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Abstract— Synchronization of nonlinear oscillators is a ubiq-
uitous phenomenon in the biological sciences; however, existing
analytical techniques are ill-equipped to handle the large
amount of heterogeneity present in realistic populations of
biological oscillators. Using phase reduction, we derive upper
and lower bounds on the critical coupling strength required to
achieve frequency synchronization in a population with both
arbitrarily distributed natural frequencies and phase response
properties. Numerical simulations reveal that these bounds
are reasonably tight in a network of oscillatory neurons as
might be relevant to diseases characterized by pathological
neural synchronization such as epilepsy or Parkinson’s disease.
Furthermore, we show how the upper bounds can be altered
by including the influence of a periodic external perturbation.

I. INTRODUCTION
Synchronization of networked oscillators is a fascinat-

ing phenomenon with abundant examples in the biological
sciences. For instance, excessive neural synchronization is
thought to contribute to the motor symptoms including
tremor and rigidity associated with Parkinson’s disease [24],
[5], [19], loss of synchronization is thought to contribute
to both hearing loss [23] and the development of diabetes
[18], and synchronization of populations of neurons in the
suprachiasmatic nucleus is responsible for the mammalian
circadian clock [2]. Networks of phase oscillators are com-
monly represented mathematically by the following equation

θ̇i = ωi−
K
N

N

∑
j=1

Γi(θi−θ j), i = 1, . . . ,N. (1)

Here, θi ∈ [0,2π) is the phase of oscillator i, Γi represents
a phase difference coupling function for oscillator i, K is
a positive constant giving the strength of the coupling, and
N is the number of oscillators. The network (1) is coupled
in an all-to-all fashion, so that all oscillators can influence
each other. Mathematical analysis of the Kuramoto [14] and
other related models [1] provides a starting point to study
synchronization in such networks, but existing analytical
techniques often cannot account for the large amount of
heterogeneity and relatively general coupling functions that
are common in most realistic biological networks.

One can characterize the tendency of a network to syn-
chronize by finding its critical coupling strength, Kc, the
point at which the network transitions from an incohesive
to a highly synchronized state. Different notions of synchro-
nization can be defined when discussing critical coupling.
In this manuscript, we will be interested in frequency syn-
chronization and phase cohesion. A solution to (1) is said
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to be frequency synchronized at time t∗ if θ̇i(t) = θ̇ j(t) for
all i and j and for all times t ≥ t∗. The system can achieve
exponential frequency synchronization if all θ̇i exponentially
converge to a common frequency ω∗ as t approaches infinity.
Phase cohesion is a more general notion of synchronization
that is achieved at time t∗ if there exists a length γ ∈ [0,π)
such that for all i and t ≥ t∗, an arc of length γ can be found
that contains θi(t).

When the number of oscillators is small, a network can
be analyzed in great detail (e.g. [16]) making it possible
to analytically determine critical coupling values. As the
number of oscillators grows, assumptions such as restricting
Γi to be sinusoidal [6], [11] or restricting coupling functions
and natural frequencies to be identical [3], [7] can make
a problem more analytically tractable so that bounds on the
critical coupling strength can be determined. In this work, we
derive separate necessary conditions and sufficient conditions
for phase cohesion and frequency synchronization of (1).
These conditions do not require explicit knowledge of the
properties of any individual oscillator, but rather assume
that their properties fall within some expected range. These
conditions can be used to infer upper and lower bounds on
Kc.

The remainder of this paper is organized as follows.
Section II gives a derivation of our main result in the context
of a biologically relevant population of oscillators. Section
III provides numerical results comparing determined critical
coupling values to upper and lower bounds for a network of
periodically firing neurons, and Section IV gives concluding
remarks.

