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Abstract. This paper explores event-based feedback schemes for controlling
spike timing in phase models of neurons with the constraint of a charge-
balanced stimulus over a period of stimulation. We present an energy-optimal
control system based on variational methods. We also present a biologically-
inspired quasi-impulsive control system that, mimicking the signaling behavior
of real neurons, can achieve reference phase tracking. Applied to a pacemaker-
driven ensemble, this control can achieve desynchronization using a set of
charge-balanced stimuli.

1. Introduction. Phase models of neurons have been used to investigate the pat-
terns of synchrony that result from the type and architecture of coupling [6, 17,
10, 24, 1, 19, 16], and the response of large groups of oscillators to external stimuli
[7, 8, 36].

Recently, phase models of neurons have also been investigated in the context of
controlling neurons to behave in a desired way [36, 30, 13, 11]. Much of the motiva-
tion for controlling neurons comes from the desire to treat Parkinson’s disease, which
causes involuntary tremors around 3-6 Hz that typically affect the distal portion
of the upper limbs. These tremors have been associated with the synchronization
of a cluster of neurons in the thalamus and basal ganglia [32]. For patients with
advanced Parkinson’s disease who do not respond to drug therapy, electrical deep
brain stimulation (DBS), an FDA-approved therapeutic procedure, may offer relief.
In this procedure, a neurosurgeon guides a small electrode into the motor-control
region of the brain, and then connects the electrode to a pacemaker-like device im-
planted in the chest. As presently implemented, the device sends high-frequency
(∼ 100 Hz) electrical current stimulation pulses directly into the brain tissue, which
has been found to alleviate tremors for some patients [4].

There is much interest in designing electrical DBS control systems that use ad-
ditional electrodes for feedback, thereby making the stimulus “demand-controlled”
[36, 37]. A feedback-based approach is attractive from a clinical perspective in that
the biological tissue is only stimulated when necessary, thereby reducing the overall
accumulation of negative side effects of electrical stimulation, and also the amount
of power required from the implanted battery. There are, however, challenges to
implementing feedback control for neurons. First, the conductance-based formalism
first proposed by Hodgkin and Huxley in [20], a general modeling methodology in
neuroscience, yields systems of continuous-time ordinary differential equations that
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tend to be highly nonlinear. Many traditional feedback control system designs re-
quire the controlled system to be either linear or only weakly nonlinear. A second
challenge is that a control scheme cannot stimulate biological tissue with arbitrar-
ily large signals. The magnitude of the electrical stimulus must be constrained to
acceptable ranges for hardware implementation and biological tissue tolerance. A
third challenge is the fact that the only state that is directly observable is the neu-
ron’s membrane voltage. A control system cannot measure the dynamic states of
the many ion channels that play a critical role in the oscillatory behavior of neu-
ral spiking. This poses particular problems for implementing traditional nonlinear
feedback control systems, which depend on continuous measurements of state [23].
The control algorithms in this paper are intended to at least partially overcome
these challenges.

We will focus on feedback control of neurons modeled by the Hodgkin-Huxley
equations, which display many of the dynamical characteristics of real oscillatory
neurons, and constitute the most widely studied model in mathematical neuro-
science. The Hodgkin-Huxley model possesses regimes in which the oscillatory
spiking can be either advanced or retarded by unipolar stimulation pulses, depend-
ing on the time of injection. Also, the Hodgkin-Huxley model exhibits Class 2 neural
excitability, which means that there is a bistable bifurcation structure featuring a
subcritical Hopf bifurcation that leads to a discontinuous relationship between in-
jected baseline current and firing frequency [22]. This model, while not representing
human brain neurons, is the prototypical model for neuronal membrane dynamics,
and exhibits oscillatory behavior similar to human motor control neurons in the
thalamus and basal ganglia regions of the brain. Due to this qualitative similarity,
and the fact that the Hodgkin-Huxley model is perhaps the most widely studied and
familiar conductance-based neuron model, we choose to consider it as our neuron
model in this paper. Such conductance-based models are amenable to generating
control schemes that are experimentally realizable in vitro, as shown in recent work
[34].

Our control algorithms are designed to achieve charge balance, i.e. the net elec-
trical charge injected into a neuron over one control cycle is equal to zero. This
is important because accumulation of charge leads to irreversible Faradiac reac-
tion products that cause neural tissue damage [28]. There is a trade-off, however.
Charge-balanced stimulation has been shown to cause less tissue damage [26, 27],
but increases the likelihood of corrosion damage of the stimulating electrode, an
issue currently being addressed by materials science and microelectronics research
[28]. We focus on charge-balance in the hope that developments in electrode design
technology will mitigate the corrosion problem.

As mentioned above, the only observable state is the neuron’s membrane voltage.
In practice, background noise often affects the voltage measurement to the extent
that the only reliable observation is the detection of voltage spikes, rather than
the instantaneous value of the voltage itself. This situation leads us to employ
a control methodology known as event-based control. The concept of event-based
control, sometimes known as Lebesgue sampling, was developed as an improvement
to fixed sample-rate feedback control for digital systems [2]. As shown in previous
work [13, 14], this methodology finds natural utility in systems involving spiking
neurons. In particular, rather than developing a control law based on continuous
voltage feedback, we will focus on observing the voltage spikes as events. This event-
based framework is convenient because we can consider the spike timing objective as
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an event-timing objective. Much work on event-based control of nonlinear systems
has been done, especially with respect to stochastic processes [3]. While we do not
consider stochasticity here, the event-based framework is well-suited to overcoming
the observability and nonlinearity challenges inherent in spike timing control of
oscillatory neurons.

The organization of the paper is as follows. After introducing the conductance-
based modeling framework and how a phase reduction procedure can be used to
simplify the system in Section 2, we consider several different objectives and meth-
ods for controlling neurons. In Section 3, we consider the control of an individual
neuron, first finding the energy-optimal stimulus which causes a neuron to fire at
a specified time, then controlling a neuron to fire at the times given by a reference
oscillator using impulsive and quasi-impulsive inputs. In Section 4, we describe how
these methods might be extended to control an ensemble of neurons, including a
population driven by a pacemaker. We give concluding remarks in Section 5.

