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Summary. Canards are periodic orbits for which the trajectory follows both the at-
tracting and repelling parts of a slow manifold. They are associated with a dramatic
change in the amplitude and period of a periodic orbit within a very narrow interval of a
control parameter. It is shown numerically that canards occur in an appropriate param-
eter range in two- and three-dimensional models of the platinum-catalyzed oxidation
of carbon monoxide. By smoothly connecting associated stable and unstable manifolds
in an asymptotic limit, we predict parameter values at which such canards exist. The
relationship between the canards and saddle-loop bifurcations for these models is also
demonstrated. Excellent agreement is found between the numerical and analytical results.
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1. Introduction

Canards are periodic orbits for which the trajectory follows both the attracting and re-
pelling parts of a slow manifold. They are associated with a dramatic change in the
amplitude and period of a periodic orbit within a very narrow interval of a control pa-
rameter. Canards may be present in singularly perturbed systems of ordinary differential
equations (ODEs): A common scenario in which they arise is that a “small” stable pe-
riodic orbit is born in a supercritical Hopf bifurcation and rapidly changes to a “large”
relaxation oscillation periodic orbit as a control parameter is varied. Canards are the inter-
mediate periodic orbits between the small and large orbits—the shape of these periodic
orbits in phase space can resemble a duck, hence the name “canard,” the French word for
“duck.” Canards were first found in a study of the van der Pol system using techniques
from nonstandard analysis [1], [2]; other useful references for this approach include [3],
[4]. Responding to a challenge posed by nonstandard analysts, Eckhaus applied classical
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asymptotic analysis to the study of canards [5] (see also [6], [7]). Later, an interpretation
of canards in terms of invariant manifolds was given in [8]–[10]; a related approach is
the use of geometric singular perturbation theory [11], [12], [13]. Canards also arise
in the study of the singular Hopf bifurcation [14]–[16]. In addition to the van der Pol
system (e.g. [2], [5], [17], [11], [18]), canards have been found and analyzed to varying
degrees for a variety of chemical [10], [19]–[24], biological [14], [15], [25]–[28], and
other systems [29]–[33]. For chemical systems (such as the system to be considered in
this paper), canards may be important for diffusion-induced instabilities [34] and the
presence of mixed-mode oscillations [23]. While much of the study of canards has been
for two-dimensional systems, progress has also been made for higher-dimensional gen-
eralizations (e.g. [23], [28], [35], [36]). Issues related to the numerical computation of
canards are discussed, for example, in [28], [37].

In this paper, canards are found and analyzed for models of the oxidation of carbon
monoxide (CO) on the surface of platinum (Pt), where Pt serves as a catalyzing agent
for the reaction. For simplicity, we ignore surface diffusion and assume that the sys-
tem is isothermal. Section 2 discusses the model proposed by [38] for this system (a
three-dimensional system of ODEs) and presents numerical evidence for the presence
of canards. Canards have historically been considered for two-dimensional systems of
equations (which also allows for a simpler interpretation), so Section 3 uses numerical
arguments to justify a reduction to a two-dimensional model characterized by evolution
of one variable on a fast timescale and the other on a slow timescale (cf. [39]). It is shown
numerically that canards also exist for this two-dimensional model. Section 4 then gives
an asymptotic analysis of the two-dimensional model in the spirit of [10]. Specifically,
by smoothly connecting associated stable and unstable manifolds in an asymptotic limit,
parameter values at which canards exist are predicted. Section 5 then extends the tech-
niques used in Section 4 to predict parameter values at which canards exist for the full
three-dimensional model. This procedure gives excellent agreement with results from
numerical computations for both the two-dimensional and three-dimensional models, as
described in Section 6. Section 7 then describes the relationship between canards and
saddle-loop bifurcations for the models. Finally, Section 8 gives concluding remarks.

2. The Full Model

Oscillations in the oxidation of CO have been observed on surfaces of Pt defined by
several different crystal planes (see, e.g., [40] and references therein). We focus on the
Pt(110) surface for which oscillations have been found for temperatures T in the range
440K < T < 590K and partial pressures pCO and pO2 of CO and O2, respectively, in
the range from 10−5 to 10−3 mbar, with 1 < pO2 /pCO < 24 [40]. Chemically, oxidation
proceeds via the Langmuir-Hinshelwood (LH) mechanism in which both CO and O2

have to adsorb onto the catalytic Pt surface before reacting with each other [41]:

CO + ∗ � COad,

O2 + 2 ∗ → 2Oad,

Oad + COad → CO2 + 2 ∗ .
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Here ∗ denotes an empty adsorption site, and the subscript “ad” denotes an adsorbed
species. Note that adsorbed CO inhibits the adsorption of oxygen, but the CO adsorption
is not affected by adsorbed oxygen [42]. In addition, there is a dynamically occurring
surface phase transition based on the CO coverage which is crucial to the presence of
oscillations [38]:

1 × 2
COad

� 1 × 1.

The clean Pt(110) surface exhibits a 1 × 2 missing row structure, while the CO-covered
surface exhibits a 1×1 structure. The fraction of the surface exhibiting the 1×1 structure
between these extreme coverages increases monotonically with the CO coverage.

A three-dimensional system of ODEs for the isothermal Pt(110)-catalyzed oxidation
of CO in the absence of surface diffusion was proposed in [38]:

du

dt
= pCOκcsc

(
1 −

(
u

us

)3
)

− kdu − kruv, (1)

dv

dt
= pO2κoso

(
1 − u

us
− v

vs

)2

− kruv ≡ Fv(u, v, w), (2)

dw

dt
= kp(h(u) − w). (3)

Here u is the surface coverage of CO, v is the surface coverage of oxygen, and w is the
fraction of the surface area exhibiting the 1 × 1 structure. The variables u, v, w must
each lie in the interval [0, 1]. The sticking coefficient of oxygen depends on the surface
structure and is given by

so = wso1 + (1 − w)so2. (4)

The function h(u) is found by fitting experimental data, and in [38] was taken to be the
C1 function

h(u) ≡




0 u ≤ 0.2∑3
i=0 ri ui 0.2 ≤ u ≤ 0.5

1 u > 0.5

,

where

r3 = − 1

0.0135
, r2 = −1.05r3, r1 = 0.3r3, r0 = −0.026r3.

Note that h′′(u) is discontinuous at u = 0.2 and u = 0.5. The reaction rates kr, kd, kp

are found from the Arrhenius law:

ki = k0
i exp

[
− Ei

RT

]
, i = r, d, p.

