric periodic orbit, shown in Fig. 6(c) for f = 0.515.
As f decreases still further, there is a period-doubling cascade to
chaos; a chaotic attractor at f = 0.51255 is shown in Fig. 6(d).
We note that the basin of attraction of this chaotic attractor is
quite small. The branch containing the star periodic orbit shown
in Fig. 6(a) can be numerically continued in both directions using
AUTO, leading to the same two global bifurcations, GB1 and GB2,
defined above. The connections between PM equilibria obtained
in this fashion are shown in Fig. 7, which should be compared
with Fig. 3.
The ρ2-symmetric periodic orbit shown in Fig. 6(b) can

be continued numerically until a global bifurcation at f =
0.04493765, where the trajectorymakes visits to (or very near) PM
solutions as shown in Fig. 8(a). As in the case of the asymmetric
figure-8 orbits, this global bifurcation occurs at a value of f that is
very close to the values for GB1 and GB2. Fig. 8(a), which includes
the connections present at GB1 and GB2 (dashed lines), indicates
that the heteroclinic connections along this orbit, whether exact
or approximate, again resemble a combination of the connections
generated at GB1 and GB2. Similarly, the asymmetric periodic
orbit shown in Fig. 6(c) can be followed to a global bifurcation at
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Fig. 5. (a) Bifurcation diagram for the figure-8 periodic orbits of Fig. 2(a) and the
star periodic orbits of Fig. 6(a), as well as related periodic orbits described in the
text. For clarity, branches arising from period-doubling bifurcations are not shown.
(b) Enlargement showing the divergence of the period T of the figure-8 and star
periodic orbits as the global bifurcations GB1 and GB2 are approached. In this and
other bifurcation diagrams, diamonds, squares, and triangles indicate saddle-node,
period-doubling, and symmetry-breaking pitchfork bifurcations, respectively.
Furthermore, solid (dashed) lines represent stable (unstable) solutions.

f = 0.04496433, producing connections among the PM shown
in Fig. 8(b); this, too, resembles a composite of the connections
realized at GB1 and GB2.
At this point it is appropriate to mention that for these values

of the coefficients a variety of other stable periodic orbits can
be found as well, as described in the Appendix. We find that
some of these are also related to the heteroclinic connections
identified above, since they terminate,when followed in f , in global
bifurcations involving connections resembling those at GB1 and
GB2. Others exist on isolas.
It is of interest that dynamics similar to those described

thus far, including versions of the figure-8 and star periodic
orbits, are also present in the work of Abreu et al. [23] on a
D4-symmetric system in R3 describing steady-state/steady-state
mode interaction. Although these authors did not attempt to
locate global bifurcations, they observed and investigated chaotic
attractors like those shown in Fig. 2(b) and 6(d); chaotic attractors
in their system seem to be considerably more robust than in the
system (2).

3.3. Dependence of dynamics on damping

Qualitatively similar behavior is observed when other parame-
ters are also allowed to vary. For example, with λ = −0.02 (less
damping) and the remaining parameters as above, we find ana-
logues of GB1 and GB2 at f = 0.03183159 and f = 0.03235626.
For λ = −0.01 and the remaining parameters unchanged, we find
analogues of GB1 andGB2 at f = 0.01818218 and f = 0.01899046.
On the other hand, continuing the figure-8 periodic orbits with
respect to f forλ = −0.05orλ = −0.1 reveals that these solutions
no longer terminate in global bifurcations but, instead, lie on isolas,
as illustrated in Fig. 9. This suggests that the two global bifurcations
come together for larger damping and ‘‘pinch off’’ to create the isola
(see Section 5).

4. Hamiltonian limit

Most of the periodic orbits described in Section 3 either
originate directly in heteroclinic bifurcations or are evidently
associated with them. These heteroclinic connections are, in turn,
associated with the Hamiltonian limit of Eqs. (2), as we now
describe, cf. [24,25]. The analysis of this limiting case employs
standard techniques but these are applied here to the case
of persistent heteroclinic connections (a consequence of the
unbroken D4 symmetry), a situation that has not, to the best of our
knowledge, been fully considered.
Eqs. (2) have a Hamiltonian structure when damping is

neglected (λ = 0), and can be obtained from the Hamiltonian

Hz = ω(|z1|2 + |z2|2)+
if
2
(z21 − z̄

2
1 + z

2
2 − z̄

2
2)− B|z1|

2
|z2|2

+
A+ B
2

(|z1|2 + |z2|2)2 +
C
2
(z21 z̄

2
2 + z̄

2
1z
2
2) (3)

via

żj = i
∂Hz
∂ z̄j

, ˙̄z j = −i
∂Hz
∂zj

, j = 1, 2. (4)

