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Abstract 
Neurophysiological evidence due to Schall, 
Newsome and others indicates that decision proc-
esses in certain cortical areas (e.g. FEF and LIP) 
involve the integration of noisy evidence. Within 
this paradigm, we ask which neuronal architectures 
and parameter values would allow an animal to 
make the fastest and most accurate decisions. Since 
evolutionary pressure promotes such optimality 
(e.g. in prey capture and predator avoidance), it is 
plausible that biological decision networks realise 
or approximate optimal performance. We consider 
a simple decision model proposed by Usher & 
McClelland consisting of two populations of neu-
rons integrating evidence in support of two alterna-
tives, and we analyze the dynamics of this model. 
We show that in order to implement the optimal 
decision algorithm (sequential probability ratio 
test) the linearised network must satisfy the follow-
ing two constraints: (i) it must accumulate the dif-
ference between evidence in support of each alter-
native, as would be implemented by mutual inhibi-
tion between the populations; and (ii) the strength 
of mutual inhibition must be equal to the leak of 
activity from each population. 

1 Introduction 
Decision making is a very frequent element of life of hu-
mans and animals, and accuracy and speed of the decisions 
is critical to animal survival. During millions of years of 
evolution, evolutionary pressure promoted animals whose 
brains made more efficient decisions. Hence it is plausible 
that decision circuits in the brain possess architectures and 
parameters allowing them to implement optimal or nearly 
optimal algorithms. Therefore, in order to identify the archi-
tecture and parameters of decision networks in the brain, it 
may be informative to ask what is the optimal algorithm for 
decision making, and what biologically plausible network 
may implement this optimal algorithm. 

This optimality approach is not guaranteed to reveal the 
true decision network in the brain. But it can produce inter-
esting and counterintuitive experimental predictions, which 
may be used to test the model suggested by the approach. 
Furthermore, the algorithm optimally solving a decision 
problem may uncover (or may inspire) practical computa-
tional applications. This report shows how the mathematical 
analysis of decision processes may help in understanding 
them and make predictions concerning the architecture of 
neural networks involved in decision making. In particular, 
it identifies parameters of the decision making model pro-
posed by Usher & McClelland (2001) under which the 
computations of the neural decision network are equivalent 
to an optimal statistical test for decision making (sequential 
probability ratio test). 

In three following sections we briefly review neurophysi-
ology of decision, optimal statistical test, and the model of 
decision network by Usher & McClelland (2001). Then in 
Section 5 we identify conditions under which this model 
achieves optimal performance. Finally, in Section 6 we list 
other directions in which the theory has been extended. 

2 Neurophysiology of decision  
The neurobiology underlying decision making has been 
extensively studied in a task in which monkeys are pre-
sented with a visual field of small dots most of which are 
moving randomly, but a certain fraction of which are mov-
ing left on some trials and right on others (Britten et al., 
1993).  Typically, the animal is trained to respond by mak-
ing a saccade in the direction of the coherently moving dots.  
Figure 1a shows schematically the typical patterns of activ-
ity observed in area MT of monkeys performing this task 
(this area is involved in motion processing).  When a stimu-
lus with coherent leftward motion is presented, the firing 
rate of an MT neuron selective for leftward motion is higher 
than the firing rate of a neuron selective for rightward mo-
tion (Britten et al., 1993) (in Figure 1a the grey curve is 
more often above the black).  However, the firing rates for 
both types of neurons are noisy, hence decisions based on 
the activity of MT neurons at a given moment in time would 



be inaccurate.  This reflects the uncertainty inherent in the 
stimulus and its neural representation. 

Figure 1b shows schematically the pattern of activity of 
neurons in area LIP, which is involved in controlling eye 
movements.  The LIP neurons are believed to integrate the 
input from MT neurons over the duration of a trial.  The 
decision based on the integrated evidence, namely on activ-
ity of LIP neurons after about 0.5s, is much more accurate.  
This example illustrates that the decision process may be 
realized in the neural substrate by the integration of noisy 
information. 
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Figure 1. Cartoon of typical peri-stimulus time histograms of neu-
ronal activity during ‘the moving dots task’.  The figure does not 
show the actual data, but it is a sketch based on data described by 
Britten et al. (1993), Shadlen & Newsome (2001), and Schall 
(2001).  Horizontal axes show time from stimulus onset.  Vertical 
axes indicate firing rate.  Representative firing rates are shown for 
stimulus with coherent leftward motion.  a) Firing rate of neurons 
in the area MT: gray line represents a typical neuron selective to 
leftward motion, and black line for rightward motion (the curves 
were generated by adding noise to exponentially decaying func-
tions).  b) Firing rate of neurons in the area LIP: gray line repre-
sents a typical neuron selective for leftward saccades, and black 
line for rightward saccades (the curves were generated by integrat-
ing the difference between curves from panel a and some noise). 