Following [38], the physical constants will be taken to be the values given in Table 1.
For the physical parameters of interest, the model given by (1–3) always has at least

one and may have up to three fixed points. In addition, the model can have periodi-
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Table 1. Physical constants for the model given by (1–3), following [38].

CO adsorption Rate of CO hitting surface κc = 3.135 × 105 s−1mbar−1

Sticking coefficient sc = 1
Saturation coverage us = 1

O2 adsorption Rate of O hitting surface κo = 5.858 × 105 s−1mbar−1

Sticking coefficients so1 = 0.6, so2 = 0.4
Saturation coverage vs = 0.8

Rates Reaction k0
r = 3 × 106 s−1

Er = 10 kcal/mol
Desorption of CO k0

d = 2 × 1016 s−1

Ed = 38 kcal/mol
Phase transition k0

p = 1 × 102 s−1

Ep = 7 kcal/mol
Gas constant R = 0.001987 kcal/(K mol).

cally oscillating solutions according to the following mechanism. Suppose that we start
with small CO coverage (i.e., u is small), which implies that the fraction of the surface
with the 1 × 1 structure will be small (i.e., w is small). Furthermore, suppose that the
partial pressures have been chosen so that, taking into account the fact that adsorbed
CO inhibits the adsorption of oxygen, the adsorption of CO dominates (i.e., u is in-
creasing and v is decreasing). The increasing coverage of CO increases the fraction of
the surface with the 1 × 1 structure (i.e., w increases), thereby increasing the sticking
coefficient so for oxygen. The resulting increased oxygen coverage leads to increased
reaction between COad and Oad to give CO2, which decreases the CO coverage (i.e.,
u decreases). The decreasing CO coverage causes the fraction of the surface with the
1 × 1 structure to decrease (i.e., w decreases). This lowers so, so that the coverage of
oxygen decreases (i.e., v decreases). Thus, we are back where we started: u and w are
small, and the adsorption of CO will dominate. The process then starts over again, giving
oscillations.

Bifurcation sets for fixed point and periodic solutions of (1–3) are discussed in detail
in [38]. Figure 1 shows representative results for T = 540K ; these were obtained using
the numerical continuation package AUTO [43] and reproduce the results of Figure 8
of [38]. We motivate our upcoming analysis by considering the bifurcation diagram
corresponding to a slice through parameter space for fixed T = 540K , fixed pCO =
45 × 10−6 mbar, and varying pO2 (see Figure 2(a)). For decreasing pO2 , a periodic orbit
is born in a supercritical Hopf bifurcation at

ph,3D
O2

= 148.1002 × 10−6 mbar, (5)

and dies when a saddle-node bifurcation of fixed points occurs on it at pO2 = 138.9732×
10−6 mbar. Although the periodic orbit deforms smoothly as pO2 is varied over this range,
there is clearly a small range of parameters over which it very rapidly changes its char-
acteristics (see the inset of Figure 2(a) and the time series plots in Figure 2(b,c)). Careful
numerics using a variable-step fourth-order Runge-Kutta scheme with a maximum step
size of 0.01 show that this transition occurs at

pc,3D
O2

≈ 147.741139211546 × 10−6 mbar. (6)
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Fig. 1. Bifurcation sets for T = 540K . The lines labeled h, sn, and sniper corre-
spond to Hopf bifurcations, saddle-node bifurcations of fixed points, and saddlenode
bifurcations of fixed points occurring on the periodic orbit, respectively. The dashed
vertical line shows the cut through parameter space giving the results shown in Fig-
ure 2(a).

This parameter value is given to such high accuracy because larger values (even increasing
the last decimal to 7) give a “small” periodic orbit as in Figure 2(b), while smaller values
(even decreasing the last decimal to 5) give a “large” periodic orbit as in Figure 2(c).
The periodic orbits for pO2 near pc,3D

O2
are canards. The “large” relaxation oscillation

limit cycles could be approximated using matched asymptotic expansions as described,
e.g., in [44]. However, in this paper we focus on the canards: By applying asymptotic
analysis to a reduced model of (1–3) and then to the full equations, we will show how
to predict with very high accuracy parameter values at which such transitions occur, and
hence parameter values near which canards will be present.

Before proceeding, we note that not all cuts through parameter space will give a rapid
change in the characteristics of the periodic orbit such as we saw in Figure 2. Figure 3
shows the bifurcation diagram corresponding to fixed T = 540K , fixed pCO = 30×10−6

mbar, and varying pO2 . A periodic orbit is born and dies in supercritical Hopf bifurcations
at pO2 = 55.8552 × 10−6 mbar and pO2 = 69.8219 × 10−6 mbar, and shows no sudden
change in characteristics over the parameter range for which it exists.

For reference, we also note the presence of codimension-two bifurcations for (1–3)
as given in Table 2 for T = 540K ; these bifurcations are discussed in [38] (see, e.g.,
Figure 9 of that paper). The neutral-saddle-loop bifurcation is not resolved because of the
difficulty in reliably detecting saddle-node bifurcations of periodic orbits near parameter
values at which canards exist. Here we remark only that several of these codimension-
two bifurcations have associated codimension-one saddle-loop bifurcations [45], [38];
the relationship of these saddle-loop bifurcations to canards will be discussed in Sec-
tion 7.
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Fig. 2. (a) Bifurcation diagram for fixed T = 540K and fixed pCO = 45 × 10−6 mbar
corresponding to the dashed vertical line in Figure 1. 〈u〉 is the time-average of u for
the solution. The branches labeled f.p. (p.o.) are fixed point (periodic orbit) branches.
Solid (dashed) lines indicate stable (unstable) solutions. Circles (diamonds) indicate
Hopf (saddle-node) bifurcations. The inset zooms in on the parameter range for which
the periodic orbit rapidly changes its characteristics. The time series for stable periodic
orbits on both sides of this transition are shown for (b) pO2 = 147.742 × 10−6 mbar and
(c) pO2 = 147.740 × 10−6 mbar.

Table 2. Codimension-two bifurcations for (1–3) for T = 540K
using the notation of [38].

Bifurcation pCO(×10−6 mbar) pO2(×10−6 mbar)

Takens-Bogdanov 32.8 66.3
Takens-Bogdanov 114.9 1289.7

Cusp 32.6 65.4
Cusp 167.7 6823.0

Saddle-node loop 33 67
Saddle-node loop 50 180
Degenerate Hopf 62 271

Neutral-saddle loop unresolved unresolved



Canards in a Surface Oxidation Reaction 325

50 60 70

0.3

0.5

0.4

hui

f.p.
p.o.

pO2
(�10�6 mbar)

Fig. 3. Bifurcation diagram for fixed T = 540K and fixed pCO = 30 × 10−6

mbar with the same conventions as in Figure 2(a).

