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Synchronous behavior of a population of chemical oscillators is analyzed in the presence of both
weak and strong coupling. In each case, we derive upper bounds on the critical coupling strength
which are valid for arbitrary populations of nonlinear, heterogeneous oscillators. For weak pertur-
bations, infinitesimal phase response curves are used to characterize the response to coupling, and
graph theoretical techniques are used to predict synchronization. In the strongly perturbed case, we
observe a phase dependent perturbation threshold required to elicit an immediate spike and use this
behavior for our analytical predictions. Resulting upper bounds on the critical coupling strength agree
well with our experimental observations and numerical simulations. Furthermore, important system
parameters which determine synchronization are different in the weak and strong coupling regimes.
Our results point to new strategies by which limit cycle oscillators can be studied when the applied
perturbations become strong enough to immediately reset the phase. Published by AIP Publishing.
https://doi.org/10.1063/1.5049475

Synchronization of limit cycle oscillators is of great inter-
est in biology, as it plays a key role in the healthy
functioning of cardiac pacemaker cells,1 the genesis of
circadian rhythms,2,3 the development of neurological
disease,4,5 and the regulation of glucose through coor-
dinated release of pancreatic insulin.6 In this work, we
carry out experiments and simulations on synchroniza-
tion in populations of all-to-all photochemically coupled
Belousov-Zhabotinsky oscillators, with the aim of devel-
oping theoretical strategies to predict synchronization in
general populations of limit cycle oscillators. Analytical
predictions agree well with numerical and experimental
observations in the cases of weak and strong perturba-
tions, where the system parameters predicting synchro-
nization differ in each case.

I. INTRODUCTION

Winfree made great strides in describing the dynamical
behavior of limit cycle oscillators,7 with the critical insight
that, near the limit cycle, the behavior of an M -dimensional
oscillator could be understood in terms of a one-dimensional
phase, resulting in dynamics given in the most general form by

θ̇i = ωi + K

N

N∑
j=1

Xj(θj)Zi(θi), i = 1, . . . , N . (1)

Here, θi ∈ [0, 2π) represents the phase of oscillator i, ωi is
its natural frequency, Zi(θ) is the phase response curve to
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infinitesimal perturbations (iPRC), Xj(θ) is a phase-dependent
influence function of oscillator j, and K sets the strength
of coupling. While Eq. (1) provides a useful starting point
for investigating populations of oscillators coupled through
a mean field, it is difficult to study analytically. Various sim-
plifications have been applied to Eq. (1) that have resulted in
increased analytical tractability. Perhaps the most well-known
simplification is the Kuramoto model,8 for which Xj(θj)Zi(θi)

is replaced by sin(θj − θi). The resulting model can be further
simplified in the limit as N → ∞, allowing it to be succinctly
described in terms of the evolution of the probability densities
of oscillators. The balance between complexity and analytical
tractability of the Kuramoto model has sparked much interest
over time, providing significant insights into the spontaneous
synchronization of coupled oscillators.9–13

Other strategies have been used to shed light on the syn-
chronization of coupled oscillators. For example, the notion of
a master stability function can be used to determine the stabil-
ity of synchronous solutions of identical oscillators with linear
coupling and general connectivity.14,15 Contraction theory16,17

provides a strategy for guaranteeing synchronization in gen-
eral populations of oscillators, provided a contraction region
can be found, although the implementation of this methodol-
ogy is not always straightforward, particularly for large and
complicated systems. By assuming that all oscillators have
an identical natural frequency and communicate through brief
pulses, it is possible to investigate the long-term behavior of a
population of oscillators starting from an arbitrary set of initial
conditions.18,19 Various constraints on the iPRC or influence
function of Eq. (1) have been considered, making it possible
to investigate complicated behavior such as oscillator death
and chimera states.20,21
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Few practical tools exist for answering basic questions
about the stability of synchronized oscillations for hetero-
geneous populations of limit cycle oscillators. In this work,
using synchronization in populations of all-to-all photochem-
ically coupled Belousov-Zhabotinsky (BZ) oscillators as a test
bed, we develop strategies to predict synchronization in gen-
eral populations that can be described by the Winfree model,
Eq. (1). The first strategy assumes that perturbations due to
coupling are sufficiently weak that they can be characterized
by an iPRC, and we draw on graph theoretical techniques to
develop sufficient conditions for synchronization of a hetero-
geneous population of oscillators in this instance. The second
strategy is applicable for stronger coupling, for which pertur-
bations give rise to nearly immediate resetting of the phase
to zero; we make use of a phase dependent spike threshold
curve (STC) in order to predict stable synchronization in this
regime. These strategies are assessed in terms of their ability
to predict the critical coupling strength, defined as the min-
imum coupling strength for which the synchronized state is
stable. In both cases, analytical predictions agree well with
numerical and experimental observations. Furthermore, we
find that important system parameters determining synchro-
nization and the qualitative behavior of the synchronized solu-
tions are different for each regime. The results presented here
have direct implications to the understanding of general popu-
lations of biological oscillators and point to new opportunities
for study where our understanding is incomplete.