If we further set f = 0 then Eqs. (2) are integrable, and the energy
E = |z1|2 + |z2|2 constitutes a second invariant (in addition to Hz).
This integrable system boasts an infinite number of heteroclinic
trajectories. Before describing these, however, it is convenient
to introduce another set of coordinates with the transformation
(see, e.g., [25])

zj =
√
2Ij eiθj , j = 1, 2, Ij > 0, (5)

to obtain the amplitude-phase system

İ1 = 2λI1 + 2fI1 cos(2θ1)+ 4CI1I2 sin(2θ1 − 2θ2), (6a)

θ̇1 = ω − f sin(2θ1)+ 2A(I1 + I2)+ 2BI1 + 2CI2 cos(2θ1 − 2θ2), (6b)

İ2 = 2λI2 + 2fI2 cos(2θ2)− 4CI1I2 sin(2θ1 − 2θ2), (6c)

θ̇2 = ω − f sin(2θ2)+ 2A(I1 + I2)+ 2BI2 + 2CI1 cos(2θ1 − 2θ2). (6d)
The system (6) is, of course, also Hamiltonian when λ = 0 and can
be obtained from

HIθ =
1
2
Hz = ω(I1 + I2)− f [I1 sin(2θ1)+ I2 sin(2θ2)]

+ (A+ B)(I1 + I2)2 + 2I1I2[C cos(2θ1 − 2θ2)− B] (7)
via

θ̇j =
∂HIθ
∂ Ij

, İj = −
∂HIθ
∂θj

, j = 1, 2. (8)

Finally, for certain purposes it is useful to consider a third set of
coordinates defined (see [26]) by

I = I1 + I2, θ = θ1, x =
√
2I2 cos(θ1 − θ2),

y =
√
2I2 sin(θ1 − θ2), (9)

and leading to the system

ẋ = λx+ f [x cos(2θ)+ 2y sin(2θ)] + 2(B+ C)(y2 − I)y+ 2Bx2y, (10a)

ẏ = λy− fy cos(2θ)+ 2(C − B)(x2 − I)x− 2By2x, (10b)

İ = 2λI + 2f [(I − y2) cos(2θ)+ xy sin(2θ)], (10c)

θ̇ = ω − f sin(2θ)+ 2(A+ B)I + (C − B)x2 − (B+ C)y2. (10d)
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Fig. 6. (a) Stable star periodic orbits for (a) f = 0.7, (b) f = 0.54, and (c) f = 0.515. (d) Chaotic attractor for f = 0.51255.
Fig. 7. Connections (dashed lines) between PM solutions at global bifurcations GB1 (left) at f = 0.04496453 and GB2 (right) at f = 0.04476048. Connections associated
with a single star periodic orbit from Fig. 6(a) are shown in bold.
Note that although we set θ = θ1 and used I2 in the definition of x
and y, the symmetry γ implies that Eqs. (10) would have resulted
from the complementary choice as well.
We now describe the phase-space structure of the two-

dimensional pure mode subspaces P1 (z2 = 0) and P2 (z1 = 0)
obtained, e.g., from setting x = y = 0 in Eqs. (10) to yield the
two-dimensional system

İ = 2λI + 2fI cos(2θ), (11a)

θ̇ = ω − f sin(2θ)+ 2(A+ B)I. (11b)

The dynamics of such systems were analyzed in [27]. We show
in Fig. 10 the phase-space structure in three relevant cases: (a)
λ = f = 0, (b) λ = 0, f > 0, and (c) λ < 0, f > 0. In the integrable
Hamiltonian limit (a), the pure mode dynamics are particularly
simple since İ = 0. There is then an isolated fixed point at the
origin and, provided −ω/(2(A + B)) ≡ ωr0 > 0 as in Section 3, a
circle of fixed points at I = ωr0, while the remaining trajectories
are all circular periodic orbits; see Fig. 10(a). When the forcing
f is added, as in Fig. 10(b), the circle of fixed points collapses,
leaving two types of pure mode equilibria: saddles with amplitude
I = (ω − f )r0 at θ = π/4, 5π/4 and centers with amplitude
I = (ω + f )r0 at θ = −π/4,−5π/4. When damping 0 < −λ < f
is included as well, the saddles move to I = (ω −