3. Reduction to a Two-Dimensional Model

Numerical integration of (1–3) suggests that the variable v can be replaced by its adiabatic
value, i.e., the value obtained by solving Fv(u, v, w) = 0 for v [39]. This is not obvious
from the examination of the smallness of different parameters [39], and before giving
the resulting equations we examine the validity of the approximation in more detail. Our
discussion is for a specific set of parameter values; similar results are found throughout
the parameter range of interest.

Consider the parameters T = 540K , pCO = 45 × 10−6 mbar, and pO2 = 147.740 ×
10−6 mbar; the stable periodic orbit for these parameters was shown in Figure 2(c). For
these parameter values there is also an unstable fixed point at (u, v, w) = (0.317875,

0.128795, 0.341832) with eigenvalues

λs = −185.735, ρu ± iωu = 0.0375 ± 1.2174i. (7)

The large negative eigenvalue causes trajectories in the neighborhood of the fixed point
to rapidly approach a two-dimensional surface which can be approximated locally by
doing an unstable manifold reduction (this is completely analogous to a center manifold
reduction as described, e.g., in [45]). The resulting two-dimensional surface, approx-
imated to quadratic order and found with the assistance of Mathematica, is shown in
Figure 4; also shown is the two-dimensional surface defined by Fv(u, v, w) = 0 and
the trajectory on the stable periodic orbit. The two surfaces are nearly coincident, which
provides strong evidence that near the fixed point the adiabatic approximation for v is
very good.

The validity of the adiabatic approximation away from the fixed point is explored
by numerically calculating the distance from the trajectory on a periodic orbit to the
surface defined by Fv(u, v, w) = 0. Specifically, this distance is found by minimizing
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Fig. 4. Results for the parameters T = 540K , pCO = 45 × 10−6

mbar, and pO2 = 147.740 × 10−6 mbar. The (unstable) fixed
point is shown as a solid dot. The lines with double arrows are the
strongly contracting directions defined by the eigenvector for the
negative eigenvalue of the fixed point. The darker (lighter) surface
shows the local quadratic approximation to the unstable manifold
of the fixed point (the surface defined by Fv(u, v, w) = 0); the
intersection of these surfaces is a curve passing through the fixed
point. The dashed line shows a segment of the trajectory on the
(stable) periodic orbit which lies very near the unstable manifold.
Clearly, near the fixed point the adiabatic approximation for v is
excellent.

the quantity

d = [(upo(t) − u)2 + (vpo(t) − v)2 + (wpo(t) − w)2]1/2, (8)

for each t subject to the constraint Fv(u, v, w) = 0, where (upo(t), vpo(t), wpo(t)) is the
position on the periodic orbit at time t . This leads to the algebraic system of equations

∂d

∂u
= λ

∂ Fv

∂u
,

∂d

∂v
= λ

∂ Fv

∂v
,

∂d

∂w
= λ

∂ Fv

∂w
, Fv(u, v, w) = 0,

to be solved for u, v, w, λ for each t (here λ is a Lagrange multiplier). The values obtained
for u, v, w then allow the computation of d as a function of t using (8). Figure 5 shows
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Fig. 5. Normalized distance d/〈r〉 between the trajectory on the stable periodic
orbit and the surface defined by Fv(u, v, w) = 0 for T = 540K , pO2 = 45×10−6,
and (a) pO2 = 147.742 × 10−6 mbar and (b) pO2 = 147.740 × 10−6 mbar. The
initial conditions are the same as for the corresponding plots in Figure 2(b,c), but
the time axis has a different scale.

d/〈r〉 for the periodic orbits shown in Figure 2(b,c), where

〈r〉 ≡ 〈[(upo(t) − 〈u〉)2 + (vpo(t) − 〈v〉)2 + (wpo(t) − 〈w〉)2]1/2〉,
and 〈·〉 denotes the time-average. 〈r〉 is thus the “average radius” of the periodic orbit,
and is approximately 0.0719 and 0.2731 for the cases shown in Figure 5(a) and (b),
respectively. There are spikes during fast phases of the motion, but in both cases d/〈r〉
remains quite small throughout the entire periodic orbit. Indeed, the maximum value
of d/〈r〉 is approximately 0.015 for both periodic orbits. Similar results hold for other
parameter values, so we conclude that the approximation made in [39] that v can be
replaced by its adiabatic value is quite good, even away from the fixed point.

Letting t ′ = kpt and dropping the prime, (1–3) may be rewritten as

ε
du

dt
= β(1 − u3) − γ u − uv/vs ≡ fu(u, v), (9)

ε
dv

dt
= α(w + s) (1 − u − v/vs)

2 − uv/vs ≡ fv(u, v, w; α), (10)

dw

dt
= h(u) − w ≡ g(u, w), (11)

where

α = pO2κo(so1 − so2)

krvs
, β = pCOκc

krvs
, γ = kd

krvs
,

ε = kp

krvs
, s = so2

so1 − so2
= 2,

and we have used the fact that sc = us = 1. The quantities α, β, γ, ε, and s are dimen-
sionless. Solving fv(u, v, w; α) = 0 for v (i.e., making the adiabatic approximation),
we obtain (cf. [39])

v = vs y(u, w),

where

y(u, w) ≡ 1 − u + Au −
√

2Au(1 − u) + (Au)2, A ≡ 1

2α(w + s)
. (12)
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This gives the two-dimensional model

ε
du

dt
= f (u, w), (13)

dw

dt
= g(u, w), (14)

where

f (u, w) ≡ β(1 − u3) − γ u − uy(u, w). (15)

Note that the expression for γ in [39] has a typo, in that us should be replaced by vs.
Figure 6 shows numerically calculated stable periodic orbits for (13,14) for T =

540K , pCO = 45 × 10−6 mbar, and with different values of pO2 . These results were
obtained using a variable-step fourth-order Runge-Kutta scheme with a maximum step
size of 0.01. Note the very rapid change in the shape of the periodic orbit as pO2 is varied
by only a tiny amount. Numerically, the transition between “small” and “large” periodic
orbits occurs at

pc,2D
O2

≈ 147.9057052043 × 10−6 mbar. (16)