2. Models.

2.1. Conductance-based models. The membrane dynamics of neurons can be
represented using a conductance-based formalism, in space-clamped form, yielding
a system of ordinary differential equations of the form:

cV̇ = Ig(V,n) + Ib + I(t), ṅ = G(V,n), (1)

where V ∈ R is the voltage across the membrane, n ∈ R
d
[0,1] is the vector of gating

variables which correspond to the state of the membrane’s ion channels, c ∈ R
+

is the constant membrane capacitance, Ig : R × R
d 7→ R is the sum of the mem-

brane currents, and I : R 7→ R is the stimulus current. Ib ∈ R is the baseline
current, which represents the effect of other parts of the brain on the neuron un-
der consideration and can be viewed as a bifurcation parameter in the model that
controls whether the neuron is in an excitable or an oscillatory regime. This form
of ODE representation was first employed by Hodgkin and Huxley to model the
Loligo squid’s giant axon [20], for which they considered three gating variables (i.e.,
d = 3). We reproduce the specifics of this model:

V̇ = (Ib + I(t)

Ig(V,n)
︷ ︸︸ ︷

−ḡNah(V − VNa)m
3 − ḡK(V − VK)n4 − ḡL(V − VL))/c ,

ṁ = am(V )(1 − m) − bm(V )m ,

ḣ = ah(V )(1 − h) − bh(V )h ,

ṅ = an(V )(1 − n) − bn(V )n ,

am(V ) = 0.1(V + 40)/(1 − exp(−(V + 40)/10)) ,

bm(V ) = 4 exp(−(V + 65)/18) ,

ah(V ) = 0.07 exp(−(V + 65)/20) ,

bh(V ) = 1/(1 + exp(−(V + 35)/10)) ,

an(V ) = 0.01(V + 55)/(1 − exp(−(V + 55)/10)) ,

bn(V ) = 0.125 exp(−(V + 65)/80) ,

VNa = 50 mV , VK = −77 mV , VL = −54.4 mV , ḡNa = 120 mS/cm2 ,

ḡK = 36 mS/cm2 , ḡL = 0.3 mS/cm2 , c = 1 µF/cm2.
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Control of the spike timing of this system is non-trivial due to the fact that Ig and
G are highly nonlinear and the gating variables n = [m, h, n]T are not observable
by the controller. We therefore seek a simpler representation of the dynamics of
this model that will capture its fundamental behavior, but is amenable to analysis.

2.2. Phase reduction and phase models. Generally, in the case of oscillatory
synchronization, the participating neurons fire periodically, corresponding to a re-
gion of Ib parameter space where the ODEs (1) have a stable periodic orbit. Fol-
lowing [7], we define x ≡ [V,nT]T so that we can conveniently represent the entire
state of the full-dimensional model in one vector. We introduce the phase variable
θ ∈ [0, 2π) ∼= S

1 which parametrizes the position of the state on its periodic orbit
xP(θ). Using the concept of isochrons [18], this notion of phase can be extended
to all points in the basin of attraction of the periodic orbit. By convention, θ = 0
corresponds to the point on the periodic orbit associated with the neuron firing,
which is the point of maximum voltage. In the absence of input, the system sim-
ply evolves along xP(θ) with constant frequency ω. In general, the phase-reduced
dynamics obey the ODE [7]

θ̇ = ω + Z(θ) · u(t),

where the phase response curve Z(θ) and the input u(t) are vector functions of
the same dimension as the original system (1). However, since the electrical stim-
ulus I(t) affects only the voltage direction of the dynamics (1), we have u(t) =
[I(t)/c,01×d]

T , so only the first component of Z(θ) comes into play. Thus we ob-
tain the phase-reduced model

θ̇ = ω + Z(θ)u(t), (2)

where Z(θ) = ZV (θ) is the voltage component of the phase response curve, which
essentially captures the effect of impulsive perturbations in the voltage on the phase
variable, and u(t) is the input current I(t) normalized by the membrane capacitance
c. We note that hereafter we will refer to the scalar Z(θ) as the phase response curve
(PRC). The phase-reduced model is valid in a neighborhood of the periodic orbit
where perturbations off xP(θ) are asymptotically attracted back with a phase-shift
dictated by isochrons, as described in [38] and summarized in [7].

We note that the Hodgkin-Huxley model is categorized as a Type II neuron model
in the neuroscience literature [21]. Type II neuron models are those for which the
PRCs have both positive and negative regions, and are typically associated with the
neuron model having a Hopf (or Bautin) bifurcation [7]. For the Hodgkin-Huxley
model, we take Ib = 10 mA to ensure the existence of a stable periodic orbit. We
also note that in the absence of stimuli, this stable periodic orbit has a natural
frequency of ω = 0.43 rad/ms [33]. The Hodgkin-Huxley model yields a PRC which
is shown in Figure 1 and labeled with the following important points:

α = argmin(Z(θ)) , Zmin = Z(α)
β = argmax(Z(θ)) , Zmax = Z(β).

In general, PRCs for Type II neurons are characterized by the following conditions:

Z(0) = 0 , Z ′(0) < 0
Z(γ) = 0 , Z ′(γ) > 0
Zmax > 0 , Zmin < 0

0 < α < γ < β < 2π.

(3)
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Figure 1. Phase response curve computed for the Hodgkin-
Huxley neuron model for Ib = 10mA.

3. Control of individual neurons. In this section we consider the control of an
individual neuron, first finding the energy-optimal charge-balanced current which
causes a neuron to fire at a specified time, then controlling a neuron to fire asymp-
totically in-phase with a reference oscillator using charge-balanced impulsive and
quasi-impulsive inputs.

Energy-optimal control by the Euler-Lagrange method is a classical control
methodology particularly well-suited to nonlinear systems including phase mod-
els like (2) [30]. We begin this section by applying this method with the addition of
a charge-balance constraint to generate stimulus waveforms that dictate the firing
time of the controlled neuron.

3.1. Energy-optimal spike timing control. Here we present an event-based
control scheme that, after detecting a spike at time t∗, stimulates the neuron with
a pre-computed charge-balanced energy-optimal waveform in order to drive the
neuron to spike next at a given time t1 > t∗. Without loss of generality, we can
take t∗ = 0.

Consider the phase model (2) for a spiking neuron augmented by an additional
dynamic state q:

θ̇ = ω + Z(θ)u(t),
q̇ = u(t),
θ(0) = 0,
q(0) = 0,

(4)

where q is simply the integral of the total stimulus delivered to the neuron [31]. In
order to achieve charge balance, q must equal zero after the control waveform is
applied.
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The total input energy to the system is the integral of the square of the input
stimulus over the time horizon of [0, t1], scaled by the equivalent circuit impedance.
The optimality criterion is to minimize this total input energy. So, for a specified
spike time t1, from the set of all stimuli u(t) which evolve θ(t) via (2) from θ(0) = 0
to θ(t1) = 2π, we want to find the stimulus which minimizes the following cost
function:

G[u(t)] =

∫ t1

0

[u(t)]2dt, (5)

and yields q(t1) = 0. Other optimality criteria lead to other cost functions, but can
be handled similarly (cf. [9]).