II. EXPERIMENTS AND NUMERICAL SIMULATIONS

To study the collective behavior of populations of cou-
pled oscillators, experiments are carried out using discrete
photosensitive BZ chemical micro-oscillators. The BZ reac-
tion is a multi-step oscillatory reaction involving the acidic
bromate oxidation of an organic compound such as mal-
onic acid in the presence of a metal catalyst such as ruthe-
nium(II). In our experiments, we used catalyst loaded cation
exchange beads with an average diameter of 270 μm, which
are placed in a catalyst-free BZ reaction mixture.22–26 The cat-
alyst changes color from green to orange, corresponding to
its oxidized and reduced states, respectively. The accompany-
ing gray level changes allow the measurement of the natural
period of a given oscillator. We define θi = 0 to be the moment
that the measured gray level intensity reaches its maximum
value for each oscillator, corresponding to the maximum con-
centration of the oxidized catalyst, which permits calculation
of the period. The phase θi at any point in time can then be
determined.

Phase response curves (PRCs) can be measured using the
well established direct method27 by briefly raising the back-
ground light intensity ρ0 by some amount �ρ for �t seconds
and measuring the difference between the expected and actual
time of the next spike �θ . We take the iPRC at that phase to
be equal to �θ/(�ρ�t). The BZ reaction provides a particu-
larly interesting test bed for the study of the Winfree model,
because, depending on the magnitude of stimulation, the indi-
vidual oscillators can fire virtually immediately. Figure 1(a)
shows a typical phase response curve, in this case with a light
perturbation of 0.64 mW cm−2. There is a small downward

FIG. 1. Measured phase response curves in the experimental BZ system and
numerical simulations using the ZBKE model. Panel (a) shows an example
of Z(θ) measured in a BZ experiment with perturbations of 0.64 mW cm−2.
Dots give individual measurements from the direct method.27 Panels (b)
and (c), and (d) and (e) show simulations with perturbations �ρ of magni-
tude 0.05 and 1.0, respectively. For larger perturbations, nearly immediate
phase resetting is observed once the phase is large enough. Light blue bands
give the envelope of phase response curves measured for the heterogene-
ity q ∈ [0.68, 0.80], with the black line showing the average between these
bounds. In panels (a), (c), and (e), the dashed red lines indicate the upper
bound which would be achieved with an instantaneous reset to θ = 0. In panel
(e), immediate phase resetting occurs for smaller values of θ as values of qi

increase.

trend until θ ≈ 2.5 rad, at which point the perturbation results
in the oscillator firing, with nearly immediate phase resetting
to θ = 0.

Numerical simulations of the BZ chemical micro-
oscillator system are carried out with a two-variable, nondi-
mensional version of the Zhabotinsky-Buchholtz-Kiyatkin-
Epstein (ZBKE) model,28 modified to incorporate the photo-
sensitivity of the ruthenium catalyzed discrete oscillator22

ε1ẋi = ρi/2χ − x2
i − xi + ε2λu2

ss + uss(1 − zi)

+ μ − xi

μ − zi

(
qiαzi

ε3 + 1 − zi
+ η

)
, (2)

żi = ρi/χ + uss(1 − zi) − αzi

ε3 + 1 − zi
, i = 1, . . . , N .