Canards are the periodic orbits which are present very close to this parameter value and
which follow the du

dt = 0 nullcline for an appreciable distance after crossing the dw
dt = 0

nullcline. For reference, the Hopf bifurcation for (13,14) for these parameters occurs at

ph,2D
O2

= 148.2408 × 10−6 mbar. (17)
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Fig. 6. Stable periodic orbits for (13,14) with T = 540K , pCO = 45 × 10−6 mbar,
and (a) pO2 = 147.91 × 10−6 mbar, (b) pO2 = 147.90575 × 10−6 mbar, (c) pO2 =
147.90570520432 × 10−6 mbar, (d) pO2 = 147.90570520431 × 10−6 mbar, (e) pO2 =
147.9057052 × 10−6 mbar, (f) pO2 = 147.905 × 10−6 mbar. The dashed line is the
nullcline of g(u, w), while the dash-dotted line is the nullcline of f (u, w) (the nullclines
do not change appreciably over the range of pO2 shown in the figure). The sketch in
the corner shows why the name “canard” was introduced to describe such solutions.
Solutions such as (c) and (d) are sometimes referred to as “a duck without a head” and
“a duck with a head,” respectively.
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The closeness of ph,2D
O2

to ph,3D
O2

(comparing (17) to (5)) and pc,2D
O2

to pc,3D
O2

(comparing
(16) to (6)) provides further evidence of the validity of the adiabatic approximation for v.

In the next section, we will show how to predict the parameter value pc
O2

at which the
transition between “small” and “large” periodic orbits occurs. For a typical operating
temperature T ≈ 540K , we find that ε ≈ 1 × 10−3 � 1. We are thus led to study
(13,14) as singularly perturbed differential equations. We note from (7) that |ρu /λs | ≈
2×10−4 � ε, that is, even though ε is small, it is not as small as the ratio of the real parts
of the slow and fast eigenvalues for the three-dimensional system. Thus, reduction from a
three-dimensional system to a two-dimensional system followed by singular asymptotics
on the reduced system seems justified. It will be useful to introduce a new time variable
τ = t /ε which takes (13,14) into

du

dτ
= f (u, w), (18)

dw

dτ
= εg(u, w). (19)

4. Asymptotic Analysis of the Canard Manifold for the Two-Dimensional Model

From (12) and (15), the nullcline S = {(u, w) | f (u, w) = 0} is given by

w = −u2(γ u + β(u3 − 1)) + αs((1 + γ − u)u + β(u3 − 1))2

α((1 + γ − u)u + β(u3 − 1))2
. (20)

If ε is (artificially) taken to be zero, (18,19) imply that S is invariant and consists entirely

of fixed points. Also, trajectories in phase space will obey dw
du = 0. Figure 7 shows S

and the corresponding trajectories for ε = 0 and T = 540K , pCO = 45 × 10−6 mbar,
pO2 = 148 × 10−6 mbar, i.e., with

α = 0.0806091, β = 0.0655833, γ = 0.0386961. (21)

It also shows the points M and N which are defined as the local minima and maxima
of the graph of S, respectively. The direction of the trajectories follows from the fact
that f (u, w) < 0 (> 0) for points in (u, w) space above (below) S, as may be readily
verified. Alternatively, for ε = 0 the Jacobian for the fixed points on S from (18,19) is

J =

 ∂ f

∂u

∣∣∣∣
S

∂ f

∂w

∣∣∣∣
S

0 0


 .

Thus, each fixed point has one zero eigenvalue, and one eigenvalue equal to (∂ f /∂u)|S .
With Mathematica, we calculate the nontrivial eigenvalue for these parameters (see
Figure 8). This nontrivial eigenvalue is negative (positive) for the pieces of S which are
attracting (repelling). It is equal to zero only at the points M and N .

The curve S is said to be normally hyperbolic on the pieces for which (∂ f /∂u)|S is
bounded away from zero. Invariant manifold theorems then imply that for ε sufficiently
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Fig. 7. The curve S and phase space trajectories for T = 540K , pCO = 45×10−6 mbar,
and pO2 = 148 × 10−6 mbar but with ε artificially taken to be zero.

small, invariant manifolds persist within O(ε) of these pieces; these manifolds inherit
their normal stability properties from the original pieces of S [46], [47], [48]. Specifi-
cally, there will be a stable (unstable) manifold MS (MU ) within O(ε) of the attracting
(repelling) pieces of S. Both MS and MU can be extended beyond the points M and
N according to the flow, but the extensions may leave an O(ε) distance of S and may
also lose their normal stability properties. Generically, the distance between MS and MU

is nonzero near M and N . The two generic situations near M for ε > 0 are shown in
Figure 9 (cf. Figure 2 of [10] and Figures 9 and 10 of [13]). Consider a trajectory which
follows the stable manifold MS . For the case shown in Figure 9(a), near M the trajectory
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Fig. 9. The two generic situations for the relative positions of the stable and unstable manifolds
near M for ε > 0. The trajectory follows the stable manifold MS , and after passing near M may
either (a) cross S and return quickly to a neighborhood of MS , or (b) undergo a large excursion
before returning to a neighborhood of MS .

is pushed to the left, crosses S, and quickly returns to the vicinity of MS . On the other
hand, for the case shown in Figure 9(b), near M the trajectory is pushed to the right,
and can only return to the vicinity of MS after a large excursion through another part
of phase space. The distance between MS and MU near M changes as parameters are
varied, and it is possible for particular parameters that the manifolds MS and MU will
connect smoothly. Following [10], the invariant curve is then called the canard manifold.
In this situation, the trajectory follows the canard manifold both along its attracting and
repelling parts. (See [12] and [13] for a more detailed discussion of the relationship
between canards and invariant manifolds.)

The canard manifold lacks normal hyperbolicity at the point where MS connects with
MU and may therefore be nonunique. As an illustration of this point, consider the vector
field

dX

dt
= ε(µ + X2),

dY

dt
= XY, (22)

for 0 < µ < 1 and ε � 1. For ε = 0, S ≡ {(X, Y ) | Y = 0} defines a curve of fixed
points. A linear stability analysis shows that for any δ > 0, the set S− ≡ {(X, Y ) |
Y = 0, X < −δ} is normally attracting and the set S+ ≡ {(X, Y ) | Y = 0, X > δ} is
normally repelling. As described above, for ε sufficiently small, invariant manifolds MS

and MU persist withinO(ε) of S− and S+, respectively. A canard manifold is obtained by
smoothly connecting MS and MU . Now, t may be eliminated as an independent variable
from (22) to give

dY

dX
= XY

ε(µ + X2)
.

This has solutions

Y (X) = c(X2 + µ)1/(2ε) (23)

for any c. As ε → 0, Y (X) and all of its derivatives are equal to zero at X = 0. Thus, (23)
gives a one-parameter family of manifolds (parametrized by c) which smoothly connect
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MS and MU in the limit ε → 0. Each of these manifolds is a canard manifold. Fortunately,
this nonuniqueness of canard manifolds will not affect our asymptotic analysis later in this
section because we only impose conditions in a very small neighborhood of where MS

and MU smoothly connect (cf. the results for the nonuniqueness of the center manifold
in [49]; see also [13]).