II. A SUFFICIENT CONDITION TO ACHIEVE PHASE
COHESION AND FREQUENCY SYNCHRONIZATION

While equation (1) provides a useful framework to analyze
a network of oscillators, biological oscillators usually do not
exhibit explicit phase difference coupling. However, with the
appropriate mathematical transformations these systems can
be analyzed in this context. To this end, consider a weakly
forced population of oscillators, each with a stable limit cycle

ẋi = F(xi)+ εGi(t), xi ∈ RM, i = 1, . . . ,N, (2)

where xi is a state vector and Gi ∈RM represents an external
perturbation, and 0 < ε � 1. For simplicity, we will take
Gi(t) = [ui(t),0, . . . ,0]T so that perturbations are only given
to a single state variable, but note that the analysis to follow
can be amended to include perturbations to multiple variables
in a straightforward manner.
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In the limit that external perturbations are small, (2) is
well approximated in phase reduced form [28], [10]

θ̇i = ωi + εZi(θi)ui(t), i = 1, . . . ,N, (3)

where, θi, ωi and N are defined identically to (1), and Zi(θi)
is the phase response curve of oscillator i which describes
the phase change associated with a δ -function perturbation,
and ui(t) is a general external perturbation to oscillator i. In
phase reduced coordinates, the phase θi gives an oscillator’s
location in phase space with respect to its limit cycle ζζζ i. In
the analysis to follow, we will assume that when perturba-
tions ui are of order ε , each oscillator will remain order ε

close to ζζζ i. This implies that to leading order ε there is a one-
to-one correspondence between the phase and the system’s
state variables, i.e. xi(θi) = ζζζ i(θi)+O(ε). The formulation
(3) allows the population to have both significantly different
phase response curves and natural frequencies.

Unless stated otherwise, the derivations to follow will
assume ui(t) results from all-to-all inter-oscillator coupling
so that ui(t) = (K/N)∑

N
j=1 c(xi,x j) = (K/N)∑

N
j=1 f (θi,θ j)+

O(ε). Here, K > 0, c is a function of the states of each
oscillator, and f can be determined by evaluating c on a
given oscillator’s limit cycle. With these definitions, (3) can
be rewritten to leading order ε ,

θ̇i = ωi− εZi(θi)

(
K
N

N

∑
j=1

f (θi,θ j)

)
. (4)

Note that f (θ) is a 2π periodic function in both θi and θ j. An
equation of the form (4) is general enough to describe, for in-
stance, chemical synaptic coupling [7], or voltage difference
coupling [12] in a network of neurons. For the remainder
of the analysis, we will assume that Zi(θ) and f (θi,θ j) are
both bounded functions. To allow for heterogeneity in (4), we
will take ωi = ωo +∆ωi ∈ [ωo−∆ω,ωo +∆ω] with ∆ω ≥ 0
and Zi(θ) ∈ [Zmin(θ),Zmax(θ)] where Zmin(θ) and Zmax(θ)
respectively represent the maximum and minimum values
that any Zi can take.

To begin, we first let φ j = θ j−ωot so that (4) becomes

φ̇i = ∆ωi−
εK
N

N

∑
j=1

Zi(φi +ωot) f (φi +ωot,φ j +ωot). (5)

Additionally, we define ϕi, j = φi−φ j and write

φ̇i =∆ωi−
εK
N

N

∑
j=1

Zi(ϕi, j+φ j+ωot) f (ϕi, j+φ j+ωot,φ j+ωot).

(6)
Noting that (6) is T -periodic, with T = 2π/ωo, its dynamics
can be approximated using averaging theory, [21], [8]

ϑ̇i =
1
T

∫ T

0

[
∆ωi

− εK
N

N

∑
j=1

Zi(ϕi, j +φ j +ωot) f (ϕi, j +φ j +ωot,φ j +ωot)
]
dt

= ∆ωi−
εK
T N

∫ T

0

[
N

∑
j=1

Zi(ϕi, j +ωot) f (ϕi, j +ωot,ωot)

]
dt.

(7)

Note that in the last line of (7), φ j can be neglected because
it is common to all terms in the T -periodic integrand. Next,
we will let Zi(θ) = Z(θ)+∆Zi(θ) where

Z(θ) = (Zmax(θ)+Zmin(θ))/2,

∆Zi(θ) = Zi(θ)−Z(θ). (8)

We then rewrite (7) as follows:

ϑ̇i = ∆ωi−
εK
T N

∫ T

0

[ N

∑
j=1

(
Z(ϕi, j +ωot)+∆Zi(ϕi, j +ωot)

)
× f (ϕi, j +ωot,ωot)

]
dt

= ∆ωi−
εK
N

N

∑
j=1

1
T

∫ T

0

[(
Z(ϕi, j +ωot) f (ϕi, j +ωot,ωot)