Here, N is the total number of oscillators, qi is the sto-
ichiometric coefficient, xi and zi represent [HBrO2] and
[Ru(bpy)3+] for oscillator i, respectively, model parameters
ε1 = 0.11, ε2 = 1.7 · 10−5, ε3 = 1.6 · 10−3, λ = 1.2, α = 0.1,
η = 1.7 · 10−5, χ = 500, and μ = 2.4 · 10−4, and ρi rep-
resents the illumination intensity of oscillator i for the
photochemical coupling, with ρ0 = 0.54 as the background
light intensity. The variable uss represents the steady-state
[HBrO+

2 ] and for oscillator i is determined according to uss =
[1/(4λε2)][−(1 − zi) + (1 − 2zi + z2

i + 16λε2xi)
0.5].

The original ZBKE model28 involved the three variables
HBrO2, HBrO+

2 , and oxidized catalyst (ferroin or cerium)
with the quasi steady state approximation (QSSA) applied
to a fourth variable bromide, Br−. A two variable version
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of this model was introduced by Bugrim et al.29 in which
both HBrO+

2 and Br− were represented using a QSSA. This
two-variable model was later modified for use with the
photosensitive BZ system with the Ru(bpy)2+

3 catalyst by
Vanag et al.30

The ZBKE model has been used widely in studies of
coupled micro-oscillators, in part due to the fact that it can
reproduce the range of frequency heterogeneity seen in such
systems. Toth et al.31 used a three variable version of the
ZBKE with the variables HBrO2, Br−, and oxidized cata-
lyst (ferroin) and the QSSA applied to the fourth species
HBrO+

2 to study micro-oscillators coupled via a well stirred
catalyst-free solution. In this system, the micro-oscillators
communicate mainly through the interchange of bromous acid
and bromide. This model was also utilized in a study of
dynamical quorum sensing in large populations of chemi-
cal oscillators.32 The two variable model of Vanag et al.30

was first applied to photosensitive micro-oscillators coupled
via light by Taylor et al.22 This version of the model has
since been extensively used in studies of coupled light sen-
sitive micro-oscillators.24–26,33–38 The model utilizes coupling
based on the transmitted light intensity from each oscillator
and, from this, each oscillator is irradiated with a calculated
light intensity. The experimental micro-oscillators are spa-
tially separated so that there is no diffusive coupling between
them.

The dimensionless modified ZBKE model in Eq. (2) is
intended to provide a numerical analog to the experimen-
tal system. While the behavior between different models is
qualitatively similar, quantitative comparisons between most
model simulations of the Belousov-Zhabotinsky reaction and
experimental results typically have not been possible. As
such, the experimental results and the numerical simulations
in this work are analyzed separately, each yielding compara-
ble behavior that can be explained using the same theoretical
approach described below.

Figures 1(b) and 1(c) show simulated phase response
curves measured for q ∈ [0.68, 0.80] and a perturbation in
the excitatory feedback of �ρi = 0.05, lasting �t = 0.5. The
infinitesimal phase response curve is measured for these
small perturbations, which varies smoothly as the phase of
the stimulus application changes. For larger perturbations of
�ρi = 1.0 with �t = 0.5, we measure a nearly identical phase
response curve at smaller phases, but observe nearly immedi-
ate phase resetting when θ > 4.3 rad, as shown in Figs. 1(d)
and 1(e).

The qualitative differences in the response to perturba-
tions (i.e., infinitesimal phase response vs. nearly immediate
phase resetting) result in profound differences in the syn-
chronization of oscillator populations, as can be observed
in populations of coupled BZ oscillators. For each experi-
ment, 40 micro-oscillators were placed in a petri dish con-
taining 2.5 ml of catalyst-free BZ solution, with minimum
spacing of 1.0 mm between the oscillators. The oscillators
are coupled by monitoring the gray level of each oscillator
with a CCD camera and applying the appropriate feedback
light intensity with a spatial light modulator (SLM).24–26

Figure 2 shows a schematic representation of the experimental
setup.