In a typical scenario for the oxidation models considered in this paper, a “small” stable
periodic orbit is born in a supercritical Hopf bifurcation, with the manifolds as sketched
in Figure 9(a). As the control parameter is varied away from the Hopf bifurcation point,
the relative position of the manifolds switches to the case sketched in Figure 9(b), giving
a “large” stable periodic orbit. The canards are the intermediate periodic orbits between
the small and large periodic orbits, and are expected to exist for a range of control
parameters of O(e−K /ε) for some K > 0 as ε → 0 [5], [13].

In the remainder of this section, we will find equations for the parameter values at
which canard solutions exist for the oxidation model by requiring the existence of a
canard manifold which stays within O(ε) of S. This is accomplished through asymptotic
expansions, and we closely follow the procedure given in [10]. Similar calculations have
also been done from the perspective of nonstandard analysis (e.g. [4]). Note that for
the simpler case of the van der Pol equation, it has been proven that the correspond-
ing asymptotic series obtained by this procedure has zero radius of convergence [50].
However, experience has shown that the first few terms often give very good results.
Here we will only calculate the first two terms in the asymptotic series. In Section 6 we
will compare the predictions of this section with numerical results for both the two- and
three-dimensional models given by (13,14) and (9–11), respectively, and find astounding
agreement!

For definiteness, we hold T and pCO fixed and vary pO2 . In other words, we are treating
the parameters β, γ, ε, s as fixed, and allow only α to vary. We will derive equations
for the first two terms in an asymptotic expansion for the value of α at which canard
solutions exist. A similar procedure to that given below could be used to analyze cases
where T or pCO are allowed to vary. From (13,14), trajectories obey

[β(1 − u3) − γ u − uy(u, w)]
dw

du
= ε[h(u) − w]. (24)

We expand α in powers of ε about a fixed value α0 to be defined below:

α = α0 + εα1 + ε2α2 + · · · . (25)

We seek an approximation to the canard manifold:

w(u; α) = w0(u; α0) + εw1(u; α0, α1) + ε2w2(u; α0, α1, α2) + · · · . (26)

Finally, using (26) to express w in terms of u, we expand

y(u, w; α) = y0(u; α0) + εy1(u; α0, α1) + ε2 y2(u; α0, α1, α2) + · · · . (27)
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For future reference, we obtain equations for y0 and y1 in terms of the wi ’s by expanding
(12) in powers of ε:

y0 = 1 − u + u

2α0(w0 + s)
−
(

u(1 − u)

α0(w0 + s)
+
(

u

2α0(w0 + s)

)2
)1/2

= u − 2α0(u − 1)(w0 + s) −
√

u2 − 4α0u(u − 1)(w0 + s)

2α0(w0 + s)
, (28)

y1 = u[α1(w0 + s) + α0w1]

2α2
0(w0 + s)2

[
u − 2α0(u − 1)(w0 + s)√
u2 − 4α0u(u − 1)(w0 + s)

− 1

]
, (29)

where for brevity w0 = w0(u; α0) and w1 = w1(u; α0, α1). For the asymptotic expan-
sions (25–27) to be valid, it is necessary that wi = O(1) and yi = O(1) for i = 0, 1, . . . .

At O(ε0), (24) gives

[β(1 − u3) − γ u − uy0]
dw0

du
= 0.

For a nontrivial w0,

β(1 − u3) − γ u − uy0 = 0. (30)

Using (28), this implies that

w0(u; α0) = −u2(γ u + β(u3 − 1)) + α0s((1 + γ − u)u + β(u3 − 1))2

α0((1 + γ − u)u + β(u3 − 1))2
. (31)

Comparing this with (20), we see that w0(u; α0) describes the nullcline f (u, w) = 0
when α = α0. This is as expected because the canard manifold is an O(ε) distance from
the slow manifold S which exists for ε = 0. We define uM to be the u coordinate at the
local minimum M of the graph of w0(u; α0) (see Figure 7).

To define the quantity α0, we need to consider (24) at O(ε). Using (30), we obtain

−uy1
dw0

du
= h(u) − w0(u; α0).

Rearranging,

y1 = w0(u; α0) − h(u)

uw′
0(u; α0)

, (32)

where the prime denotes differentiation with respect to u. Notice that by the definition
of uM , w′

0(u; α0) → 0 as u → uM . In order to keep y1 bounded (as required for the
asymptotic expansion to be valid), it is necessary that

lim
u→uM

[w0(u; α0) − h(u)] = w0(uM ; α0) − h(uM) = 0.

Thus, we choose α0 so that w0(uM ; α0) = h(uM). But from (14), this is the condition
that dw

dt = 0 at (u, w) = (uM , w0(uM ; α0)); recalling that w0(uM ; α0) is the nullcline
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where du
dt = 0 for α = α0, we conclude that the value of α0 is that for which a fixed

point to (13,14) exists at point M . The values of α0 and uM are found by solving the
simultaneous equations

w0(uM ; α0) = h(uM), w′
0(uM ; α0) = 0. (33)

Because of the complicated form of the functions, this is best done numerically for
specific parameters.

In the following, we will need expressions for y1 and y′
1 in the limit as u → uM .

These follow from applying L’Hôspital’s rule to (32) and its derivative with respect to u:

lim
u→uM

y1 = − h′(uM)

uMw′′
0(uM ; α0)

, (34)

lim
u→uM

y′
1 = (−uM h′′(uM)w′′

0(uM ; α0) + uM [w′′
0(uM ; α0)]

2 (35)

+ h′(uM)(2w′′
0(uM ; α0) + uMw′′′

0 (uM ; α0)))/(2u2
M [w′′

0(uM ; α0)]
2).

An equation for α1 can now be obtained by considering (24) at O(ε2). Using (30),

−uy1
dw1

du
− uy2

dw0

du
= −w1.

Rearranging,

y2 = w1(u; α0, α1) − uy1w
′
1(u; α0, α1)

uw′
0(u; α0)

.

Similar to above, since the denominator of this expression goes to zero as u → uM , in
order to keep y2 bounded it is necessary that

lim
u→uM

[w1(u; α0, α1) − uy1w
′
1(u; α0, α1)] = 0.