We apply calculus of variations to minimize [15]

C[Φ(t), Φ̇(t), u(t)] =

∫ t1

0

{

[u(t)]2 + [λ1(t) λ2(t)] ·

[

ω + Z(θ)u(t) − θ̇
u(t) − q̇

]}

︸ ︷︷ ︸

L[Φ,Φ̇,u(t)]

dt, (6)

where Φ(t) = [θ(t), q(t), λ1(t), λ2(t)]
T . The Lagrange multipliers λ1(t) and λ2(t)

force the dynamics to satisfy (4).
Using vector notation, the associated Euler-Lagrange equations are:

∂L

∂u
=

d

dt

(
∂L

∂u̇

)

,
∂L

∂Φ
=

d

dt

(
∂L

∂Φ̇

)

,

so that

u(t) = −
λ1(t)Z(θ) + λ2(t)

2
, (7)

θ̇ = ω −
λ1(t)[Z(θ)]2 + λ2(t)Z(θ)

2
, (8)

q̇ = u(t) = −
λ1(t)Z(θ) + λ2(t)

2
, (9)

λ̇1 =
[λ1(t)]

2Z(θ)Z ′(θ) + λ1(t)λ2(t)Z
′(θ)

2
, (10)

λ̇2 = 0, (11)

where ′ = d/dθ. To find the optimal u(t), (8)-(11) need to be solved subject to the
conditions

θ(0) = 0, θ(t1) = 2π, q(0) = 0, q(t1) = 0. (12)

This is a two point boundary value problem where the boundary values for θ(t) and
q(t) are given in (12). The solution of this boundary value problem is aided by the
following theorem, which is related to Proposition 2.3 from [30].

Theorem 3.1. Suppose Z(0) = 0 and ω > 0, as is commonly the case for neuron
models. Then, for given values t1 and λ2, there is a unique trajectory solving the
Euler-Lagrange equations (8)-(11) with boundary conditions (12).

Proof. From (11), λ2 is a constant. Therefore, for the 2-dimensional system (8),
(10) the Hamiltonian

h(θ, λ1) = λ1(t)ω −
[λ1(t)]

2[Z(θ)]2

4
−

λ1(t)λ2Z(θ)

2
(13)

is conserved along the solutions (θ(t), λ1(t)). Letting

h0 = h(θ(0), λ1(0)) = h(0, λ1(0)),
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we have

λ1(t)ω −
[λ1(t)]

2[Z(θ)]2

4
−

λ1(t)λ2Z(θ)

2
− h0 = 0. (14)

We first demonstrate that
dθ

dt
> 0, (15)

as follows. Consider a trajectory {(θ(t), λ1(t))}, 0 ≤ t ≤ τ with θ(τ) = 2π and which
solves (8),(10). From (8), we have dθ

dt |t=0 > 0. Now assume in point of contradiction

that there exists a time 0 < t̂ < τ such that dθ
dt |t=t̂ < 0. Since θ(τ) = 2π, in this

case there also exists a phase θ̄ < 2π such that θ(t) = θ̄ for three distinct times
between 0 and τ . A quick sketch in the (θ, λ1) plane shows that, since any trajectory
{(θ(t), λ1(t))} is not self-intersecting, the trajectory under our assumption contains

three distinct points (θ̄, λ
(j)
1 ), j = 1, 2, 3. However, the trajectory must also be a

level set of the Hamiltonian; from (14), which is quadratic in λ1, such a level set
contains at most two points (θ, λ1) for any value of θ. Therefore, a contradiction
has been reached, and (15) follows.

Now, multiplying (14) by [Z(θ)]2 and rearranging we get
(
[λ1(t)][Z(θ)]2

)2
+ (2λ2Z(θ) − 4ω)

(
λ1(t)[Z(θ)]2

)
+ 4h0[Z(θ)]2 = 0.

Solving for λ1(t)[Z(θ)]2 yields

λ1(t)[Z(θ)]2 = −(λ2Z(θ) − 2ω) ±

√

(λ2Z(θ) − 2ω)
2
− 4h0[Z(θ)]2. (16)

From (8) and (15), λ1(t)[Z(θ)]2 < −(λ2Z(θ)− 2ω). Thus, in (16) the valid solution
is the minus branch, i.e.,

λ1(t)[Z(θ)]2 = −(λ2Z(θ) − 2ω) −

√

(λ2Z(θ) − 2ω)
2
− 4h0[Z(θ)]2. (17)

Now, from (8) we can write

t1 =

∫ t1

0

dt =

∫ 2π

0

dθ

ω − λ1(t)[Z(θ)]2+λ2Z(θ)
2

=

∫ 2π

0

dθ
√

(
λ2Z(θ)

2 − ω
)2

− h0[Z(θ)]2
, (18)

where the last equality uses (17). Differentiating with respect to h0, gives

dt1
dh0

=
1

2

∫ 2π

0

[Z(θ)]2dθ
[(

λ2Z(θ)
2 − ω

)2

− h0[Z(θ)]2
]3/2

> 0, (19)

Therefore, t1 increases monotonically with h0. Also, from (13), h0 = h(θ(0), λ1(0))
= h(0, λ1(0)) = ωλ1(0). So t1 increases monotonically with λ1(0). This means
that, for a given t1 and λ2, there is a unique value of λ1(0), which gives a unique
trajectory.

A shooting method is used to solve this boundary value problem numerically.
We choose an arbitrary nonzero value of λ2, take θ(0) = q(0) = 0, and solve the
system (8)-(11) iteratively for different nonzero guesses of λ1(0) until θ(t1) = 2π
with a predefined tolerance. Once an upper and a lower bound for λ1(0) is found,
employing the bisection method guarantees an answer. From Theorem 3.1, there is a
unique λ1(0) that satisfies this. After finding this λ1(0) and its associated trajectory
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Figure 2. Hodgkin-Huxley phase neuron model energy-optimal
current for three different values of t1 with (solid lines) and without
(dashed lines) the charge-balance constraint.

numerically, we check if the resulting q(t1) is within a small tolerance of 0. If so,
the problem is considered solved. If not, we conclude that our original choice for
λ2 had been wrong and so a new value is chosen for λ2 using the bisection method,
and the process is repeated. The next choice of λ2 is made by examining the q(t1)
error gradient from the previous two simulations. The procedure continues until a
pair (λ1(0), λ2) is found for which the boundary conditions in (12) are achieved. A
consequence of Theorem 3.1 is that we can effectively search for a solution to the
Euler-Lagrange equations along a one-dimensional curve in (λ1(0), λ2) space.

Once the optimal trajectories for θ(t) and λ1(t) are found, we can find the optimal
control input by evaluating (7). The solid lines in Figure 2 show the charge-balanced
optimal inputs to the system for different t1’s. Recall that we have assumed the
neuron’s capacitance to be c = 1 for these simulations, and thus the optimal input
is actually an electrical current stimulus, as indicated in this figure. Note that the
horizontal axis in this figure is scaled for ease of comparison.