FIG. 2. Experimental setup for studies of synchronization of coupled BZ
micro-oscillators according to Eq. (3). The gray levels Ii and Ij of the pho-
tosensitive micro-oscillators are monitored with a CCD camera and the
illumination feedback ρe

i is applied with a spatial light modulator (SLM),
where ρe

0 is the background illumination intensity.

The light intensity, ρe
i (mW cm−2), projected on oscillator

i in the experiments is determined by

ρe
i = ρe

0 + K

N

∑
j �=i

[Ij(t − τ) − Ii(t)], (3)

where N = 40 is the total number of oscillators, K is the
coupling constant (mW cm−2), Ii and Ij are the normalized,
dimensionless gray levels of oscillators i and j, t is the time
(s), τ is a time delay (s), and ρe

0 is the background light
intensity (mW cm−2). As evident from (3), the experimental
oscillators are connected in an all-to-all manner without self
coupling. The purpose of including the time delay is twofold:
First, non-negligible time delays are often observed in bio-
logical systems, a feature which has been precisely quantified
and studied in neurological systems.39,40 Second, the manipu-
lation of τ allows us to modify the system so that the feedback
occurs earlier or later in the cycle during synchronization.
This permits us to study different mechanisms of synchro-
nization by determining whether the behavior can be captured
by an iPRC or by the STC for larger perturbations display-
ing nearly immediate phase resetting. For example, consider
the order parameter plots shown in Figs. 3(b) and 3(d) from
experiments using the coupling in Eq. (3), with τ = 6 s and
τ ∈ {50, 60} s, respectively. In these experiments, the cou-
pling strength is initially set to a sufficiently high value so
that the oscillators completely synchronize, at which point the
coupling constant K is set to a particular value and the steady
state Kuramoto order parameter,8 R = |(1/N)

∑N
k=1 eiθk |, is

recorded, yielding plots of R as a function of K.
The average natural period of the oscillators in our

experiments is approximately 66 s, so that when the oscil-
lators are synchronized, most of the effective feedback
occurs later in the cycle due to the rapid upstroke and
decay of the gray scale intensity, as shown, for exam-
ple, in Figs. 3(e) and 3(f). For short time delays, we
observe a clear trend emerging in the plots of R as a
function of K, with a reasonably tight distribution in the
values of R. For larger values of τ , provided K is large
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FIG. 3. Panels (a) and (c) show plots of long-time values of the order param-
eter R as a function of coupling strength K for simulations using Eq. (2) with
coupling given by Eq. (4) for τ ≈ 17% and 82% of the natural period, respec-
tively. Panels (b) and (d) show similar results from experimental preparations
of the BZ chemical reaction with τ set to approximately 9% and 83% of the
natural period, respectively. For τ values that are a larger percentage of the
natural period, R generally takes a value that is very close to either 1 or 0
and dashed lines in panels (c) and (d) highlight this dichotomy. Panels (e) and
(f) show long-time behavior of each oscillator from experiments correspond-
ing to the data points of matching color in panel (d). Intensities shown are
normalized with respect to their maximum value.

enough, we observe a clear all-or-nothing synchronization,
which does not depend strictly on K. Figures 3(e)
and 3(f) show time series of the oscillators corresponding to
the data points of matching color in Fig. 3(d). Notice that
even though the coupling strength in Fig. 3(f) is more than
twice that in Fig. 3(e), the asymptotic behavior of the system
is completely incoherent. Reasons for this discrepancy will be
discussed in the numerical and analytical results to follow.

Qualitatively similar behavior is observed in simulations
of Eq. (2), with coupling given by

ρi = ρ0 + K

N

N∑
j=1

[zj(t − τ) − zi(t)] (4)

for t ≥ 0, where ρ0 = 0.54, N = 40, and the concentrations
of the oxidized catalyst zi and zj are assumed to be propor-
tional to the transmitted light intensities Ii and Ij so that Eq. (4)
is an analog of Eq. (3). However, like Eq. (2), all quantities
in Eq. (4) are dimensionless. Unlike in experiments, oscilla-
tors in numerical simulations do have self coupling. However,
there is no discernable difference between simulations with or
without self coupling with N = 40. In each simulation, the
value of q in Eq. (2) is chosen from a Gaussian distribution
with a mean of 0.7 and a variance chosen randomly before

each trial between 0 and 0.1; the resulting uncoupled periods
averaged 34. In order to obtain a sufficient history to imple-
ment the coupling in Eq. (4) with time delay τ , Eq. (2) is
initially paced when t < 0 using ρi = ρ0 + κ where κ = 1 if
mod(t, 30) < 0.5 and κ = 0 otherwise. This pacing is strong
enough to elicit immediate spikes and initially synchronizes
all oscillators. Simulations are performed using a forward
Euler scheme with a time step of 0.001 time units.