)]
dt︸ ︷︷ ︸

Γcommon
i (ϕi, j)

+
εK
N

N

∑
j=1

1
T

∫ T

0

[
∆Zi(ϕi, j +ωot) f (ϕi, j +ωot,ωot)

]
dt︸ ︷︷ ︸

Γindividual
i (ϕi, j)

= ∆ωi−
εK
N

N

∑
j=1

(
Γ

common
i (ϕi, j)+Γ

individual
i (ϕi, j)

)
= ∆ωi−

εK
N

N

∑
j=1

Γi(ϕi, j). (9)

Here, Γcommon
i represents a phase difference coupling com-

mon to each oscillator, Γindividual
i is a phase difference deter-

mined by the particular value of Zi(θi), and Γi represents the
total phase difference coupling for oscillator i. We note that
if the terms in the right hand side of (9) are small enough
ϑ̇i will be a good approximation of φi [21], [8]. We are now
in a position to state and prove the following theorem:

Theorem 2.1: Sufficient Conditions for Phase Cohesion
and Frequency Synchronization
For some some γ ∈ (0,π) consider the following conditions:

(1) For all i and j, min
a∈[0,γ]

[Γi(a)−Γ j(a− γ)]≥ 2∆ω/(εK)

(2) For all i, there exists δi > 0 such that when −γ ≤ ϕ ≤ γ ,
d

dϕ
Γi(ϕ)> δi

If (1) is satisfied, then:
(i) if max

i, j
|ϑi(t0)−ϑ j(t0)| ≤ γ for some t0, it follows that,

|ϑi(t)−ϑ j(t)| ≤ γ for all t > t0.
If (1) and (2) are satisfied, then:

(ii) if max
i, j
|ϑi(t0)− ϑ j(t0)| ≤ γ , for some t = t0, the

network (7) is exponentially frequency synchronized.
We note that Theorem 2.1 is only valid for the averaged
system equations (7). However if the inter-oscillator coupling
is small enough, then ϑi is well approximated by θi. If addi-
tionally the averaged equations (7) achieve stable frequency
synchronization, then the unaveraged equations (4) will have
an associated stable periodic orbit when the coupling is small
enough, as discussed in [21] and [8].

Proof:
(1 =⇒ (i)) Suppose max

i, j
|ϑi(t0)−ϑ j(t0)| = γ . Consider a
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subset of any two oscillators from the larger population ϑm
and ϑn such that ϑm(t0)−ϑn(t0)= γ . Using (9) we may write

ϑ̇m− ϑ̇n = ∆ωm−∆ωn−
εK
N

N

∑
j=1

(Γm(ϕm, j)−Γn(ϕn, j)) .

(10)
For all j, we know that γ = ϕm, j(t0)−ϕn, j(t0). Using condi-
tion 1, we can provide an upper bound for (10)

ϑ̇m− ϑ̇n = ∆ωm−∆ωn−
εK
N

N

∑
j=1

(Γm(ϕm, j)−Γn(ϕm, j− γ))

≤ 2∆ω− εK
N

N

∑
j=1

(2∆ω/εK) = 0. (11)

Equation (11) implies that the phase difference of any
two oscillators cannot grow larger than γ , therefore, the
maximum phase difference between any two oscillators is
upper bounded by γ for t > t0 which implies statement (i).

(1) and (2) =⇒ (ii) Suppose max
i, j
|ϑi(t0)−ϑ j(t0)| = γ .

From (i) we know that the maximum phase difference
between any two oscillators will be upper bounded by γ for
all future time. Noting that we can write ϕi, j = ϑi−ϑ j, we
take the time derivative of (9)

d
dt

ϑ̇i =−
N

∑
j=1

ai, j(t)(ϑ̇i− ϑ̇ j), (12)

where ai, j(t) = εK
N

d
dϕ

Γi(ϕ)|ϑi(t)−ϑ j(t). We can rewrite (12)
as a linear time-varying consensus algorithm

d
dt

ϑ̇ = L(t)ϑ̇ , (13)

where ϑ = [ϑ1,ϑ2, . . . ,ϑN ]
T , and L is a matrix with diagonal

terms Li,i(t) =−∑
N
j 6=i ai, j(t), and off-diagonal terms Li, j(t) =

ai, j(t). Notice that the row sums of L are always equal to
zero. We know that the off-diagonal terms ai, j(t)> εK