 

3 The decision problem  
Let us formalize the decision problem on the basis of the 
above example.  We assume that there are two populations 
of neurons whose activities provide evidence in support of 
the two alternative decisions (e.g., corresponding to the two 
groups of MT neurons in the above example).  We denote 
the activities of the first populations over a given trial by 
y1

1, y2
1, …, yn

1, and of the second population by y1
2, y2

2, …, 
yn

2. Let us assume that the samples yi
1 come from a normal 

distribution with mean I1 and standard deviation c, and sam-
ples yi

2 come from a normal distribution with mean I2 and 
standard deviation c. The goal of the decision process is to 
identify which mean activity, I1 or I2, is higher. Note that 
this is equivalent to asking whether I1–I2 is positive or nega-
tive, i.e. whether the differences between input samples 
have positive or negative mean. Let us denote the differ-
ences between activities of input populations by xi=yi

1–yi
2. 

Within this framework, the question of optimal decision 
making is the following: For given signal and noise levels 
I1, I2 and c in the input populations, what is the optimal 
strategy for integration of evidence (e.g., by LIP neurons) 
that would allow the most accurate and fastest decisions on 
average, over the course of many trials?  More precisely, 
there are two sub-questions: (i) Which strategy yields the 
lowest error rate (ER), when a given (fixed) time for deci-
sion is allotted, and (ii) which strategy yields the fastest 
reaction times (RT) for a given ER? 

0 0.5 1 1.5 2
0

50

100

150

200

time from stimulus onset [s]

fir
in

g 
ra

te

0 0.5 1 1.5 2
0

10

20

30

time from stimulus onset [s]

fir
in

g 
ra

te

LIP left
LIP right

MT left
MT right

The two questions above refer to optimality in two differ-
ent conditions under which decision tasks can be run.  The 
first question relates to a decision process in which partici-
pants are presented with the stimulus for a fixed duration, at 
the end of which they are expected to answer, usually on 
presentation of response prompt, thus constraining their 
RTs.  The second question refers to a decision process in 
which participants are asked to respond freely, when they 
are ready, usually being instructed to be as accurate and as 
fast as possible.  We refer to this situation as the free-
response protocol.  We focus only on this protocol. 

The answer to the second question, regarding optimality 
in the free-response paradigm, is provided by the sequential 
probability ratio test (SPRT) of Barnard (1946) and Wald 
(1947).  In contrast to classical decision procedures in which 
a previously fixed number of samples is collected before the 
decision is rendered, SPRT may be applied to continuously 
accumulating data.  A decision is made as soon as a thresh-
old, which depends upon the required accuracy, is reached. 
Specifically, let H1 and H0 denote the two alternative hy-
potheses, as above, and assume that samples xi in support of 
these are drawn at random from two probability distribu-
tions with densities p1(x), p0(x).  In particular, in the case of 
the decision problem defined at the beginning of this Sec-
tion, H1: p1(x) is a normal distribution with positive mean μ 
and standard deviation σ, H0 : p0(x) is a normal distribution 
with negative mean –μ and standard deviation σ. After each 
sample the ratio of probabilities p1(xi)/p0(xi) is calculated 
and the product of these likelihood ratios is accumulated.  
Observations continue as long as the likelihood ratio lies 
within the boundaries Z0 < Z1: 
 

  (1) 
 
 
Thus, after each measurement one recomputes the current 
likelihood ratio, thereby assessing the net weight of evi-
dence in favor of H1 over H0.  When the ratio first exceeds 
Z1 or falls below Z0, sampling ends and either H1 or H0 is 
respectively accepted; otherwise sampling continues. 



SPRT is the optimal test for decision-making on the basis 
of accumulating noisy data in the following sense: Among 
all fixed or variable sample decision methods that guarantee 
fixed error probabilities, SPRT requires on average the 
smallest number of samples to render a decision (Wald & 
Wolfowitz, 1948).  In other words, for given ER, SPRT de-
livers the fastest RT.   