√
f 2 − λ2)r0

and θ = θ̃ , π + θ̃ where θ̃ = cos−1(−λ/f )/2, while the centers
become sinks at I = (ω +

√
f 2 − λ2)r0 and θ = −θ̃ , π − θ̃ .
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Fig. 8. Connections, shown as bold line, between PM solutions at global bifurcations found by following (a) the periodic orbit shown in Fig. 6(b) to f = 0.04493765, and (b)
the periodic orbit shown in Fig. 6(c) to f = 0.04496433. The dashed lines show connections which exist at GB1 and GB2 .
Fig. 9. Bifurcation diagrams for figure-8 periodic orbits with (a) λ = −0.05 and (b)
λ = −0.1. The periodic orbits lie on isolas when followed with respect to f , rather
than terminating in global bifurcations.
While Fig. 10(b) shows the presence when λ = 0, f >
0 of heteroclinic connections between pure modes of the same
type (e.g., within P1, related by κ1) the heteroclinic behavior
discovered in Section 3 involves connections between P1 and P2.
This type of heteroclinic connection can be most easily seen with
the system (10) in the integrable Hamiltonian limit. In this case
(λ = f = 0) the dynamics of x and y can be examined separately
since I is conserved and, hence, may be treated as a parameter,
while θ decouples entirely. Thus we consider the equations

ẋ = −2(B+ C)Iy+ 2Bx2y+ 2(B+ C)y3, (12a)

ẏ = 2(B− C)Ix− 2By2x+ 2(C − B)x3, (12b)
which can be derived from the reduced Hamiltonian

Hxy =
1
2
(B− C)(x2 + y2 − 2I)

(
x2 +

B+ C
B− C

y2
)

(13)

via

ẋ =
∂Hxy
∂y

, ẏ = −
∂Hxy
∂x

. (14)

This two-dimensional system exhibits three types of fixed points:
a ‘‘pure mode’’ (PM) with x = y = 0, corresponding in the full
system (6) to the entire subspace P1, mixed modes (MM) with
x2 = I, y = 0 or y2 = I, x = 0, meaning that I1 = I2 in system (6),
and PM ∈ P2 with x2 = (B + C)I/C, y2 = (C − B)I/C , implying
that I1 = 0 in Eqs. (6). This structure is depicted in Fig. 11.
The heteroclinic trajectories, which are sketched in Fig. 11, can

be obtained explicitly by noting that Hxy = 0 in both pure mode
subspaces and, hence, must also vanish along connecting orbits,
which in this case implies that

(B+ C)y2 = (C − B)x2. (15)
Fig. 10. Dynamics in the pure mode subspace with (a) λ = f = 0, (b) λ = 0, f > 0, and (c) λ < 0, f > 0. The remaining parameters are as in Section 3.
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Fig. 11. Dynamics transverse to the puremode subspaceP1 , described by Eqs. (12).
Note the heteroclinic cycles connecting this subspace, located at the origin, to the
other pure mode subspace P2 , represented here by the circle x2 + y2 = 2I .

This relation may be substituted into Eq. (12a) and the result
integrated to yield

x2(t) =
(B+ C)I

C(1+ e±4I
√
C2−B2t)

. (16)

Here we have taken the initial condition as x2(0) = (B+ C)I/(2C).
In the ‘‘−’’ case, Eq. (16) describes, for−∞ < t <∞, a trajectory
from P1 (the origin) to P2 (x2 + y2 = 2I). Once in P2, trajectories
‘‘rotate’’ (moving along one of the four arcs in Fig. 11) toward one
of the unstable transverse directions, signified by the fixed points
in the second and fourth quadrants, and then, finally, back to P1
along the trajectory described by Eq. (16) in the ‘‘+’’ case.
We emphasize that these heteroclinic connections constitute

a two-parameter family in the full system (10), parametrized
by I and θ . In other words, each of the circular periodic orbits
of Fig. 10(a) in the P1 subspace is connected to its counterpart
in the P2 subspace, and, considered as a whole, both P1 and
P2 are normally hyperbolic invariant manifolds (see, e.g., [28])
with coincident three-dimensional stable and unstable manifolds,
i.e., Wu(P1) = Ws(P2) and Wu(P2) = Ws(P1).
In the undamped, unforced version of system (6), which treats

both pure mode subspaces symmetrically, these same heteroclinic
orbits are expressed as
I1(t) =
I