N δi > 0,
are bounded, and continuous functions of time. Furthermore,
at each time instant, the matrix is fully populated so that, in
the graph theoretical sense [4], any node is reachable from
any other node. We invoke Theorem 1 from [17] to conclude
that all components d

dt ϑ̇i must exponentially approach the
same value (i.e. they achieve consensus). Suppose now that
limt→∞

d
dt ϑ̇ 6= 0, where 0 is an appropriately sized vector of

zeros. Then when the population achieves consensus, for all
i, ϑ̇i is unbounded in time. We know, however, from (9) that
this is not possible, since Γi is a bounded function so that ϑ̇i
cannot be arbitrarily large. Therefore, when the population
achieves consensus, d

dt ϑ̇ = 0. Thus, for each i, ϑ̇i will
approach a constant. Suppose that there exist some i and j
such that limt→∞ ϑ̇i =ω∗i and limt→∞ ϑ̇ j =ω∗j with ω∗i 6=ω∗j .
If this is the case, then at some time τ , |ϑi(τ)−ϑ j(τ)|= π ,
which contradicts (i), thereby implying statement (ii).

A. A Practical Upper Bound for the Critical Coupling
Strength

If the phase response curve of each oscillator is explicitly
known, Theorem 2.1 could be applied in a straightforward
way, computing each Γi(ϕ) individually. However, when

N is large, this could be a very time consuming process.
Furthermore, as is often the case with biological systems
[25], the phase response curves may not be known a priori,
and measuring them may not be possible. In these cases,
we provide a strategy to determine an upper bound for the
critical coupling strength without the need to determine any
individual phase response curves.

For a general system, from equation (9), Γi(ϕi, j) can be
written as the sum of two terms

Γi(ϕi, j) = Γ
common
i (ϕi, j)+Γ

individual
i (ϕi, j). (14)

The contribution Γcommon
i is the same among all oscillators,

but Γ
R,individual
i depends on the specific phase response curve

of oscillator i. Recalling the definition given in equation
(8), for any oscillator, |∆Zi(θ)| ≤ (Zmax(θ)−Zmin(θ))/2 ≡
Zd(θ), giving the bound

− 1
T

∫ T

0

[∣∣Zd(ϕi, j +ωot) f (ϕi, j +ωot,ωot)
∣∣]dt

≤ Γ
individual
i (ϕi, j)

≤ 1
T

∫ T

0

[∣∣Zd(ϕi, j +ωot) f (ϕi, j +ωot,ωot)
∣∣]dt.

(15)

Equation (15) can be used to calculate upper and
lower bounds on Γmax(ϕ) = max

i
(Γi(ϕ)) and Γmin(ϕ) =

min
i
(Γi(ϕ)), the maximum and minimum possible coupling

functions, respectively, for any oscillator in the population.
Keeping in mind condition 1 from Theorem 2.1, one can
verify the following upper bound on Kc, the critical coupling
strength for phase cohesion in the network:

εKc ≤
2∆ω

β
, β = max

γ∈(0,π)

[
min

a∈[0,γ]
[Γmin(a)−Γmax(a− γ)]

]
.

(16)

The upper bound (16) may appear onerous at first glance,
but is straightforward to calculate after Γmin and Γmax have
been determined.

If we also require a guarantee of frequency synchroniza-
tion, from condition 2 from Theorem 2.1, the derivatives of
the phase difference coupling must always be positive and
bounded away from zero. Similar to the strategy used above,
we can take the derivative of (14) to yield

d
dϕ

Γi(ϕ) =
1
T

∫ T

0

[(
Z(ϕ +ωot) f (ϕ +ωot,ωot)

)′
+∆Z′i(ϕ +ωot) f (ϕ +ωot,ωot)

+∆Zi(ϕ +ωot) f ′(ϕ +ωot,ωot)
]

dt

≥ 1
T

∫ T

0

[(
Z(ϕ +ωot) f (ϕ +ωot,ωot)

)′
+min

(
∆Z′i(ϕ +ωot) f (ϕ +ωot,ωot)

+∆Zi(ϕ +ωot) f ′(ϕ +ωot,ωot)
)]

dt

(17)
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where ′ ≡ d/dϕ . If we wish to guarantee that condition 2
from Theorem 2.1, holds, we can restrict γ to include only
values for which d

dϕ
Γi(ϕ) is guaranteed to be positive and

bounded away from zero for |ϕ| ≤ γ for any oscillator in the
population.