The SPRT is equivalent to a random walk with thresholds 
corresponding to alternative decisions.  To see this, take the 
logarithm of both sides of Equation 1:  
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If we denote the logarithm of the likelihood ratio defined in 
Equation 1 by In, then Equation 1 implies that we iteratively 
accumulate In after each observation: 
 

)(
)(log

0

11

n

nnn

xp
xpII += −             (3) 

 
Let us evaluate the probability ratio for the hypotheses de-
fined earlier in the section. Equation 3 becomes: 
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Thus from the above equation, the SPRT is equivalent to a 
random walk starting at I0 = 0, and continuing until the loga-
rithm of the likelihood ratio In reaches one of the thresholds:  
log Z0 or log Z1. During this random walk the samples (i.e. 
the differences between the two inputs) are accumulated (a 
more rigorous and complete analysis of the relationship be-
tween SPRT and random walks is given by Gold & Shadlen, 
2001).  

4 Model of decision network 
Figure 2a shows the architecture of an abstract neural net-
work (or connectionist) model for the two alternative deci-
sion tasks (Usher & McClelland, 2001).  The model in-
cludes four units representing the mean activities of neu-
ronal populations: two input units representing populations 
providing evidence in support of the two alternative deci-
sions (e.g., corresponding to groups of movement sensitive 
MT neurons from the example in Section 2); and two deci-
sion units representing populations integrating the evidence 
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Figure 2. Usher & McClelland (2001) model. a) Architecture of the model: Arrows denote excitatory connections, line with filled circles 
denotes inhibitory connections. b) An example of the evolution of the model, showing y1 and y2 as functions of time.  c) The phase- or 
state space of the mutual inhibition model.  Horizontal axis denotes the activation of the first decision unit; vertical axis denotes the acti-
vation of the second decision unit.  The path shows the decision process from stimulus onset (where y1 = y2 = 0) to reaching a decision 
threshold (decision thresholds are shown by dashed lines).  The model was simulated for the following parameters: I1 = 2, I2 = 1.5, c = 
0.2, w = k = 1.5, Z = 1. The simulations were performed using Euler method with time-step Δt = 0.01. To simulate the Wiener processes, 
at every step of integration, each of the variables y1 and y2 was increased by a random number from normal distribution with mean 0 and 
variance c2Δt. 



(e.g., corresponding to the LIP neurons involved in control-
ling eye movement). 

The decision units are modeled as leaky integrators with 
activity levels denoted by y1 and y2.  Each decision unit ac-
cumulates evidence from an input unit with mean activity Ij 
and independent white noise fluctuations ηi of Root Mean 
Square (RMS) strength c (ηi denote independent Wiener 
processes).  These units also inhibit each other by way of a 
connection of weight w.  Hence, during the decision proc-
ess, information is accumulated according to: 

 

⎩
⎨
⎧

++−−=
++−−=

22122

11211

η
η

cIwykyy
cIwykyy

&

&
,  y1(0) = y2(0) = 0.   (4) 

 
In the equations above, the term k denotes the decay rate of 
the units’ activity (i.e., the leak) and –wyi denotes the mu-
tual inhibition.  Note that terms –kyi cause the activity to 
decay to zero in the absence of inputs to the unit (because if 
yi were positive in the absence of inhibition, input, and 
noise, i  would be negative, and yy& i would decrease).  The 
scale of the units’ activity is chosen so that zero represents 
the baseline activity of both units in the absence of all in-
puts, hence integration starts from y1(0) = y2(0) = 0. As soon 
as either unit exceeds a preassigned threshold Z, the model 
is assumed to make a response.   

The state of this model at a given moment in time is de-
scribed by the values of y1 and y2, and may therefore be rep-
resented as a point on a phase plane whose horizontal and 
vertical axes correspond to y1 and y2;  the evolution of ac-
tivities of the decision units during the decision process may 
be visualized as a path in this plane.  An example is shown 
in Figure 2c, corresponding to the individual time courses of 
y1 and y2 shown in Figure 2b.  

5 Model parameters resulting in optimal per-
formance 

As illustrated in Section 4, the behaviour of the model may 
be visualized by plotting states on the phase plane.  Figure 
2c shows a representative path in state space: initially the 
activities of both decision units increase due to stimulus 
onset, but as the units become more active, mutual inhibi-
tion causes the activity of the ‘weaker’ unit to decrease and 
the path moves toward the threshold for the more strongly 
activated unit (i.e., the correct choice). 