1+ e±4I
√
C2−B2t

, I2(t) =
I

1+ e∓4I
√
C2−B2t

. (17)

With the upper signs Eq. (17) describes, for −∞ < t < ∞, a
heteroclinic orbit fromP1 toP2, and vice versa for the lower signs.
On these heteroclinic orbits the phases θ1 and θ2 evolve uniformly
and at the same rate. This result follows from Eqs. (9) and (15),
which imply that C cos(2(θ1 − θ2)) − B = 0 on heteroclinic
trajectories. As a result Eqs. (6b) and (6d) can be readily integrated,
giving

θj(t) = θj(0)+ [ω + 2(A+ B)I] t, j = 1, 2. (18)

5. Persistence of heteroclinic cycles in the perturbed system

In this sectionweprovide numerical evidence that certain of the
heteroclinic connections present in the Hamiltonian limit persist
when small dissipation is added, and conjecture that the number of
such connections increases without bound as λ decreases to zero.
The codimension-one heteroclinic orbits of interest are all

unstable because they are contained in a two-dimensional
unstable manifold (associated with two real and distinct positive
eigenvalues). Hence, they are difficult to locate numerically. In
Section 3 we were able to locate GB1 and GB2, as well as
several additional global bifurcations, by following initially stable
periodic orbits to very high period, which is indicative of a
global bifurcation. Such high-period periodic orbits may also be
continued in two parameters using AUTO (keeping the period
fixed) to give a good indication of the heteroclinic bifurcation set.
This has been done in Fig. 12(a), beginning from a figure-8 periodic
orbit of period T = 2000 approximating GB1, and allowing both f
and λ to vary.
Fig. 12 shows that, as f increases, the heteroclinic bifurcation

GB1 approaches a limit point (LP) near f = 0.057176, λ =
−0.039963. The new (lower) branch that emerges from this LP
approximates GB2. For f < 0.057176 these two branches remain
close, first separating slightly, but then drawing nearer again
as f decreases. Nonetheless, they do not cross and appear to
terminate at distinct points on the f axis: f = 0.00191 for
GB1 and f = 0.00139 for GB2. A close-up showing these two
termination points is provided in Fig. 12(b). The proximity of these
termination points to f = λ = 0 supports the argument of
Section 4 that the underlying source of these heteroclinic cycles
is the integrable Hamiltonian limit with its two-parameter family
of heteroclinic orbits. By the same token, the failure of these
two branches, GB1 and GB2, to terminate exactly at f = 0 is a
strong indication that they are not unique and that other such
Fig. 12. Approximate heteroclinic bifurcation set containing GB1 and GB2 of Section 3, obtained by following a high-period figure-8 orbit. (a) Complete bifurcation set
showing the limit point (LP) at f = 0.057176, λ = −0.039963. (b) Close-up showing how the two branches appear to collide with the f axis near f = 0.00191 (GB1) and
f = 0.00139 (GB2).
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branches emerge from different points along the f axis, where the
system (2) is Hamiltonian but not integrable. Presumably some of
these are associatedwith the other global bifurcations described in
the Appendix.
Unfortunately, it is not easy to search for heteroclinic cycles

in system (2). Not only are they unstable, as mentioned earlier,
but they are resistant to standard shooting methods. The
main difficulty is that trajectories approximating heteroclinic
connectionsmust spend very long times in the vicinity of invariant
subspaces (P1 and P2) having unstable transverse directions, and
this makes them extremely sensitive to numerical errors. In our
case the problem is exacerbated by the fact that the transverse
unstable direction is the most unstable direction (for λ = −0.03,
near GB1, the unstable transverse eigenvalue of the saddle is 0.81
while the eigenvalue describing unstable puremode perturbations
is 0.331). To approximate orbits, for example, that leave the saddle
PM and spiral many times toward the stable sink within P1 (see
Fig. 10(c)) before finally veering away towardP2, it is necessary to
apply a modified integration procedure that effectively ‘‘turns off’’
the transverse dynamics while the orbit remains close to P1 (see,
e.g., [29]).We utilize such a procedure here, and a suitable Poincaré
section, to visualize the intersection ofWu(PM1) andWs(PM2), the
unstable and stablemanifolds of the relevant saddle fixed points in
P1 and P2, respectively.
Fig. 13 shows the results of a numerical procedure wherein we