Each oscillator initially has the same state, and the order
parameter is recorded once the system achieves its long-time
behavior. Similar to the experimental data, when τ = 6 as in
Fig. 3(a), we observe a clear positive and smoothly varying
trend in R as a function of K. For τ = 28 [Fig. 3(c)], we
observe an abrupt transition between complete incoherence
and complete synchronization. Furthermore, upon synchro-
nization, the order parameter remains near the perfectly syn-
chronized state with R = 1, a level of synchronization that is
never achieved for small τ .

III. ANALYSIS OF TWO DIFFERENT MODALITIES OF
SYNCHRONIZATION

In Fig. 3, we observe qualitative differences in synchro-
nization when τ is a small fraction [Figs. 3(a) and 3(b)] or
large fraction [Figs. 3(c) and 3(d)] of the unperturbed natural
period. As mentioned earlier, these differences are due to the
dichotomy of behavior based on whether perturbations arrive
at smaller values of θ , with behavior that can be described
with an infinitesimal phase response curve, or at large values
of θ , with virtually immediate phase resetting behavior.

To study synchronization, we must first give a technical
definition of what it means for a population of oscillators to
be synchronized. Here, we will use the notions of frequency
synchronization and phase cohesion41 to study the behavior
of these populations of coupled oscillators analytically. We
will say that a solution to Eq. (1) is phase cohesive at time
t∗ if there exists γ ∈ [0, π) such that for all θi and for all
t ≥ t∗, an arc length γ can be found that contains all θi. Fre-
quency synchronization is achieved at time t∗ if θ̇i(t) = θ̇j(t)
for all i and j for all times t ≥ t∗. Figure 4 illustrates the
qualitative differences between these two definitions of syn-
chronization. Note that frequency synchronization does not
necessarily imply phase cohesiveness. For example, the splay
state can be frequency synchronized but not phase cohesive.

The critical coupling strength, Kc, defined as the nec-
essary and sufficient coupling strength that will maintain
either phase cohesiveness or frequency synchronization, is
often used to quantify the relevant parameters that deter-
mine synchronization. In special cases for a given population,
one can determine Kc analytically, but in most applications,
Kc can only be determined directly through experiment or
direct numerical simulation. In the subsections to follow, we
derive an upper bound on Kc for a heterogeneous popula-
tion in Eq. (1), valid in the limit of weak coupling when the
population has both a heterogeneous distribution of natural
frequencies and infinitesimal phase response curves. As we
will show, this bound is applicable in experimental prepara-
tions of the BZ reaction and in simulations of Eq. (2) when τ

from Eqs. (3) and (4) is a small fraction of the natural period.
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FIG. 4. In panel (a), a general system
of 8 oscillators from Eq. (1) has phases
which are contained within an arc of
length γ at a snapshot in time. In pan-
els (b) and (c), ω∗ is a constant so that
each trace is plotted in a rotating refer-
ence frame. The example population in
panel (b) is phase cohesive, even though
the relative position of each oscillator
changes. In panel (c), the example popu-
lation is frequency synchronized, and all
oscillators travel at the rate ω∗.

We also derive an upper bound on Kc for phase cohesion
when the system behavior is dominated by immediate phase
resetting, as is the case when τ is a larger proportion of the nat-
ural period. As we will show, for the two different modalities
of synchronization, the relevant parameters which determine
synchronization in Eq. (1) are different.