B. A Lower Bound for the Critical Coupling Strength

Here, we adapt a strategy employed to lower bound the
critical coupling for Kuramoto oscillators [11]. Suppose the
population of oscillators is in a frequency synchronized state.
Consider any two oscillators within this population. From
(9), we can write

ϑ̇m− ϑ̇m = 0 = (∆ωm−∆ωn)−
εK
N

N

∑
j=1

(Γm(ϕm, j)−Γn(ϕn, j)).

(18)
Because (18) holds for any choice of oscillator, we can write

εKc ≥
2∆ω

max
ϕ

(
Γmax(ϕ)

)
−min

ϕ

(
Γmin(ϕ)

) . (19)

Here, we can use the bounds (15) to determine the maximum
and maximum that the functions in the denominator can
attain, thereby lower bounding the critical coupling strength.
We note that (19) is also valid for phase cohesion, because
if the distance between oscillators is constrained to be less
than γ ≥ 0, there must be some time at which ϑ̇m− ϑ̇m = 0
(or becomes arbitrarily close to zero), otherwise the phase
differences between oscillators would be unbounded.

C. Promoting Synchronization with Additional External
Forcing

When inter-oscillator coupling is not sufficient to syn-
chronize the population, an additional external perturbation
common to all oscillators may be used to promote synchro-
nization. Consider the network of oscillators (4) with the
addition of a periodic common external forcing εuext(θext)
where θext ∈ [0,2π) is the external stimulus phase which
evolves according to θext(t) = θext(0)+ωot;

θ̇i = ωo +∆ωi−
εK
N

N

∑
j=1

Zi(θi) f (θi,θ j)+ εηZ(θi)uext(θext).

(20)
Here, η > 0 determines the magnitude of external forcing.
Letting φ j = θ j−ωot and φext = θext−ωot, we may rewrite
(20) as

φ̇i = ∆ωi

− εK
N

N

∑
j=1

Zi(φi +ωot) f (φi +ωot,φ j +ωot)

+ εηZi(φi +ωot)uext(θext +ωot). (21)

Because (21) is T -periodic, where T = 2π/ωo, in an analo-
gous strategy used in the reduction of (5) from Section II, we
define ϕi, j = φi−φ j and ϕi,ext = φi−θext. When the terms in

the right hand side of (21) are small, using averaging [21],
[8] it can be approximated by

ϑ̇i = ∆ωi

− εK
N

∫ T

0

1
T

[ N

∑
j=1

Zi(ϕi, j +φ j +ωot)

× f (ϕi, j +φ j +ωot,φ j +ωot)
]

dt

+ εη

∫ T

0

[
1
T

Zi(ϕi,ext +θext +ωot)uext(θext +ωot)
]

︸ ︷︷ ︸
Si(ϕi,ext)

dt

= ∆ωi−
εK
N

N

∑
j=1

Γi(ϕi, j)+ εηSi(ϕi,ext). (22)

Note that in (22), the term θext can be neglected in the T -
periodic integrand. Recall that Γi was defined in equation
(9). As in (14), we may write Si(ϕi,ext) as the sum of
contributions from the part of the PRC common to all
oscillators and the part of the PRC unique to each oscillator

Scommon
i (ϕi,ext) =

1
T

∫ T

0

[
Z(ϕi,ext +ωot)uext(ωot)

]
dt

Sindividual
i (ϕi,ext) =

1
T

∫ T

0

[
∆Zi(ϕi,ext +ωot)uext(ωot)

]
dt.

(23)

With these definitions, we can determine the following
bound

− 1
T

∫ T

0

[∣∣Zd(ϕi,ext +ωot)uext(ωot)
∣∣]dt +Scommon

i (ϕi,ext)

≤ Si(ϕi,ext)

≤ 1
T

∫ T

0

[∣∣Zd(ϕi,ext +ωot)uext(ωot)
∣∣]+Scommon

i (ϕi,ext).