By removing the charge-balance constraint we reproduce the results of [30]. In
this case λ2 ≡ 0, hence eliminating the charge-balance constraint. Again the shoot-
ing method is used to find the λ1(0) that would result in θ(t1) = 2π. The results
for the optimal currents for this case are shown by the dashed lines in Figure 2.
In this case, the optimal currents all start and end at zero, whereas in the case
with the charge-balance constraint, they do not. It is worth pointing out that con-
sidering the phase-reduced model (2) and the shape of the PRC in Figure 1, one
can easily verify the shape of achieved currents. The natural period of oscillations
for this model is T = 14.63 ms. Therefore, for spike times t1 < T one needs to
increase θ̇ in (2). Since the objective is to minimize the input energy, intuitively,
one would expect the sign of the currents to approximately follow the PRC’s sign
to make maximum use of the injected current. Conversely, for t1 > T , one expects
to achieve currents with signs opposite to that of the PRC’s in most of the time.
The currents in Figure 2 justify this argument. In fact, when the charge balance
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constraint is not imposed, the optimal currents take the exact same (resp. opposite)
sign of the PRC for t1 < T (resp. t1 > T ).

We note that it has been proven in [30] that in the case of no charge-balance
constraint, the optimal solutions always exist and are unique. Furthermore, it was
shown analytically that for small |t1 − T |, the optimal current I(t) approximately
takes the shape of the PRC (shown in Figure 1).

Theoretically, given (2), one can achieve an optimal control input for any desired
t1. However, a constraining factor is the range of validity of the phase-reduced
model for the large stimulus waveforms necessary to obtain extreme values of t1. As
mentioned in Section 2.2, the phase-reduced model is only valid when the stimuli
are small, meaning the system is in a close neighborhood of the periodic orbit.
Therefore, for large values of |t1 − T | that require large stimuli, the phase-reduced
model may not yield accurate results. In addition, there are practical limitations for
the level of the current stimulus based on the capability of the hardware in delivering
the current and the endurance of the biological tissue immediate to the injection
probe, as was discussed in Section 1. We remark that the method presented in this
section has also been applied to neurons with Type I PRCs [31].

We will now turn our attention to a set of control schemes that are inspired by
the signals used by real neurons and are useful for driving the controlled neurons
to spike in phase with a given reference oscillator.

3.2. Reference-phase tracking. Consider instead the objective of controlling a
neuron to spike (asymptotically) in phase with a reference oscillator with the same
natural period as the neuron. The reference oscillator evolves according to the
simple equation

θ̇r = ωr , θr(0) = θr0 , (20)

where ωr = ω is the natural frequency of the reference oscillator, and θr0 is its initial
phase. We will see later in Sections 4.1.2 and 4.2 that such a control objective can be
useful for controlling an ensemble of synchronized phase neurons to desynchronize
by driving each neuron to follow a staggered reference phase trajectory.

The times at which the phase of the reference oscillator crosses zero are the times
we want the controlled phase neuron to spike. To achieve this, we must develop a
control scheme that, after every event-based open-loop stimulus application, drives
the controlled neuron to spike closer (in time) to the zero crossing of the reference
oscillator. One can think of the difference in the time at which the controlled neuron
spikes to the time that the reference oscillator crosses zero as a time error. From
a control-theoretic perspective, this is equivalent to the phase error at the time of
the controlled neuron’s spike. When the controlled neuron spikes, we compare its
phase to that of its reference oscillator, and construct an open-loop waveform that
will actuate the neuron with the goal of correcting all, or a portion of, its phase
error by the time the neuron spikes again.

Generally, one would define the phase error as

∆θ = θ − θr.

In the scenario presented in this paper, the phase error is sampled only when the
controlled neuron spikes, i.e. θ = 0, so effectively ∆θ = −θr. However, the phase
error, as defined this way, exists on (−2π, 0]. The topology of the unit phase cir-
cle allows us to wrap the phase error to the interval (−π, π] using the following



1422 PER DANZL, ALI NABI AND JEFF MOEHLIS

algorithm (shown here in general form):

∆θ =

{
θ − θr , for |θ − θr| ≤ π
θ − θr − sgn(θ − θr)2π , for |θ − θr| > π

(21)

so that the phase error is the shortest distance around the unit phase circle.
When ∆θ < 0, the controller should speed up the neuron, and when ∆θ > 0

it should slow down the neuron. This definition of phase error is useful from the
perspective of controlling oscillatory neurons. Figure 3 illustrates why this definition
of phase error is appropriate. The reference oscillator trajectories are shown in
dashed lines. The time at which the controlled neuron spikes and triggers the
event-based controller is labeled t0. The left panel shows a scenario wherein ∆θ < 0.
With this definition of phase error, the controller should seek to drive the controlled
neuron to spike at the time labeled tr, thus speeding it up. The right panel shows
a scenario where ∆θ is small and slightly positive. If the phase error was not
wrapped, for an arbitrarily small error, the controller would try to make the neuron
spike almost immediately, which would require a very strong stimulus. Instead,
with the phase error wrapping algorithm, the controller’s objective is to slow down
the neuron using a small stimulus so that the controlled neuron spikes in phase with
the reference neuron one period later, as shown by the marker at tr on the right
panel of Figure 3.

Figure 3. Phase error sign convention examples. Reference tra-
jectories are shown as dashed lines. The controlled neuron’s phase
is shown as a solid line. When the controlled neuron’s phase reaches
2π = 0 (mod 2π), it spikes and triggers assessment of phase error
relative to the reference oscillator.

In this event-based framework, we are interested in how the phase error ∆θ
changes after a period of control actuation, so we will define ∆θ+ to be the phase
error at the time of the next spiking event. Thus, we seek a control law that
decreases the phase error over one period, i.e. ,

∣
∣
∣
∣

∆θ+

∆θ

∣
∣
∣
∣
< 1 ∀ ∆θ ∈ (−π, π],

excluding ∆θ = 0 (where ∆θ+ should also equal 0).
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We will begin by describing a heuristic approach, inspired by the way real neurons
behave in biological systems, that is both mathematically tractable and intuitive.

3.2.1. Impulsive control. In contrast to the continuous time smooth energy-optimal
inputs considered in Section 3.1, here we seek to achieve reference phase tracking
by using impulsive control signals. In nature, neurons communicate by voltage
spikes that are large in magnitude but very short in duration, which naturally
limits the production of irreversible Faradaic reaction products that can lead to
tissue damage [28]. Signals of this kind are a biological analog of impulses. In fact,
dynamical systems researchers in mathematical neuroscience have long used the
concept of impulsive coupling to model networks of neurons, see e.g. [5]. Impulsive
coupling has been shown to closely correspond to many types of oscillatory biological
networks in nature [29, 39]. This has inspired the idea of using impulsive signals
(Dirac delta functions) for spike timing control. Impulses are analytically desirable
inputs from the perspective of the phase-reduced model, since delta functions turn
the calculus into simple algebra. For example, consider the dynamics of generic
phase-reduced model over the time interval [tI , tII ] subject to an impulsive input
at time t̂

θ̇ = ω + Z(θ)ũδ(t − t̂),

where tI ≤ t̂ < tII , and ũ is the strength of the impulsive stimulus. The solution is
simply

θ(tII) = θ(tI) + ω(tII − tI) + Z(θ(tI) + ω(t̂ − tI))ũ mod 2π. (22)

Following [14], we will proceed by using (22) as the basic building block of our
control scheme. Intuitively, we want to drive the oscillator with impulses timed to
occur when its phase corresponds to that of the extremal values of its PRC. For
example, if the control objective is to speed up the neuron, the optimal strategy is
to stimulate the neuron with a negative impulse, timed to occur when θ = α (recall
Z(α) = Zmin < 0), followed by a positive impulse, timed to occur when θ = β
(recall Z(β) = Zmax > 0).