Using (34), this becomes

lim
u→uM

[w1(u; α0, α1)] + h′(uM)

w′′
0(uM ; α0)

lim
u→uM

[w′
1(uM ; α0, α1)] = 0. (36)

Now, rearranging (29), we obtain

w1(u; α0, α1) = G(u; α0)y1 + H(u; α0, α1), (37)

where

G(u; α0) = 2α0(w0 + s)2

u

[
u−2α0(u−1)(w0+s)√
u2−4α0u(u−1)(w0+s)

− 1

] , H(u; α0, α1) = −α1

α0
(w0 + s).

Therefore,

lim
u→uM

[w1(u; α0, α1)] = G(uM ; α0)

(
lim

u→uM

y1

)
+ H(uM ; α0, α1),

lim
u→uM

[w′
1(u; α0, α1)] = G ′(uM ; α0)

(
lim

u→uM

y1

)
+ G(uM ; α0)

(
lim

u→uM

y′
1

)

+ H ′(uM ; α0, α1).
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With these expressions and using (34, 35), (36) becomes an equation for α1 in terms
of known quantities. We do not give an explicit expression for α1 because it is quite
cumbersome, but note that (36) can be solved numerically for specific parameters using,
e.g., Mathematica.

In principle, we could continue this procedure to find α2, α3, . . . . However, as shown
in Section 6, the calculations which we have given can already predict with excellent
accuracy the parameter values for which canard solutions exist.

5. Asymptotic Analysis of the Canard Manifold for the Full Model

In this section, we show how the techniques of [10] as applied in Section 4 to the two-
dimensional model can be extended to predict parameter values at which canards exist
for the full three-dimensional model. As in Section 4, for definiteness we hold T and
pCO fixed and vary pO2 ; a similar procedure to that given below could be used to analyze
cases where T or pCO are allowed to vary. Specifically, we consider equations (9–11)
with τ = t /ε:

du

dτ
= fu(u, v),

dv

dτ
= fv(u, v, w; α),

dw

dτ
= εg(u, w). (38)

Unlike the case of one fast and two slow variables considered in [36], here there are
two fast variables (u, v) and one slow variable (w). There is a one-dimensional “slow”
manifold (on which the dynamics evolve with a timescale 1/ε) given by

S3D(α) ≡ {(u, v, w) | fu(u, v) = fv(u, v, w; α) = 0}
≡ {(u, v, w) | (u, v, w) = (u, ṽ(u), w̃(u; α))}, (39)

where w̃(u; α) is given by the right-hand side of (20), and

ṽ(u) = vs
(
β/u − γ − βu2

)
. (40)

For ε = 0, S3D describes a curve of fixed points for equations (9–11) with nontriv-
ial eigenvalues shown in Figure 10 for typical parameter values; the other eigenvalue,
corresponding to perturbations along S3D, is equal to zero. It is instructive to note that
the eigenvalue which remains (relatively strongly) negative over the range of u shown
in Figure 10 causes trajectories to rapidly approach a two-dimensional surface. On this
surface, the two cases shown in Figure 9 generically occur, with canards existing for
parameter values near the transition between these cases. In the remainder of this sec-
tion, we will find equations for parameter values at which canards exist by requiring the
existence of a trajectory which stays within O(ε) of S3D.

From (38), trajectories obey

fu(u, v)
∂v

∂u
= fv(u, v, w; α), (41)

fu(u, v)
∂w

∂u
= εg(u, w). (42)
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Fig. 10. Nontrivial eigenvalues as a function of u for the curve of fixed
points S3D for (38) with T = 540K , pCO = 45 × 10−6 mbar, and pO2 =
148 × 10−6 mbar but with ε artificially taken to be zero.

We expand α in powers of ε about a fixed value α3D
0 to be defined below:

α = α3D
0 + εα3D

1 + ε2α3D
2 + · · · , (43)

and seek an approximation to the canard manifold as a curve parametrized by u (cf. (39)):

v(u) = v3D
0 (u) + εv3D

1 (u; α3D
0 ) + ε2v3D

2 (u; α3D
0 , α3D

1 ) + · · · ,
w(u) = w3D

0 (u; α3D
0 ) + εw3D

1 (u; α3D
0 , α3D

1 ) + ε2w3D
2 (u; α3D

0 , α3D
1 , α3D

2 ) + · · · .
At O(ε0), equations (41,42) give

fu(u, v3D
0 )

dv3D
0

du
= fv(u, v3D

0 , w3D
0 ; α3D

0 ), (44)

fu(u, v3D
0 )

dw3D
0

du
= 0. (45)

For a nontrivial w3D
0 , (44,45) imply that

fu(u, v3D
0 ) = 0, fv(u, v3D

0 , w3D
0 ; α3D

0 ) = 0. (46)

Then,

v3D
0 (u) = ṽ(u), w3D

0 (u; α0) = w̃(u; α0) = w0(u; α0), (47)

where ṽ(u) and w0(u; α0) are given by equations (40) and (31), respectively.
To determine α0, we consider equations (41,42) at O(ε) and use (46) to obtain

w3D
1 (u; α3D

0 , α3D
1 ) = A(u; α3D

0 )

B(u; α3D
0 )

− α3D
1

α3D
0

(w3D
0 + s),

v3D
1 (u; α3D

0 ) = −vs(h(u) − w3D
0 )

uw3D′
0

,
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where the prime denotes differentiation with respect to u, and

A(u; α3D
0 ) = vs(h(u) − w3D

0 )(2α3D
0 ((u − 1)vs + v3D

0 )(w3D
0 + s) + uvs(v

3D′
0 − 1)),

B(u; α3D
0 ) = uw3D′

0 α3D
0 (v3D

0 + (u − 1)vs)
2;

for brevity, here w3D
0 = w3D

0 (u; α3D
0 ) and v3D

0 = v3D
0 (u). Defining u3D

M to be the u
coordinate at the local minimum of the graph of w3D

0 (u; α3D
0 ) vs. u, we see that to keep

v3D
1 bounded (as required for the asymptotic expansion to be valid), we need to choose

α3D
0 to satisfy the simultaneous equations

w3D
0 (u3D

M ; α3D
0 ) = h(u3D

M ), w3D′
0 (u3D

M ; α3D
0 ) = 0. (48)

Recalling from (47) that w3D
0 = w0, these equations are identical to (33) for the two-

dimensional model. Thus,

α3D
0 = α0, u3D

M = uM .

Note that B(u3D
M ; α3D

0 ) = 0, so to keep w3D
1 bounded it is necessary that

A(u3D
M , α3D

0 ) = 0,

a condition that holds when w3D
0 (u3D

M ; α3D
0 ) = h(u3D

M ) as in (48). As was found in
the asymptotic analysis of the two-dimensional model, using (11) we conclude that
the value of α3D

0 is that for which a fixed point to (38) exists at the “fold” in S3D at
(u, v, w) = (u3D

M , v3D
0 (u3D

M ), w3D
0 (u3D

M ; α3D
0 )).