first integrate within the invariant subspace P1, using Eqs. (11)
and starting near the saddle fixed point PM1. This provides
an approximation of Wu(PM1) ∩ P1. We then step along this
trajectory, and at each step integrate forward again in time with
Eqs. (6) while adding an initial transverse perturbation I2 = ε (we
take ε = 10−5). These integrations are stoppedwhen the condition
I1 = I2 is satisfied. The same thing is done in reverse time for
PM2 ∈ P2. In this manner we obtain approximate representations
of the intersections of Wu(PM1) and Ws(PM2) with the Poincaré
section I1 = I2.
In Fig. 13(a) we show these intersections for f = 0.04496453

and λ = −0.03, the location of GB1. In addition to the intersection
of Wu(PM1) and Ws(PM2) corresponding to GB1, one can see
how the proximity of GB2 leads to a second apparent intersection
(marked with an unlabeled arrow). In Fig. 13(b) the damping
has been reduced to λ = −0.01 and the spiraling of Wu(PM1),
which reflects the spiraling of Wu(PM1) ∩ P1 toward the PM
sink within P1, is correspondingly more pronounced. For these
parameters, Wu(PM1) and Ws(PM2) do not intersect, although
Ws(PM2) comes close in two places (againmarkedwith arrows). In
Fig. 13(c)we decrease the damping still further toλ = −0.003. The
spiraling part of Wu(PM1) is now quite dense in comparison with
Fig. 13(a) and there exist four points of approximate intersection
with Ws(PM2).
From Fig. 13(a)–(c) the trend as λ → 0 is clear. The pancake-

like surface containing the spiraling part of Wu(PM1) will become
ever more dense with spirals while it continues to be ‘‘punctured’’
in several places by Ws(PM2). As λ decreases to infinitesimal
values, similarly infinitesimal changes in the parameter f will be
sufficient to adjust the location of Ws(PM2) so as to intersect (one
of the spirals of) Wu(PM1). In this way, Fig. 13 strongly suggests
that heteroclinic connections become ever more frequent as the
damping is reduced, with the set of such connections having a
cascade-like structure (cf. [29]) which intersects the f axis at an
infinite number of points. Furthermore, such a scenario can be
expected to repeat in the case ofN-pulse homoclinic or heteroclinic
orbits, which helps to explain the abundance of such multi-pulse
cycles found in the Appendix.
The above numerical results are closely related to a number

of theoretical results obtained for similar systems, particularly
for perturbations of integrable two-degree-of-freedom ‘‘resonant’’
Fig. 13. Intersections of Wu(PM1), the unstable manifold of the saddle PM1 ∈ P1 ,
and Ws(PM2), the stable manifold of the symmetry-related saddle PM2 ∈ P2 , with
the surface I1 = I2 for f = 0.04496453 and (a) λ = −0.03, (b) λ = −0.01, (c)
λ = −0.003. Approximate intersections of Wu(PM1) and Ws(PM2) are indicated
with an arrow; in case (a) one of these, representing GB1 , is nearly exact.

Hamiltonian systems (see, e.g., [29–35]), such as system (2) with
small forcing and damping. As alreadymentioned the unperturbed
system is characterized by three-dimensional manifolds of hete-
roclinic connections between symmetry-related invariant mani-
folds (P1 and P2). As such, it seems a natural candidate for the
application of Melnikov-type methods, or the general energy-
phase method of Haller and Wiggins [29,31]. In particular, these
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authors showed that these types of Hamiltonian systems can con-
tain structurally stable multi-pulse jumping orbits (orbits homo-
clinic to an invariant manifold) whose parameter set describes an
infinite binary tree, simple and multi-pulse Shil’nikov orbits (ho-
moclinic, or heteroclinic, to fixed points within the invariant man-
ifold), and accompanying Smale horseshoes and chaotic dynamics.
Although we expect many of the results in [29,31] to apply

to Eqs. (2), there are notable differences. Most previous work
has focused on the case where the homoclinic or heteroclinic
connections involve fixed points within the invariant two-
dimensional ‘‘slow’’manifold having complex eigenvalues (centers
in the case of purely Hamiltonian perturbations) while, in our case,
the observed heteroclinic orbits involve saddles; see Fig. 10(c).
The case of saddle–saddle connections was studied by McLaughlin
et al. [33], who considered a two-mode truncation of a perturbed
nonlinear Schrödinger equation. The system studied there has
much in common with system (2), but lacks the interchange
symmetry γ (more specifically, their two-mode model has Z2× S1
symmetry, not D4). Melnikov methods, combined with singular
perturbation theory, were used by these authors to derive
conditions for which homoclinic orbits to these saddles persist
under perturbation.
Another difficulty that prevents us from applying previous