Since we are not considering noise, we can use (22) to predict the phase of the
actuated oscillator using simple algebra. The charge-balance constraint is imple-
mented by constraining the control to be in the form of two timed impulses of equal
magnitude but opposite sign. Recall that the control objective is to reduce the
phase error after each period of actuation, i.e. |∆θ+| < |∆θ|. The following control
algorithm, derived using (22), gives |∆θ+| = K|∆θ|, where we choose the desired
phase error correction factor K ∈ [0, 1):

u(t) = ũ(δ(t − tα) − δ(t − tβ)), (23)

where

ũ =
(1 − K)∆θ

Zmax − Zmin
, tα =

α

ω
, tβ =

1

ω
(β − Zminũ). (24)

We note here that tα and tβ are the times at which the neuron’s phase will equal
α and β, respectively (see Figure 1). As in the previous sections, t represents the
time since the last spiking event t∗ and is reset to zero whenever θ crosses the
θ = 2π (mod 2π) spike threshold.

This control scheme is, by construction, charge balanced (“bi-phasic charge-
balanced with delay” in the terminology of [28]). It corrects the error exactly
as we intend over one control period, and any other control waveform would be
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Corner Condition Minimum admissible correction factor Kmin

0 < θ(t+α ) < γ 1 + α(Zmax−Zmin)
πZmin

θ(t+α ) < γ 1 + (γ−α)(Zmax−Zmin)
πZmin

γ < θ(t+β ) 1 −

(β−γ)(Zmax−Zmin)
πZmax

γ < θ(t+β ) < 2π 1 −

(2π−β)(Zmax−Zmin)
πZmax

Table 1. Constraints on the tunable desired contraction factor K.
If K is chosen to be greater than the value of the right column, the
corner condition in the left column is satisfied.

using energy at a “weaker” region of the PRC, or would violate the charge-balance
constraint.

We must remember, however, that the phase-reduced model is a simplified repre-
sentation of a higher-dimensional conductance-based model, and thus has a short-
coming that must be addressed. The behavior of the phase-reduced model is not
necessarily representative of the conductance-based model when the impulses are
large enough to drive the oscillator to a phase where the sign of the PRC is different
from what it was prior to the impulse. Also, if the oscillator is driven beyond the
θ = 2π = 0 (mod 2π) spike threshold, in either direction, the phase-reduced model
loses relation to the conductance-based model, since a phase of zero implies a firing
and an essential “reset” of the oscillator.

Since we are concerned with asymptotic convergence to a fixed frequency refer-
ence trajectory, we can easily avoid these issues by using fractional error correction
with

0 ≤ Kmin ≤ K < 1, (25)

where Kmin is constrained by functions of the PRC Z(θ). Table 1 lists the corner
conditions for Kmin. In the table, θ(t+α ) refers to the phase of the oscillator imme-
diately after the impulse at t = tα. Likewise θ(t+β ) refers to the phase immediately
after the impulse at t = tβ .

By using fractional error correction and phase wrapping in our phase error defini-
tion, we provide the impulsive event-based control scheme with a way to reduce the
total charge delivered over each actuation period while still retaining asymptotic
convergence to the specified reference trajectory. We will now extend this concept
to a more experimentally relevant context by approximating the impulses by finite
magnitude pulses of non-zero duration.

3.2.2. Quasi-impulsive control. Using finite (small) magnitude control pulses is im-
portant in the context of stimulating real neurons, since the biological tissue ex-
posed to the electrical stimulus can be damaged by large electrical currents. Also,
the phase reduction method that generates the phase models we use makes the
assumption that the input acts as a small perturbation. A digital approximation
of a Dirac delta function as a rectangular spike with magnitude ũ/dt, where dt is
equal to the sample time, works well for numerical simulation of the phase-reduced
nonlinear oscillator model, but is inappropriate for use with the full-dimensional
conductance-based model. Such a stimulus can instantaneously jolt the state far off
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Condition Minimum admissible control magnitude Cmin

0 < tA
ωπ(1−K)

2α(Zmax−Zmin)

tB < tC max
∆θ∈(−π,π]

(
ω∆θ(1−K)

(β−α)(Zmax−Zmin)−Zmin(1−K)∆θ

)

θ(tB) < γ max
∆θ∈(−π,π]

(
−ω(1−K)∆θ

2[(γ−α)(Zmax−Zmin)−Zmin(1−K)∆θ]

)

θ(tC) > γ
ωπ(1−K)

2(β−γ)(Zmax−Zmin)

θ(tD) < 2π max
∆θ∈(−π,π]

(
−ω(1−K)∆θ

2[(2π−β)(Zmax−Zmin)+Zmax(1−K)∆θ]

)

Table 2. Constraints on the minimum admissible stimulus con-
straint C = Cmin. If C is chosen to be greater than the value of
the right column, the condition in the left column is satisfied.

its periodic orbit and yield results that are not closely approximated by the phase
reduced model.

To address these issues, we develop a quasi-impulsive control that uses the same
control effort as the impulsive control, but extends the duration and confines the
magnitude of the impulse to be equal to a threshold C, which is chosen to be greater
than or equal to a certain minimum value Cmin which depends on the PRC, the
phase error correction factor K, and the natural frequency of the phase neuron. The
finite duration pulses will be stimulating the neuron at sub-extremal regions of the
PRC, so the error correction of this protocol is not exact as in the impulsive case.
We will show, however, that when implemented on the full-dimensional Hodgkin-
Huxley neuron model, the resulting fractional error correction performance is quite
close to the prescribed fractional error correction factor K from the phase-based
quasi-impulsive control method.