A. Infinitesimal phase reseting critical coupling
bounds

Here, we examine synchronization in Eq. (1) in the limit
of weak coupling, i.e., when Z(θ) can be approximated by an
infinitesimal phase response curve. The theoretical analysis in
Sec. III A also appears in Ref. 45. To begin, consider a weakly
forced population of oscillators, each with a stable limit cycle

ẋi = F(xi) + εGi(t), xi ∈ R
M , i = 1, . . . , N , (5)

where xi is a state vector, Gi ∈ R
M represents an external per-

turbation, and 0 < ε 	 1. For simplicity, we will take Gi(t)
= [ui(t), 0, . . . , 0]T so that perturbations are applied only to a
single state variable. In the limit that external perturbations are
small, Eq. (5) is well approximated in phase reduced form27,42

θ̇i = ωi + εZi(θi)ui(t), i = 1, . . . , N , (6)

where θi is the phase of oscillator i, giving its location in phase
space with respect to its limit cycle ζi, ωi is the natural fre-
quency of oscillator i, N is the number of oscillators, Zi(θi)

is the infinitesimal phase response curve (iPRC) of oscilla-
tor i, which describes the phase change associated with a
small perturbation, and ui(t) is a general external perturba-
tion to oscillator i. In the analysis to follow, we will assume
that when perturbations are sufficiently small, each oscillator
remains order ε close to ζi. This implies that to leading order
ε, there is a one-to-one correspondence between the phase
and the system’s state variables, i.e., xi(θi) = ζi(θi) + O(ε).
The formulation in Eq. (6) allows the population to have
both significantly different phase response curves and natural
frequencies.

To analyze synchronization in the chemical oscillator net-
work, suppose that the feedback coupling is all-to-all with self
coupling so that ui(t) takes the form

ui(t) = −K

N

N∑
j=1

c(xi, xj) = −K

N

N∑
j=1

f (θi, θj) + O(ε). (7)

Here, K > 0, c is a function of the state of each oscillator, and
f can be determined by evaluating c on a given oscillator’s
limit cycle. With these assumptions, we rewrite (6) to leading
order ε as

θ̇i = ωi − εZi(θi)

⎡
⎣K

N

N∑
j=1

f (θi, θj)

⎤
⎦ . (8)

Note that f (θ) is a 2π periodic function in both θi and θj.
We manipulate Eq. (8) by letting φj ≡ θj − ωot, φi ≡ θi − ωot,
and ϕi,j ≡ φi − φj, with ωo corresponding to the mean natural
frequency of the oscillators, to arrive at the relation

φ̇i = �ωi − εK

N

N∑
j=1

Zi(ϕi,j

+ φj + ωot)f (ϕi,j + φj + ωot, φj + ωot). (9)

Here, �ωi ≡ ωi − ωo. Noting that Eq. (9) is T-periodic,
with T = 2π/ωo, its dynamics can be approximated using
averaging theory43,44

ϑ̇i = 1

T

∫ T

0

[
�ωi − εK

N

N∑
j=1

Zi(ϕi,j + φj

+ ωot)f (ϕi,j + φj + ωot, φj + ωot)
]
dt

= �ωi − K

N

∫ T

0

ε

T

⎡
⎣ N∑

j=1

Zi(ϕi,j + ωot)f (ϕi,j + ωot, ωot)

⎤
⎦dt

︸ ︷︷ ︸
�i(ϕi,j)

.

(10)
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Note that in the second to last line of (10), φj can be neglected
because it is common to all terms in the T-periodic integrand.
Here, �i(ϕi,j) represents the averaged total phase difference
coupling for oscillator i. Provided the terms in the right hand
side of (9) are small enough, ϑ̇i will be a good approximation
of φ̇i. Toward determining a bound for the critical coupling
strength for synchronization in (10), consider the following
conditions for some γ ∈ (0, π):

(I) For all i and j, mina∈[0,γ ]
[
�i(a) − �j(a − γ )

]
≥ (ωmax − ωmin)/K.

(II) For all i, there exists δi > 0 such that when −γ ≤ ϕ ≤ γ ,
d

dϕ
�i(ϕ) > δi.

The main results for synchronization for populations of oscil-
lators in response to weak coupling are given below, with a
proof given in Appendix A. A proof of these statements is
also given in Ref. 45.

Sufficient condition for phase cohesion: If (I) is satis-
fied, then for some initial time t0 for which maxi,j |ϑi(t0)
− ϑj(t0)| ≤ γ , it follows that |ϑi(t) − ϑj(t)| ≤ γ for all
t > t0.