results more directly is that our unperturbed connections are
heteroclinic. Although the heteroclinic case does arise in the
truncated nonlinear Schrödinger system (see, e.g., case (d) of
Figure 6.1 in [30]) it occurs only for a particular value of I , and is
correspondingly neglected in favor of themore generic homoclinic
case. Eqs. (12), in contrast, which describe transverse connections
in the unperturbed version of system (2), can be rescaled to
eliminate I , and invariably contain heteroclinic, not homoclinic,
orbits. Although the heteroclinic case has also been subjected to
the energy-phase method in [32], the existing treatment assumes
a purely Hamiltonian perturbation and, in addition, that the
integrable limit contains a band of fixed points within the slow
manifold; in contrast, the system (2) has an isolated circle of
equilibria in this limit, as indicated in Fig. 10(a).
We do not attempt here to prove any rigorous results on the

persistence of heteroclinic cycles in the forced damped system (2),
but instead turn in the following section to an analysis of some of
the global bifurcations identified numerically.

6. Analysis of the heteroclinic bifurcation

Herewe consider an isolated global bifurcation (GB1 orGB2) and
show that the emergence of the figure-8 and star periodic orbits
from this bifurcation (see Fig. 5) can be understood as the result of
a type of ‘‘gluing bifurcation’’—perhaps more appropriately called
a ‘‘symmetry-switching’’ bifurcation (see [36]) since both periodic
orbits have a discrete symmetry (Z2 for the figure-8 orbit and Z4
for the star orbit).
In the neighborhood of a saddle PM the linearized flow can be

written as

ẋ = λsx, ẏ = λuy, u̇ = λ1u, v̇ = λ2v, (19)

where (u, v) are Cartesian coordinates in the invariant subspace
(P1 or P2) and (x, y) are the transverse coordinates. The
eigenvalues, as in Section 3, are taken to be real with λs, λ2 <
0 and λu, λ1 > 0. We may then define two pairs of Poincaré
sections through which generic trajectories visiting the PM must,
respectively, enter and exit:

Σ±x = {(x, y, u, v)||x| = ±ε, |y| ≤ ε, |u| ≤ δ, |v| ≤ δ},

Σ±y = {(x, y, u, v)||x| ≤ ε, y = ±ε, |u| ≤ δ, |v| ≤ δ}. (20)
Here ε and δ are small parameters,whichwemake distinct to allow
for ε � δ in the case (occurring in Section 3) where trajectories
leave the PM tangent to the invariant subspace.
The local map TPM : Σ±x → Σ±y is given by

TPM : Σ±x → Σ±y :

xyu
v

 7−→

sign(x)ε|y/ε|−λs/λu

sign(y)ε
u|y/ε|−λ1/λu

v|y/ε|−λ2/λu

 . (21)

To construct a global map we linearize about the heteroclinic
connection that is assumed to exist (at µ = 0, say) between
PM1 ∈ P1 and ρ · PM1 = PM2 ∈ P2. For convenience,
we absorb the symmetry ρ into the definition of the local
coordinates so that a point (x, y, u, v) near PM1 is mapped by
ρ to the same point in the corresponding neighborhood of PM2.
In contrast, a point (x, y, u, v) near PM1 is mapped by γ to the
point (−x,−y, u, v) near PM2. Furthermore and without loss of
generality, we assume that the heteroclinic connection from PM1
to PM2 exits the neighborhood of PM1 through Σ+y at the point
Wu(PM1)∩Ws(PM2)∩Σ+y ≡ (0, ε, ūh, 0), and that it subsequently
arrives near PM2 via Wu(PM1) ∩Ws(PM2) ∩ Σσ

x ≡ (σε, 0, 0, v̄h).
Thus, the heteroclinic connection at µ = 0 is parametrized by
σ = ±1 and the two real constants ūh and v̄h. The global map may
then be written as