Analogous to a time-delayed bang-bang control scheme, this method stimulates
at magnitudes equal to the threshold constraint C ≥ Cmin, using rectangular pulses
of opposite sign centered at tα and tβ with durations such that the integral of each
pulse is equal to ũ. Using a value of fractional error correction K ≥ Kmin satisfying
the conditions listed in Table 1, we propose the following control scheme:

u(t) =







0 , for 0 ≤ t < tA
sgn(∆θ)C , for tA ≤ t < tB
0 , for tB ≤ t < tC
−sgn(∆θ)C , for tC ≤ t < tD
0 , for tD ≤ t

(26)

where

tA = tα − |ũ|
2C , tB = tα + |ũ|

2C

tC = tβ − |ũ|
2C , tD = tβ + |ũ|

2C

(27)

and ũ is as defined previously in (24). The corner conditions that determine the
minimum admissible threshold constraint Cmin are listed on Table 2. Together,
these constraints ensure that the control signal always stimulates in the right direc-
tion and will yield a charge-balanced waveform. In the limit of C → ∞, this scheme
recovers the timing and performance of the purely impulsive control law (23).
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Theorem 3.2. For the phase-reduced neural oscillator model θ̇ = ω + Z(θ)u(t)
where u(t) is as defined in (26), Z(θ) satisfies the conditions from (3), K satisfies
the conditions in Table 1, and C satisfies the conditions in Table 2, the phase error

ratio over one period of actuation will be a strict contraction (|∆θ
+

∆θ | < 1), implying
global monotonic convergence of the oscillator phase θ(t) to the reference phase
θr(t).

Proof. First, a word on notation. When developing bounds to prove error conver-
gence, underbars x and overbars x̄ will denote the greatest lower and least upper
bounds on the variable x, respectively. The objective of the proof is to show that the

error gain, |∆θ
+

∆θ |, is strictly less than one for all values of initial error ∆θ ∈ (−π, π].
This implies that the phase error is reduced after each event-driven actuation pe-
riod. And since the oscillator in absence of input rotates around S

1 with natural
frequency ω, spiking events are persistent in time, which make it impossible for a
steady state error to exist.

If the extension of the impulsive control to the quasi-impulsive case were perfect,

we would expect |∆θ
+

∆θ | = K. This, however, is the greatest lower bound, since a
pulse with nonzero duration implies that the control will be stimulating the neuron
at phases where the PRC will be sub-extremal. We will proceed with the proof by
developing bounds on the time at which the oscillator will spike (cross the θ = 2π
threshold), which we will denote as t+, and which will be compared with the time
at which the constant frequency reference oscillator spikes to determine the phase
error after one period of actuation, ∆θ+.

For simplicity, we will develop bounds on t+ by separately considering the cases
∆θ > 0 and ∆θ < 0. When ∆θ = 0, no control action is taken so that ∆θ+ = 0.

Case I: ∆θ > 0
Intuitively, the control should slow the neuron down when ∆θ > 0. A control mag-
nitude C ≥ Cmin satisfying the conditions in Table 2 guarantees that throughout
the duration of the first pulse, the oscillator will have a phase between 0 and γ,
the region where Z(θ) is negative semidefinite. For a positive ∆θ, the pulse will be
positive, so the stimulus can only decrease the velocity of the oscillator below ω.
Likewise, admissibility of the control magnitude further guarantees that the oscilla-
tor’s phase will be between γ and 2π (the region where Z(θ) is positive semidefinite)
during the second pulse which is negative, since ∆θ > 0. Again this means that the
control signal can only decrease the oscillator’s velocity below its natural frequency
ω.

If there was no control, the neuron would spike again at t+ = 2π/ω, which would
result in ∆θ+ = ∆θ. In view of the argument above, this is, in fact, the lower bound
t+.

Now we step through the dynamics to develop an upper bound for t+. We begin
at θ(0) = 0. Then, advancing with zero input until tA,

θ(tA) = ωtA = α −
ω(1 − K)∆θ

2C(Zmax − Zmin)
.
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Now we calculate a lower bound on θ(tB). We do this by using Zmin as a lower
bound on the PRC. Between tA and tB, our input is equal to C. We obtain

θ(tB) = θ(tA) + (ω + ZminC)(tB − tA)

= α +
(ω + 2CZmin)(1 − K)∆θ

2C(Zmax − Zmin)
.

We then evolve with zero input until tC :

θ(tC) = θ(tB) + ω(tC − tB) = β −
ω(1 − K)∆θ

2C(Zmax − Zmin)
.

The input is then applied again, this time in the negative direction, since we wish
to slow the neuron down, and Zmax > 0. We obtain

θ(tD) = θ(tC) + (w − ZmaxC)(tD − tC)

= β +
(ω − 2CZmax)(1 − K)∆θ

2C(Zmax − Zmin)
.

We now solve for the upper bound t+ using the relation

θ(t+) = 2π = θ(tD) + ω(t+ − tD),

giving

t+ = tD +
2π − θ(tD)

ω
=

2π + (1 − K)∆θ

ω
So for ∆θ > 0,

2π

ω
< t+ ≤

2π + (1 − K)∆θ

ω
.

In terms of phase, these bounds on t+ imply K ≤ ∆θ+

∆θ < 1, as desired.

Case II: ∆θ < 0
When ∆θ < 0, the control method seeks to speed up the oscillator. Following
the C ≥ Cmin admissibility argument from Case I, but with the signs flipped, we
conclude that the control signal cannot slow the oscillator down. Thus we have a
simple upper bound: t+ = 2π/ω. We can now step through the dynamics in the
same manner as Case I, but with ∆θ < 0, to yield the inequality

2π + (1 − K)∆θ

ω
≤ t+ <

2π

ω
.

Therefore, K ≤ ∆θ+

∆θ < 1, as claimed.
Thus, for all nonzero values of ∆θ ∈ (−π, π], the control provides error contrac-

tion over one period of actuation, and if ∆θ = 0, the control takes no action.

The solid lines in the plots in Figure 4 illustrate the performance of this control
algorithm for the phase-reduced model derived from the Hodgkin-Huxley system
with the PRC shown previously in Figure 1. For this PRC, the minimum admissible
values Kmin and Cmin are 0.63 and 1.65, respectively. The results shown are for

K = 0.7 and C = 1.7. We see that the gain
∣
∣
∣
∆θ+

∆θ

∣
∣
∣ is between 0.7 and 0.8 over

the entire interval, quite close to our prescribed K value of 0.7 derived from the
optimal impulsive control method (23). As discussed in [13], the global stability
of the origin of M : ∆θ 7→ ∆θ+ determines the global asymptotic stability of the
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phase error. Here, M is well-behaved, smooth, and is confined to the first and third
quadrants (as expected with global monotonic convergence), which results in global
asymptotic stability of the phase error.

We now implement the quasi-impulsive control method (26) on the full-
dimensional neuron model (1) using parameters listed in [7]. Our objective is to

show that the phase error gain
∣
∣
∣
∆θ+

∆θ

∣
∣
∣ is less than one for all initial values of ∆θ.