To better understand the dynamics of the model, Figure 3 
shows its vector fields for three different parameter ranges.  
Each arrow shows the average direction in which the state 
moves from the point indicated by the arrow’s tail, and its 
length corresponds to the speed of movement (i.e., rate of 
change) in the absence of noise.  In Figure 3, as for most 
other simulations described in this article, we set I1 > I2; that 
is, we assume that the first alternative is the correct one (the 
opposite case is obtained simply by reflecting about the di-
agonal y1 = y2).  

Note that in all three panels of Figure 3 there is a line (an 
eigenvector), sloping down and to the right, to which system 
states are attracted: The arrows point towards this line from 
both sides.  The orientation of this line represents an impor-
tant dimension:  the difference in activity between the two 
decision units.  Note that the evolution along the line differs 
for different values of decay and inhibition, as does the 
strength of attraction toward the line, and its location in the 
phase plane.  Most of the interesting dynamics determining 
decisions occur along this line.  Therefore, it is easier to 
understand these in terms of new coordinates rotated clock-
wise by 45° with respect to the y1 and y2 coordinates, so that 
one of the new axes is parallel to the attracting line.  These 
new coordinates are shown in Figure 3b, denoted by x1 (par-
allel to the attracting line) and x2.  The transformation from 
y to x coordinates is given by (cf. Seung, 2003): 

 

x1

x2

y1

y2 y2 y2

y1 y1

 a) Decay > Inhibition          b) Decay = Inhibition        c) Decay < Inhibition 
(λ < 0)              (λ = 0)            (λ > 0) 

Figure 3. Vector fields for the model.  In all plots I1 = 2, I2 = 1.  Inhibition (w) and decay (k) have different values in different panels: 
a) w = 0.5, k = 1.5; b) w = 1, k = 1; c) w = 1.5, k = 0.5. 
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Equations 5 derive from the geometry shown in Figure 

3b: x1 describes the difference between activities of the two 
decision units, while x2 describes the sum of their activities.  
The square root of two in the denominators of Equations 5 
is a normalization factor, included to ensure that y and x 
coordinates have the same scale. 

In deciding between two alternatives, it is natural that the 
difference between the activities of the units selective for the 
alternatives should be a useful descriptor of the decision 
process (see Section 3).  However, the new coordinates do 
more than merely emphasize this point.  They allow us to 
factor the two Equations 4 that describe the decision process 
into two decoupled processes, separating the evolution of 
the difference in the activity of the two units (x1) from the 
change in their overall (summed) activity (x2).  If we can 
show that the latter has minimal impact on the decision 
process, then we can reduce the description of this process 
from one that is two-dimensional to a simpler one that is 
one-dimensional.  As we will show, for certain parameters 
this one-dimensional description reduces to the diffusion 
model (Ratcliff, 1978). 

To transform Equations 4 into the new coordinates, we 
first calculate the derivative (rate of change) of x1.  Substi-
tuting Equations 4 into the first of Equations 5, we obtain: 
 

( 21
212121

21
1

2
1

222

2

ηη ccIIyywyyk

yyx

−+
−

+
−

+
−

−

=
−

=
&&

&

)
  

 
We assumed earlier that the noise processes for the input 
units are independent.  Since the standard deviation of the 
sum (or difference) of two independent random variables is 
equal to the square root of the sum of their variances, the 
noise process in x1 may be written: 
 

 ( ) '1'1
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In Equation 7, η1’ again denotes a noise process with mean 
equal to 0 and an RMS strength of 1.  Substituting Equation 
7 and the definition of x1 from Equation 5 into Equation 6, 
we obtain Equation 8.  Following analogous calculations for 
x2 , we have: 
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Equations 8 and 9 are uncoupled; that is, the rate of change 
of each xi depends only on xi itself (this was not the case for 
the decision units in Equations 4).  Hence, the evolution of 
x1 and x2 may be analyzed separately, and in fact each is 
described by an Ornstein-Uhlenbeck (O-U) process (Buse-
meyer & Townsend, 1993).  In particular, Equation 8, for 
the x1 process, involves a drift term proportional to the dif-
ference between the inputs I1 and I2.  This process may be 
stable or unstable, depending upon the relative magnitudes 
of k and w.  Equation 9, for the x2 process, always gives a 
stable O-U process (corresponding to attraction to the line in 
Figure 3), since –k – w < 0. 