TG : Σ+y → Σσ
x :

xεu
v

 7−→
 σε

a1x+ a2(u− ūh)+ a3v + µ
a4x+ a5(u− ūh)+ a6v + r1µ

v̄h + a7x+ a8(u− ūh)+ a9v + r2µ

 , (22)
where the ai and ri are real constants, determined by the global
flow.
A star periodic orbit exists if there is a point (σε, y, u, v) with

y > 0 near PM1 that is mapped by TG · TPM to (σε, y, u, v). (Recall
that a star periodic orbit is symmetric under ρ.) A figure-8 orbit, on
the other hand, exists if TG · TPM · (−σε, y, u, v) = (σε,−y, u, v),
again for y > 0. (Recall that a figure-8 periodic orbit is symmetric
under γ .) Both of these conditions lead to the set of equations (plus
sign for star, minus sign for figure-8):

±y = ±σεa1|y/ε|η1 + a2(u|y/ε|−η2 − ūh)+ a3v|y/ε|η3 + µ, (23a)

u = ±σεa4|y/ε|η1 + a5(u|y/ε|−η2 − ūh)+ a6v|y/ε|η3 + r1µ, (23b)

v = ±σεa7|y/ε|η1 + a8(u|y/ε|−η2 − ūh)+ a9v|y/ε|η3 + v̄h + r2µ, (23c)

where η1 ≡ −λs/λu, η2 ≡ λ1/λu, and η3 ≡ −λ2/λu. Since we are
interested in solutions that satisfy (y, u, v)→ (0, 0, v̄h) asµ→ 0
we must have, at leading order,

u = ūh|y/ε|η2 , v = v̄h. (24)

Solving (23b) for (u|y/ε|−η2− ūh) and substituting this and Eq. (24)
into Eq. (23a) yields

µ̃± y = ±A1|y|η1 + A2|y|η2 + A3|y|η3 , (25)

where µ̃ = (1 − r1a2/a5)µ, A1 = σ(a1 − a2a4/a5)ε1−η1 ,
A2 = a2ūhε−η2/a5, and A3 = (a3 − a2a6/a5)v̄hε−η3 . The solutions
of Eq. (25) can be grouped into three cases depending on the
eigenvalue ratios ηj. If η1, η2, η3 > 1 then star (figure-8) periodic
orbits exist for µ̃ < 0 (µ̃ > 0). If η1 < η2, η3, 1 then star (figure-8)
periodic orbits exist for µ̃A1 > 0 (µ̃A1 < 0). Finally, if ηj < η1, 1
for j = 2 or j = 3 (or both) then star and figure-8 periodic orbits
both exist for µ̃Aj > 0. For the parameter values considered in
Section 3, we have λ1 = 0.331, λ2 = −0.391, λs = −0.87, λu =
0.81, giving η1 = 1.074, η2 = 0.409, η3 = 0.483. Thus, the
final case applies and we expect both star and figure-8 periodic
orbits on the same side of the global bifurcation. This is consistent
with Fig. 5.
We do not pursue a stability analysis for these periodic orbits

because the result is easily anticipated, and quite apparent from
the numerics: they are unstable. This is expected because the
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Fig. 14. (a) Stable periodic orbits at (a) f = 0.82, (b) f = 0.53, (c) f = 0.7, (d) f = 0.51, (e) f = 0.4, and (f) f = 1.45.
relevant fixed points have two (distinct) real positive eigenvalues,
one ofwhich describes perturbations transverse to the heteroclinic
orbit. As a result all nearby periodic orbits will generically be
unstable. This prediction accordswith our numerical computations
which reveal stable periodic orbits only far from the global
bifurcations that create them (where the Poincaré map analysis is
no longer valid).

7. Conclusion

We have shown that periodic orbits exist for the model derived
in Feng and Sethna [11] for the Faraday system with square
cross-section and single-frequency forcing. These periodic orbits
correspond to quasiperiodic surface waves in the physical system.
The periodic orbits are associated with heteroclinic bifurcations,
which are themselves related to a continuum of heteroclinic
connections belonging to the integrable Hamiltonian limit, some
of which persist when small damping is present. Chaotic attractors
were also found in the model equations, and these correspond
to chaotic surface waves. The dynamics in the neighborhood
of one of the heteroclinic bifurcations were examined in detail
using an approximate Poincaré map, with the predictions showing
agreement with numerical results.
The specific periodic orbits described in this paper were not