At O(ε2), equations (42) and (46) imply that

v3D
2 (u; α3D

0 , α3D
1 ) = vsw

3D
1 (u; α3D

0 , α3D
1 ) − uv3D

1 (u; α3D
0 )w3D′

1 (u; α3D
0 , α3D

1 )

uw3D′
0 (u; α3D

0 )
.

The denominator of this expression vanishes at u = u3D
M , so to keep v3D

2 bounded it is
necessary that

lim
u→u3D

M

[vsw
3D
1 (u; α3D

0 , α3D
1 ) − uv3D

1 (u; α3D
0 )w3D′

1 (u; α3D
0 , α3D

1 )] = 0.

Evaluating this limit requires several applications of L’Hôspital’s rule, finally giving

α3D
1 = α3D

0
A′′ B ′h′ − A′ B ′′h′ + 2A′ B ′w′′

0

2(B ′)2(w0 + s)w′′
0

, (49)

where all functions and derivatives are evaluated at (u, α) = (u3D
M , α3D

0 ). This may be
solved for specific parameters using, e.g., Mathematica. Note that the requirement that
w3D

2 remain bounded gives no further information.
As for the analysis of the two-dimensional model, we could continue this procedure to

find α3D
2 , α3D

3 , . . . . However, as shown in the next section, the given calculations predict
the parameter values for which canards exist with excellent accuracy.
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6. Comparison of Asymptotic and Numerical Results

In this section, we compare the predictions from the asymptotic analysis given in Sec-
tions 4 and 5 with numerical results. We first consider the parameter values T = 540K
and pCO = 45 × 10−6 mbar. The values of β and γ are given in (21), and

ε = 0.000682425.

From (33) (and, equivalently, (48)),

α0 = α3D
0 = 0.0810229, uM = u3D

M = 0.314457.

Thus, to lowest order the predicted value of pO2 for which canard manifold exists is

pa,0
O2

≈ krvs

κo(so1 − so2)
α0 = 148.7597 × 10−6 mbar.

Recalling (5) and (17), we see that ph,2D
O2

, ph,3D
O2

< pa,0
O2

. But we know numerically that
the value of pO2 at which the canard manifold exists is smaller than the value at which the
Hopf bifurcation occurs (cf. Figure 2). We conclude that the lowest-order approximation
is not very good.

To next order for the two-dimensional model, using (36) we obtain

α1 = −0.680652.

Thus, to this order the canard manifold is predicted to exist at

pa,2D
O2

≈ krvs

κo(so1 − so2)
(α0 + εα1) = 147.9069 × 10−6 mbar.

Comparing this prediction with the numerically obtained values for the two-dimensional
model (see (16)) and for the full three-dimensional model (see (6)), we find that

|pc,2D
O2

− pa,2D
O2

|/pc,2D
O2

≈ 8 × 10−6, |pc,3D
O2

− pa,2D
O2

|/pc,3D
O2

≈ 1 × 10−3 :

respectively only a 0.0008% and 0.1% error! It is not surprising that the prediction is
better for the two-dimensional model; however, the prediction is also very good for the
full three-dimensional model.

For the three-dimensional model, using (49) we obtain

α3D
1 = −0.816185.

Thus, to this order the canard manifold is predicted to exist at

pa,3D
O2

≈ krvs

κo(so1 − so2)
(α3D

0 + εα3D
1 ) = 147.7371 × 10−6 mbar.

We find that

|pc,2D
O2

− pa,3D
O2

|/pc,2D
O2

≈ 1 × 10−3, |pc,3D
O2

− pa,3D
O2

|/pc,3D
O2

≈ 3 × 10−5 :
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respectively only a 0.1% and 0.003% error! It is not surprising that here the prediction
is better for the three-dimensional model; however, the prediction is also very good for
the two-dimensional model.

As a further comparison, Figure 11 shows asymptotic and numerical results for the
difference between the value ph

O2
at which the Hopf bifurcation occurs and the value pc

O2

at which the canard manifold exists; note that these values are calculated for the three-
dimensional model (9–11) or the two-dimensional model (13,14) as indicated by “3D”
and “2D,” respectively. This may be thought of as the width of the interval over which
the “small” periodic orbit exists. The asymptotic analysis shows good agreement with
the numerical results for both the two-dimensional and the three-dimensional models.

7. Canards and Saddle-Loop Bifurcations

This section describes the relationship between canards and saddle-loop bifurcations
associated with codimension-two Takens-Bogdanov and saddle-node loop bifurcations
[45], [38]. Note that as the bifurcation set for a saddle-loop bifurcation is approached
from one side, a periodic orbit approaches a saddle fixed point, and its period tends
to infinity; on the other side of the bifurcation set, the periodic orbit no longer exists.
The parameter values at which saddle-loop bifurcations occur can be found analytically
in a small neighborhood of a Takens-Bogdanov bifurcation [45], but in general they
must be found numerically. However, as we will see, here it is possible to make such
predictions by considering canards. For clarity, we first consider the two-dimensional
model given by (13,14), for which the codimension-two bifurcations occur at parameter
values very close to those given in Table 2 for (1–3). For example, Takens-Bogdanov
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Fig. 12. Bifurcation diagram for the two-dimensional model (13,14) for fixed T = 540K
and fixed pCO = 60 × 10−6 mbar with the same conventions as in Figure 2(a). The inset
zooms in on the parameter range over which the periodic orbit exists. As the saddle-loop
bifurcation is approached, the periodic orbit spends more time near a saddle fixed point,
and 〈u〉 tends toward the u value of that fixed point.

bifurcations occur for (13,14) with T = 540K at (pCO, pO2) = (32.7, 66.2)×10−6 mbar
and (115.0, 1295.4) × 10−6 mbar.