We will also compare the results to those achieved with the phase-reduced model.
Before outlining our results, we will briefly explain how we implement the con-

trol, which was developed for the phase-reduced model, on the full-dimensional
model. For a single simulation, we choose an initial error ∆θ. We initialize the
state of the model with phase θ(0) = 0 (the state vector representation of that
point on the periodic orbit, x(0), is known based on information derived during the
phase reduction). We then integrate the ODE system (in x coordinate space) using
the electrical stimulus signal I(t) = cu(t), where we recall that c is the constant
membrane capacitance (which for the standard Hodgkin-Huxley system is equal to
1.0µF/cm2). The simulation proceeds until a spike is detected (the details of spike
detection and phase sampling can be found in [11]). The timing of this spike is
compared to the timing of the reference oscillator spike (initialized based on the
choice of ∆θ) to obtain the value of ∆θ+.

The results of fifty individual simulations with initial conditions ranging over
∆θ ∈ (−π, π] are shown as a black line with white circle markers on Figure 4. We
see that the implementation of the control law based on the phase-reduced model
yields very similar results for the full-dimensional system. These results represent
a significant improvement over previous work [13]. Here we have monotonic error
convergence, whereas previous methods yielded asymptotic error convergence of

|∆θ
+

∆θ |, a somewhat weaker control objective.

−π −π/2 0 π/2 π
−π

−π/2

0

π/2

π

∆θ

∆θ
+

−π −π/2 0 π/2 π
0

0.2

0.4

0.6

0.8

1

∆θ

|∆
θ+

 / 
∆ 

θ 
|

Figure 4. Quasi-impulsive control algorithm performance. The
left plot shows the phase error gain. The right plot shows the
∆θ 7→ ∆θ+ map. Solid lines are results from the phase-reduced
model to be compared with the white circle markers, which are
results from the full-dimensional Hodgkin-Huxley system.
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4. Control of an ensemble of neurons. In this section, we describe how the
methods for controlling individual neurons described in the previous section might
be extended to control an ensemble of neurons, including an ensemble driven by a
pacemaker.

4.1. Desynchronizing an ensemble. Consider an ensemble of N identical un-
coupled neurons firing in pathological synchrony. One can desynchronize the spike
times of the ensemble using N instances of the control methods presented earlier
for individual neurons.

Fully desynchronized spike times imply the population’s interspike interval is
constant and equal to T/N . We will first show how the energy-optimal control
strategy from Section 3.1 can achieve this goal using staggered spike time targets.
Then we will show how the reference-tracking methods from Sections 3.2.1 and 3.2.2
can accomplish the same goal using staggered reference phase trajectories.

4.1.1. Energy-optimal desynchronization. We can apply the energy-optimal meth-
ods from Section 3.1 so that each neuron has a staggered array of spike times
that the controller drives it to hit. For example, label each neuron with an index
i ∈ {1, . . . , N}. An effective control scheme will drive each neuron i to spike at time
t1i

= t+ iT
N where T is the natural period of the oscillators, and t is the current time,

which may be taken as zero without loss of generality. This simple arrangement
sets up a staggered set of spike times that results in completely desynchronized
ensemble spiking.

4.1.2. Reference-phase tracking desynchronization. In a similar spirit, the reference-
tracking control scheme from Sections 3.2.1 and 3.2.2 can be extended to the ensem-
ble case by using a set of staggered reference phase trajectories by setting the initial
condition of each of the i = 1, . . . , N reference oscillators (20) to be θri

(0) = 2πi
N .

The ith event-based controller then asymptotically drives its neuron toward the ref-
erence trajectory θri

(t), resulting in asymptotic convergence to the desired desyn-
chronized phase trajectories.

4.2. Desynchronizing a pacemaker-driven ensemble. In this section, we show
how the reference-phase tracking methods presented in Sections 3.2.1 and 3.2.2 can
be further extended to address an ensemble of neurons that are being driven towards
synchrony by a periodic impulsive stimulus called a pacemaker.

4.2.1. Pacemaker-driven ensemble model. We consider a pacemaker-driven ensem-
ble of N identical phase neurons depicted in Figure 5. Such a model is not di-
rectly representative of any particular biological network, but is a simple example
of pathologically-driven synchronization that can be mitigated with an extension of
the control methods proposed in Sections 3.2.1 and 3.2.2.

In the pacemaker-driven ensemble model, each neuron is unidirectionally coupled
to a central pacemaker, and has its own event-based controller. We assume each
neuron’s event-based controller can both observe spikes and stimulate the neuron it
controls. The pacemaker fires periodically and is not affected by either the driven
neurons or any control stimuli, but its spiking can be measured and known by
each controller. We also assume the pacemaker communicates with the neurons by
impulsive signals.
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Since the neurons do not communicate with each other, we can analyze the
dynamics of this system by considering the behavior of a single pacemaker-neuron-
controller system. If a controller can drive the pacemaker-driven neuron asymptot-
ically toward a reference phase trajectory with any initial condition θri

(0) ∈ [0, 2π),
then a set of such controllers can accomplish the goal of driving each neuron toward
a staggered reference phase trajectory for the ensemble.

Neuron

NeuronNeuron

Neuron

Pacemaker

V1 VN

uN

VP

u1

V2

uN−1

VN−1

u2

Figure 5. Pacemaker network. Each of the N neurons is driven
by control signals ui and the pacemaker voltage VP . The controller
observes spiking behavior of the individual neuron voltages Vi and
the pacemaker voltage VP .

We define the pacemaker as a simple oscillator

θ̇P = ωP , θP (0) = θP0 (28)

that periodically emits an impulsive signal of fixed (and known) strength KP when
its phase θP crosses 0, that is

VP (t) = KP δ(θP (t)). (29)

We will take the natural frequency of the pacemaker to equal that of the phase
neurons ωP = ω. The pacemaker pulse strength KP is taken to be positive and of
order 1. Since, in this simple model, the dynamics of the pacemaker are fixed and
deterministic, we can construct a simple observer that will provide the controller
with an (exact) estimate of the phase of the pacemaker. The controller observes
the times of two consecutive pacemaker spikes, TP1 and TP2. Then it is possible to
construct the (exact) estimated pacemaker phase trajectory:

θP (t) =
2π

TP2 − TP1
(t − TP2) mod 2π

for future times t ≥ TP2.
We model neurons as nonlinear phase oscillators that emit a detectable impulsive

signal when their phase θi crosses 0 according to the following equation

θ̇i = ω + Z(θi(t))[VP (t) + ui(t)], θi mod 2π,
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where ui is the control signal applied to neuron i. For each controller, we define its
event to be the zero crossing of the phase of its controlled neuron.