(24)

We define the upper and lower bounds on (24) to be Smax
and Smin, respectively. Suppose, in the spirit of Theorem
2.1, for some γ ∈ (0,π) we want to know if the population
of oscillators will be phase cohesive with an associated arc
length of γ . To this end, suppose that at some time t0, for all
i and j, |ϑi(t0)−ϑ j(t0)| ≤ γ . Then, by examining any two
oscillators for which ϑm(t0)−ϑn(t0) = γ , using (22) we may
write

ϑ̇m− ϑ̇n = (∆ωm−∆ωn)−
[

εK
N

N

∑
j=1

(Γm(ϕm, j)−Γn(ϕn, j))

+ εη(Sn(ϕn,ext)−Sm(ϕm,ext))

]
. (25)

We know that ϕm, j(t0)−ϕn, j(t0) = ϕm,ext(t0)−ϕn,ext(t0) =
γ . Suppose that ϑm(t0) ≥ θext(t0) ≥ ϑn(t0). Then, for all i,
|ϕi,ext(t0)| ≤ γ . Let

µ = max
γ∈(0,π)

[
εK min

a∈[0,γ]

(
Γmin(a)−Γmax(a− γ)

)
+ εη min

a∈[0,γ]

(
Smin(a− γ)−Smax(a)

)]
. (26)
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Using (25), if µ ≥max
i, j

(∆ωi−∆ω j), then, for some value of

γ , ϑ̇m− ϑ̇n ≤ 0, implying that the network is phase cohesive.
When η from equation (26) is zero (i.e. the external

forcing is zero), µ is identical to β from equation (16).
If the internal coupling between oscillators is not strong
enough to guarantee phase cohesiveness, then an external
periodic stimulus may be used to provide an additional
synchronizing influence. According to this result, the external
stimulus must be close in period to the natural period of
each oscillator, and the stimulus phase must be between
the phases of the largest and smallest oscillators. In this
work, we do not give a specific procedure for finding stimuli
to promote synchronization, but in a related problem, [26]
found that useful stimuli could be designed by providing a
negative (resp. positive) external perturbation when the of the
derivative of the PRC (dZ/dθ) is positive (resp. negative)
and large in magnitude relative to the allowable spread in
the PRCs (Zd(θ)).

III. NUMERICAL CRITICAL COUPLING RESULTS IN A
POPULATION OF NEURAL OSCILLATORS
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Fig. 1. The top panel shows an example of 50 randomly chosen ion
concentrations for (27) from a region shown between solid lines. Voltage
traces for an example network of N = 50 neurons from (27) after initial
transients have died out. In the middle panel K = 0.019 > Kc. In the bottom
panel, K = 0.015 < Kc.

We consider a six-dimensional conductance-based model
for a neural network with intracellular and extracellular ion
concentration dynamics [13]. For convenience of notation,
the explicit order ε dependence on the coupling strength is
dropped in the following example. The synaptically coupled
transmembrane voltage dynamics are given by

CV̇j = fV (Vj,n j,h j, [K]oj , [Na]ij , [Ca]ij)

+
K
N

N

∑
k=1

(Vj−VG)sk(t− τ), j = 1, . . . ,N (27)

Here, K is the maximal conductance, N is the total number
of neurons, VG = 60mV so that the synapses are inhibitory,
τ = 2ms is a constant time delay, and sk is the synaptic
variable of neuron j which evolves according to (c.f. [7])
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Fig. 2. This choice of ion concentrations from Figure 1 produces PRCs
for neurons which lie within the shaded region in the top panel. The middle
and bottom panels give approximate values of the synaptic variable s and
transmembrane voltage variable V as a function of θ for each neuron.