Figure 12 shows a representative bifurcation diagram for the situation of interest. This
is computed for the two-dimensional model (13,14) and corresponds to a slice through
parameter space for fixed T = 540K , fixed pCO = 60 × 10−6 mbar, and varying pO2 .
For decreasing pO2 , a periodic orbit is born in a supercritical Hopf bifurcation and dies
in a saddle-loop bifurcation at

ph,2D
O2

= 253.9280 × 10−6 mbar, psl,2D
O2

= 253.8469 × 10−6 mbar,

respectively. Consider the phase space structure for parameters near the saddle-loop
bifurcation (see Figure 13), in particular, the stable and unstable manifolds of the point
P at (u, w) ≈ (0.5665, 1). The unstable manifold of P stays within O(ε) of the line
w = 1 until it reaches the left branch of the du

dt = 0 nullcline (cf. Figure 7); the unstable
manifold then follows within O(ε) of the nullcline until reaching the local minimum
of the graph of the nullcline, labelled M . On the other hand, the stable manifold of P
stays within O(ε) of the middle branch of the du

dt = 0 nullcline until reaching M . A
saddle-loop bifurcation occurs when these stable and unstable manifolds of P connect
smoothly, which is precisely when the canard manifold exists. Thus, the asymptotic
analysis given above can be used to predict parameter values at which the saddle-loop
bifurcation occurs. Calculating α toO(ε) for these parameters as in Section 4, we predict
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Fig. 13. Stable periodic orbits for (13,14) with T = 540K , pCO = 60 × 10−6 mbar,
and (a) pO2 = 253.847 × 10−6 mbar, (b) pO2 = 253.846867 × 10−6 mbar, and (c)
pO2 = 253.846866931597 × 10−6 mbar. The dashed line is the nullcline of g(u, w),
while the dash-dotted line is the nullcline of f (u, w) (the nullclines do not change
appreciably over the range of pO2 shown in the figure). The intersections of the nullclines
give fixed points, namely one source and one sink shown as a square symbol and a
triangular symbol, respectively, and a saddle shown as a + and labelled P . For smaller
values of pO2 (even for pO2 = 253.846866931596 × 10−6 mbar), periodic orbits no
longer exist and the trajectory tends to the sink fixed point.

that the saddle-loop bifurcation occurs at

psl,2D,a
O2

= 253.8337 × 10−6 mbar.

Note that the corresponding Hopf and saddle-loop bifurcations for the three-dimensional
model occur at

ph,3D
O2

= 253.7573 × 10−6 mbar, psl,3D
O2

= 253.7127 × 10−6 mbar,

respectively. Calculating α to O(ε) as in Section 5, we predict that the saddle-loop
bifurcation for the three-dimensional model occurs at

psl,3D,a
O2

= 253.6920 × 10−6 mbar.

Using

|psl,2D
O2

− psl,2D,a
O2

|/psl,2D
O2

≈ 5 × 10−5,

|psl,3D
O2

− psl,3D,a
O2

|/psl,3D
O2

≈ 6 × 10−4,

we see that the prediction for the parameter value at which a saddle-loop bifurcation
occurs for the two-dimensional and three-dimensional models have only a 0.005% and
a 0.06% error, respectively.
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8. Conclusion

Canards are periodic orbits for which the trajectory follows both the attracting and
repelling parts of a slow manifold. They are associated with a dramatic change in the
amplitude and period of a periodic orbit within a very narrow interval of a control param-
eter. In this paper, canards were studied both numerically and analytically for the model
of platinum-catalyzed oxidation of carbon monoxide introduced in [38]. The model is
a three-dimensional system of ODEs for the evolution of the surface coverage of CO,
the surface coverage of oxygen, and the fraction of the surface area of Pt exhibiting a
particular structure. Numerical arguments were given to justify the adiabatic approxi-
mation for the surface coverage of O2; this reduces the three-dimensional model to a
two-dimensional model in which the surface coverage of CO evolves on a fast timescale
relative to the evolution of the structure of the surface (cf. [39]). This two-dimensional
model was then analyzed asymptotically in the spirit of [10] to predict parameter val-
ues at which canards exist. Then, these asymptotic techniques were extended to predict
parameter values at which canards exist for the full three-dimensional model. Finally,
the relationship between canards and saddle-loop bifurcations for these models was
described. Throughout, excellent agreement was found between the numerical and ana-
lytical results.

The three-dimensional model introduced in [38] has been extended in several ways.
By also modeling the faceting of the Pt surface (that is, the formation of new crystal
planes on Pt(110)), [38] was able to account for experimentally observed mixed-mode
oscillations. Specifically, they introduce a new variable z for the degree of faceting,
which obeys the equation

dz

dt
= kf uvw(1 − z) − kt z(1 − u), (50)

where the rate of facet formation is kf = 0.03 s−1, and the rate of thermal annealing is
kt = k0

t exp[−Et /(RT)] with k0
t = 2.65 × 105 s−1 and Et = 20 kcal/mol. The increase

of oxygen sticking probability due to faceting is accounted for by generalizing (4) to

so = wso1 + (1 − w)so2 + so3z, (51)

where so3 = 0.2. A stable periodic solution for equations (1–3) and (50) is shown in
Figure 14. This may be interpreted (cf. [38]) by first thinking of z as a constant parameter,
and noticing that for large (small) values of z a “small” (“large”) stable periodic orbit
exists in the (u, v, w) variables; the intermediate periodic orbits are canards related to
those described in this paper. When z is allowed to vary, it is found that z slowly decreases
(increases) for a “small” (“large”) oscillation in the (u, v, w) variables. Thus, z slowly
drifts back and forth, and mixed-mode oscillations occur (cf. [23]). We conclude that
although the canards themselves are expected to be quite delicate and hence difficult
to find experimentally, their presence can perhaps be inferred from the phenomenon of
mixed-mode oscillations. A more detailed analysis of such mixed-mode oscillations is
deferred to future work.

To explain the spatiotemporal patterns observed in experiments, the three-dimensional
model of [38] was extended to include surface diffusion of adsorbed CO [39], [51]–[53],



Canards in a Surface Oxidation Reaction 343

0

0.2

0.4

0.6

0.8

0 100 200 300 400 500

0.218

0.219

0.22

0.221

0 100 200 300 400 500

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7

w

t

z

u

(b)

(a)

(c)

t

u

v

w

Fig. 14. Stable, periodic mixed-mode oscillations for the four-dimensional set of
equations given by (1–3) and (50) for pCO = 42×10−6 mbar, pO2 = 119.1×10−6

mbar, and T = 540K . (a) The projection of the trajectory onto the (u, w) plane.
(b) Time series for u, v, and w given by solid, dash-dotted, and dashed lines,
respectively. (c) Time series for the faceting variable z.

giving solutions such as traveling and spiral waves. Naturally, this raises the question
of how canards would be affected by diffusion (cf. [34]). More recently, the three-
dimensional model with surface diffusion has been extended to include the formation
and release of subsurface oxygen [54]–[56]; in the absence of surface diffusion, it is
very likely that canards related to those discussed in this paper will be present for this
extension. Indeed, canards are present in a large variety of systems of physical and
biological interest, and the procedure presented in this paper could be used to predict
parameter values at which canards exist for such systems.
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