We first consider the dynamics in the x2 direction, corre-
sponding to the summed activity of the two decision units.  
As noted above, on all panels of Figure 3 there is a line to 
which the noise-free state is attracted, implying that x2 ap-
proaches a limiting value as time increases.  The rate of this 
(exponential) approach is λ = k + w, and it is kept constant 
in the three cases of Figure 3 by setting k + w = 2. 

Figure 3 also shows that the dynamics of the system in 
the direction of coordinate x1 depends on the relative values 
of inhibitory weight w and decay k.  This dependence is due 
to the fact that the dynamics of x1 are described in Equation 
8 by a O-U process with coefficient λ = w – k.  When decay 
is larger than inhibition, then λ < 0, and there is also an at-
tractor for the x1 dynamics, as shown in Figure 3a.  When 
inhibition is larger than decay, then λ > 0, and there is re-
pulsion from the fixed point in the x1 direction, as shown in 
Figure 3c.  The fixed point is a saddle in this case. 

Since |k+w| > |k-w| for all parameter values k>0 and w>0, 
the average state of the system approaches the attracting line 
faster (and often considerably faster) than it moves along it 
(e.g., see Figure 2c).  Hence, the decision process divides 
into two phases:  an initial phase in which the activity of 
both units increases quickly, and there is rapid equilibration 
to a neighborhood around the attracting line; followed by 
slower motion along the line, governed by an O-U process 
in which the difference between the activities of the two 
units grows as one of them prevails and the other subsides.   

(6)

Most relevant to the current discussion, when inhibition 
equals decay the term (w – k) x1 in Equation 8 disappears.  
The vector field for this case is shown in Figure 3b.  When 
inhibition and decay are both fairly strong (as in Figure 3b), 
the attraction toward the line dominates diffusion along it.  
Hence, typical paths migrate quickly toward the attracting 
line and then move slowly along (or near) it. 

In this case when inhibition is equal to decay, the position 
of the system in direction x1 simply accumulates the differ-
ence between the evidence in support of first decision and in 
support of the second decision, and thus undergoes the dif-
fusion process (Stone, 1960; Lamming, 1968; Ratcliff, 
1978). Hence when inhibition is equal to decay, the Usher & 
McClelland model implements the optimal sequential prob-
ability ratio test described in Section 3.  



Thus one can expect that the Usher & McClelland (2001) 
model makes the fastest decisions for fixed error rates when 
it is closest to the diffusion model, namely when the decay 
equals inhibition. This is indeed the case, as illustrated in 
Figure 4. 

 
Figure 4.  Performance of the model.  The following parameters 
were kept fixed: I1 = 1, I2 = 0, c = 1, w = 1. Decay (k) is varied 
(shown on X-axis). Y-axis shows decision time (DT) for the 
threshold set such that error rate (ER) = 10%.  For each set of pa-
rameter values, the threshold was increased from zero in steps of 
0.01 until the model reached an ER less than or equal to 10%.  For 
each value of the threshold 10,000 trials were simulated.  The dots 
below and above the line indicate the standard error; that is, the 
standard deviation of DTs across trials divided by the square root 
of the number of trials (100). 

 
 
To summarize, when decay is equal to inhibition and both 

are relatively large, the Usher & McClelland model (2001) 
approximates the sequential probability ratio test and thus 
achieves the optimal performance. Thus we predict that in 
cortical decision network effective decay is also equal to 
effective inhibition. 

6 Further directions 
We have extended the theory of neural bases of decision 
optimization in a number of directions: 

• We have shown how more biologically realistic 
model by Wang (2002) may implement the optimal 
test (Bogacz et al., 2005). 

• We analyzed the values of optimal threshold 
maximizing the reward rate, which yields a simple 
relationship between error rates and reaction times, 
which has been confirmed in a behavioural ex-
periment (Bogacz et al., 2005). 

• We analyzed biased decisions in which one of al-
ternatives is more frequent or more rewarded 
(Bogacz et al., 2005). 

• We analysed non-linear version of Usher & 
McClelland model (2001), and role of gain modu-
lation (Brown et al., 2005) 

• We investigated how the optimality generalizes to 
multiple alternatives (McMillen & Holmes, 2005). 
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