found in the experiments by Simonelli and Gollub [3] near the
interaction between (3, 2) and (2, 3) modes. There are several
reasons why this might be the case. First, the coefficients used in
themodelmight be incorrect due to neglect of the effects of contact
line motion pinning, viscous effects along the vertical walls, and
streaming flow driven in viscous boundary layers at the surface,
bottom and sides. Second, the experiment, in sweeping through
parameter space,might not have happened upon stable states such
as the ones we compute because these coexist with other, simpler
stable states and the existence of the new states was not known.
Third, it is possible that the experiment was not run for times long
compared to the decay time of the free streaming flow, i.e., it was
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Fig. 15. Connections, shown as bold lines and numbered as in Fig. 4, between PM solutions at the global bifurcations found by following the branch of periodic orbits from
Fig. 14(a) to (a) f = 0.04496124 and (b) f = 0.04493381, and the branch of periodic orbits from Fig. 14(b) to (c) f = 0.04493437 and (d) f = 0.04496190. The dashed lines
show connections which exist at GB1 and GB2 .
run on time scales onwhich the experiment is not in fact described
by Eqs. (2). This could be so because at the time the multiple
time scale nature of the nearly inviscid Faraday problem was not
appreciated. Finally, the observed states might be too nonlinear
to be described by small amplitude theory of the type used in
derivation of the model. However, in many applications this type
of theory does quite well, and we note that the smaller amplitude
predictions are in fact in agreementwith the experiment, as shown
in Fig. 1.
On the other hand, the solutions obtained here, particularly

the ‘‘figure-8’’ periodic orbits, resemble one of the periodic orbits
observed experimentally by Simonelli and Gollub [3], although
in the experiment this appears more likely to be associated with
heteroclinic connections between mixed modes instead of pure
modes. This difference might be due to the neglect of an important
physical effect in the coefficient computation. We remark that, if
desired, one can find ad hoc coefficients for which the figure-8
periodic orbit is associatedwith connections betweenmixedmode
solutions instead of the pure modes. This is a consequence of a
parameter symmetrywhose presence in Eqs. (2) can be established
much as described for a related system in [37]. It is also possible
that the solutions identified in this paper might be related to
the quasiperiodic and chaotic surface waves found experimentally
near onset when the container is slightly rectangular [3].
Our results suggest a great richness of possible dynamics

of surface gravity-capillary waves even in the simple case of
small aspect ratio containers of square cross-section with single-
frequency forcing. However, much remains to be understood
about such systems, particularly with regard to the influence
of container geometry, the role played by symmetry-breaking
imperfections, and the coupling of thewaves to the streaming flow
they produce [16–18].
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Appendix

In this Appendix we provide a glimpse of the complexity of
heteroclinic behavior present in Eqs. (2) beyond that discussed in
the body of the paper. Fig. 14 shows several additional periodic
orbits obtained for A = 0.1, B = −0.8, C = −1, ω = 1, and
λ = −0.03.
The branches containing the periodic orbits in Fig. 14(a)–(d)

can be numerically continued in both directions to reveal (four)
pairs of global bifurcations near f = 0.045; see Figs. 15 and 16.
The connections, exact or approximate, that appear at these global
bifurcations resemble the connections that exist at GB1 and GB2,
suggesting that these solutions are also related to the presence of
these global bifurcations.
Stable periodic solutions can also be found that, when

continued in f , lie on isolas rather than terminating in global
bifurcations. For the case of the stable periodic orbit shown in
Fig. 14(e) at f = 0.4, the corresponding solution branch exists
between saddle-node bifurcations at f = 0.1227298 and f =
0.4176532. There are symmetry-breaking bifurcations at f =
0.1263139 and f = 0.3522973 and between these values all
such periodic orbits are unstable; stable limit cycles exist for the
remaining values of f (i.e., between saddle-node and symmetry-
breaking bifurcations). Similarly, for the stable periodic orbit
shown in Fig. 14(f) at f = 1.45, the corresponding solution branch
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Fig. 16. Connections, shown as bold lines and numbered as in Fig. 4, between PM solutions at the global bifurcations found by following the branch of periodic orbits from
Fig. 14(c) to (a) f = 0.04496205 and (b) f = 0.04493455, and the branch of periodic orbits from Fig. 14(d) to (c) f = 0.04496433 and (d) f = 0.04496490. The dashed lines
show connections which exist at GB1 and GB2 .
is bounded by saddle-node bifurcations at f = 0.05273357 and
f = 1.554205. Again two symmetry-breaking bifurcations occur,
one extremely close to the lower saddle-node bifurcation, and
another at f = 1.251234. The periodic orbits are unstable between
these symmetry-breaking bifurcations, while stable solutions exist
for the remaining values of f between the two saddle-node
bifurcations.
Although we have not explored systematically this aspect of

Eqs. (2) we anticipate that additional solution types are present
as well.
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