ṡ j = α(1− s j)(1/(1+ exp(−(Vj−VT )/σT )))−β2s j, (28)

where α = 2, VT = -37, σT = 2, and β2 = 0.6. For a
full description of all functions and parameters from (27),
we refer the reader to [13], and unless otherwise stated,
parameter values and dynamics are identical to those in
[13]. Throughout the trials, the intracellular sodium ([Na]i)
and extracellular potassium ([K]o) concentrations are taken
to be constant, and uniformly randomly sampled from the
region in the top panel of Figure 1. For this choice of ion
concentrations, the resulting natural periods of oscillation are
between 20 and 21 milliseconds, and the resulting PRCs
always lie within the grey band shown in the top panel
of Figure 2. In an example network of N = 50 neurons
shown in the middle and bottom panels of Figure 1, we
find that for K ≈ 0.017 neurons fire periodically in a phase
cohesive manner. In the absence of coupling, the dynamic
equations describing each neuron asymptotically approach a
limit cycle, for which we assume that in the limit of small
coupling, si and Vi are well approximated as functions of
θi, shown in the middle and bottom panels of Figure 2,
respectively. When we make this assumption, we can rewrite
(27) in the same form as (4) and straightforwardly apply our
bounding methodology from Section II. Equation (15) is used
to calculate Γmax and Γmin, shown in the top panel of Figure
3. These bounds are then used to calculate upper and lower
bounds on the critical coupling strength required for phase
cohesion using (16) and (19), respectively, shown as dashed
lines in the bottom panel of Figure 3. Over multiple trials,
we simulate (27) with different values of N for different
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realizations of randomly chosen ionic concentrations. For
each trial, we slowly and incrementally lower the coupling
strength, K, and take Kc to be value of K just before the
neurons are no longer phase cohesive. Bars in the bottom
panel of Figure 3 represent the maximum and minimum
values of Kc over 80 trials, with the average value of Kc
shown with an ‘x’. The upper bound and lower bound on Kc
is about 1.5 times larger and 3.5 times smaller, respectively,
than the average numerically determined value of Kc.
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Fig. 3. The top panel shows Γmin and Γmax to calculate upper and lower
bounds in (16) and (19). The bottom panel gives the maximum and minimum
critical coupling values over 80 samples of neurons randomly chosen from
a uniforn distribution for each choice of N. The average value of Kc is
represented with an ‘x’ and the bars represent the maximum and minimum
values of Kc.

IV. CONCLUSION

We have derived a necessary and a sufficient condition
for frequency synchronization and phase cohesion in an
all-to-all network of biologically realistic oscillators with
arbitrarily distributed natural frequencies and phase response
curves. These conditions can be used to determine upper
and lower bounds for critical coupling for synchronization
for a population of phase oscillators with both arbitrarily
distributed natural frequencies and phase response curves. In
a network of neural oscillators, we find that these bounds
are reasonably tight. Furthermore, when the differences in
natural frequencies between oscillators and the coupling
strength is sufficiently small, this bounding procedure can be
adapted to capture the influence of an external perturbation
common to all oscillators. We note that contraction theory
[15], [22] cannot be straightforwardly applied to the problem
of finding the critical coupling strength in the network (4)
because the uncertainty in network parameters may not be
known a priori.

Further investigation into this bounding procedure could
be useful when applied to biological problems where syn-
chronization plays an important role. For instance, various
authors have investigated external perturbations to inhibit
pathological entrainment in neural networks that may have
relevance to Parkinson’s disease [9], [20], [27]. Using bound-
ing methodologies similar to those in this manuscript, one
could investigate how different pharmacological agents could
modify network parameters which increase either upper or
lower bounds on the critical coupling strength.

The methodology presented in this manuscript is not
without limitations. Current results are derived assuming
all-to-all coupling between oscillators, which represents an
oversimplification of most biological networks. Future work
will adapt these consensus results to be used with more
general coupling topologies. Also, because biological net-
works rarely take the form (1) (i.e. coupled through phase
differences), both phase reduction [28], [10] and dynamical
averaging [21], [8] must be used to manipulate the governing
equations to take the form used in this work. As with all
methodologies that rely on these reduction strategies, current
theoretical results are valid in the limit that the coupling
between oscillators is weak, and derived bounds may break
down as the interaction between oscillators becomes stronger.
Even if this is the case, however, analysis in the limit of weak
coupling generally provides qualitative information about
how a network behaves as coupling becomes stronger. Fur-
thermore, analytical bounds on the critical coupling strength
are derived for (4) which is an order ε approximation
for the phase reduction of (3) and future work will be
devoted to understanding how the neglected O(ε2) terms
influence frequency synchronization and phase cohesion in
the network.
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