4.2.2. Uncontrolled dynamics. For small positive pacemaker strength KP , the spike
times of the uncontrolled system synchronize with the pacemaker. This can be
explained as follows. Set t = 0, and the first pacemaker spike occurs at time
t = TP1. Just before the spike happens, neuron i has phase θi(T

−
P1). Immediately

after the spike, the phase has shifted to θi(T
+
P1) = θi(T

−
P1) + KPZ(θi(T

−
P1)) mod

2π. Now, the pacemaker will fire next at time TP2 = TP1 + 2π
ω . The neuron’s phase

right before the next pacemaker spike at t = TP2 is calculated to be

θi(T
−
P2) = θi(T

+
P1) + ω

2π

ω
mod 2π = θi(T

+
P1).

In general

θi(T
−
Pj) = θi(T

+
P (j−1))

and

θi(T
+
Pj) = θi(T

−
Pj) + KPZ(θi(T

−
Pj))

which, by fixing the coupling strength KP , can be interpreted as a one-dimensional
map M : θi(T

−
Pj) 7→ θi(T

+
Pj) where

M(θ) = θ + KPZ(θ).

Phase entrainment is equivalent to attraction to the fixed point at the origin of the
map M over the full measure of θ− state space. In Figure 6, we have shown the
map MHH for the Hodgkin-Huxley phase oscillator with a rather large pacemaker
strength, KP = 2, for easy visualization. The origin of this map is readily verified
to be asymptotically attractive on the full measure of its domain, by cobwebbing
[35], for example. We note the presence of an unstable fixed point at θ− = γ, which
is expected since Z(γ) = 0.

0 π/2 π 3π/2 2π
0

π/2

π

3π/2

2π

θ−

θ+

Figure 6. The map MHH for KP = 2.
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4.2.3. Impulsive desynchronization. In the same spirit as Section 3.2.1, we propose
a reference phase tracking control scheme based on impulsive inputs. When each
neuron spikes, it resets its controller’s own local clock t̃i, and the control algorithm
calculates an open loop waveform with the objective of reducing the neurons’ phase
error relative to a reference trajectory, evaluated when the neuron next spikes. This
algorithm, however, is constructed based on the concept of using three impulses
instead of two, as in Section 3.2.1. The additional impulse is timed to negate the
effect of the pacemaker. The other two impulses are used to accomplish the reference
phase tracking while fulfilling the charge balance requirement. In the forthcoming
presentation, all times will be relative to t̃i, the time since the neuron i last spiked.
t̃+P is the (relative) time when the pacemaker will spike again.

The control signal is composed of three impulses of strength ūi,α, KP , and ūi,β .
These values will be defined shortly; they must satisfy

ūi,α − KP + ūi,β = 0, (30)

in order to ensure charge-balance over the course of one stimulation interval.
Similar to the reference phase tracking algorithm presented in Section 3.2.1, this

algorithm stimulates the phase neuron at the points of the PRC where the Z(θ)
is minimal and maximal, i.e. θi = α and θi = β. The third impulse is timed to
occur at exactly the same time as the pacemaker spike. Under these conditions, we
calculate the (relative) time when the phase will be equal to α

t̃i,α =
α

ω
. (31)

At t̃i = t̃i,α, the controller applies an impulse with strength

ūi,α =
KPZmax + (1 − K)∆θi

Zmax − Zmin
. (32)

The controller then waits until the time when the controlled neuron’s phase will be
at the PRC’s maximal point θi = β, which can be computed to be

ti,β =
β

ω
−

Zmin(KPZmax + (1 − K)∆θi)

ω(Zmax − Zmin)
. (33)

At this time, the controller delivers an impulse with strength

ūi,β =
−((1 − K)∆θi + KPZmin)

Zmax − Zmin
. (34)

The event-triggered open-loop control waveform can now be expressed as

ui(t̃i) = ūi,1δ(t̃i − ti,α) − KP δ(t̃i − t̃+P ) + ūi,2δ(t̃i − ti,β). (35)

This charge-balanced impulsive control scheme exactly nullifies the effect of the
pacemaker and achieves the reference phase tracking with correction factor K in
the same manner as the algorithm of Section 3.2.1.

4.2.4. Quasi-impulsive desynchronization. Similar to the single neuron case exam-
ined in Section 3.2.2, we seek to make this control method practical for application
to a biological system, using finite magnitude control signals rather than impulses.
In the pacemaker system, however, there are three impulses to approximate – the
two phase-correcting impulses and the pacemaker-nulling impulse.

Figure 7(a) shows simulation results of this control scheme applied to a pace-
maker network containing ten phase-reduced Hodgkin-Huxley neurons initialized in
a completely synchronized spiking state. Figure 7(b) shows results from the same
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Figure 7. (a) Quasi-impulsive anti-pacemaker control scheme ap-
plied to a pacemaker-driven ensemble of N = 10 phase neurons.
The spike timing of the ensemble, as well as the phase distribution,
are desynchronized by the action of the controller. (b) When the
controller is turned off, the pacemaker drives the ensemble back
into spiking synchrony. The top panels show the time evolution
of each neuron’s phase. The middle panel tracks the most recent
value of the ensemble’s interspike interval (ISI). The bottom panels
show the magnitude of the order parameter |r1|.

system initialized in the desynchronized state. The phase-entraining effect of the
pacemaker makes the system tend toward synchronization in absence of the con-
troller. In these simulations, the pacemaker spike intensity was taken to be KP = 2,
the charge magnitude constraint on the control signal was C = 3 and the desired
fractional error correction was K = 0.5. In these plots, synchrony is illustrated in
two ways. The middle panels show a measure of spiking synchrony which is the time
interval between the last two spikes in the ensemble. Desynchronization of spike
times implies that this number is always equal to the natural period of the neuron
divided by the number of neurons in the ensemble. In this case, T/N = 1.46 msec
and is shown by the dashed red line. The other important measure of synchrony
is Kuramoto’s order parameter [25], the magnitude of which is a measure of phase
synchrony,

r1e
iψ =

1

N

N∑

i=0

eiθi . (36)

Phase synchronization implies |r1| → 1, while phase desynchronization implies
|r1| → 0.
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5. Conclusion. We have presented several event-based charge-balanced feedback
control algorithms which can be applied to phase models of spiking neurons. This in-
cluded controlling an individual neuron, both by finding the energy-optimal current
which causes a neuron to fire at a specified time, and using impulsive and quasi-
impulsive inputs to make a neuron fire asymptotically in-phase with a reference
oscillator. We also described how these methods, particularly the reference-phase
tracking methods, might be extended to control a ensemble of neurons, including
an ensemble driven by a pacemaker.

We note that the results presented in this paper on controlling ensembles of
neurons require the ability to provide different inputs to each neuron, which would
be very difficult to realize experimentally. The challenge remains to develop a
feedback control algorithm which desynchronizes a population of coupled neurons
through a single, common input to the whole population, although there are some
promising results along these lines [37, 12]. Such an algorithm might truly deliver
on the promise of demand-controlled deep brain stimulation for the treatment of
Parkinson’s disease.
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