Sufficient condition for frequency synchronization: If (I)
and (II) are satisfied, then for some initial time t0 for which
maxi,j |ϑi(t0) − ϑj(t0)| ≤ γ , the network (10) is exponentially
frequency synchronized.

We note that the results above are only valid for the aver-
aged system equation (10). However, if the inter-oscillator
coupling is small enough, then ϑi is well approximated by θi.
If additionally the averaged equation (10) achieves stable fre-
quency synchronization, then the unaveraged equation (8) will
have an associated stable periodic orbit when the coupling is
small enough, as discussed in Refs. 43 and 44.

Keeping condition (I) in mind, one can verify the follow-
ing upper bound on Kc, the critical coupling strength for phase
cohesion in the network

Kc ≤ ωmax − ωmin

β
,

β = max
γ∈(0,π)

[
min

a∈[0,γ ]
[�min(a) − �max(a − γ )]

]
. (11)

The upper bound equation (11) may appear onerous at first
glance but is straightforward to calculate after �min and
�max have been determined using the strategy presented in
Appendix B. Furthermore, the constant β can be calculated
without explicit knowledge of any of the iPRCs but rather
using a range within which iPRCs can be found. This feature
is useful, for instance, in biological systems46 when the mea-
surement of individual phase response curves is not possible.
Intuitively, β gives a sense of the guaranteed synchroniz-
ing influence from weak coupling which explicitly takes into
account system heterogeneity. While Eq. (11) only provides
an upper bound, in general, one would expect Kc to decrease
as β increases. Finally, we note that it is relatively straightfor-
ward to adapt the resulting bound (11) for situations when the
network does not have self coupling.

FIG. 5. (a) Blue dots represent individual measurements of S(θ) for BZ
experiments using the procedure detailed in the text. The solid line gives
a piecewise linear fit to the data. (b) S(θ) is calculated for oscillators from
simulations of Eq. (2), with qi = {0.500, 0.574, 0.648, 0.722, 0.796, 0.870}.

B. Spike threshold resetting and synchronization

We require a different mathematical formalism to study
synchronization when τ is a larger fraction of the natural
period in the BZ oscillator experiments. For large τ , perturba-
tions due to coupling occur near the end of the cycle in a fully
synchronized system. As illustrated in Fig. 1(a), for perturba-
tions of a given magnitude, when the perturbation is applied
for sufficiently large θ , we observe a nearly immediate spike,
which resets the phase to θ = 0. In Fig. 5(a), we observe that
this threshold shifts to smaller phases as the intensity of the
stimulus increases.

Each experimental data point in Fig. 5(a) is obtained by
carrying out a PRC measurement with a light perturbation.
The light perturbation is applied for 6 s to all oscillators and
the phase difference, �θ , is measured for each oscillator. The
oscillators are allowed to relax for at least 2 periods before
the next perturbation. Finally, all values of �θ for all oscil-
lators are collected and plotted as a function of the phase at
which they are perturbed. Figure 5(a) shows the individual
PRC experiments with changing the maximum light intensity,
S(θ ), by increments of 0.093 mW cm−2. The x-axis represents
the minimum phase at which immediate resetting to θ = 0
occurs. As seen in Fig. 5(a), θ shifts toward lower values as
S(θ ) increases.

The plot of the experimental data in Fig. 5(a) appears
nearly linear, and we fit the data to the piecewise linear
curve to determine a spike threshold curve (STC) denoted
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FIG. 6. (a) Crosses represent numeri-
cally determined values of Kc in simu-
lations of Eq. (2). The solid line gives
an upper bound calculated using the
iPRC, Eq. (11). The dashed line gives
an upper bound, taking into account
the low threshold for producing a spike
near the end of the oscillation in the
ZBKE system. The dashed-dotted line
gives an exact estimate for Kc using
Eq. (14). (b) and (c) Plots of R ver-
sus the relevant parameters that deter-
mine synchronization. Simulations in
panel (b) [respectively, (c)] use τ = 6
time units (respectively, τ = 28 time
units), resulting in synchronization that
is best predicted using infinitesimal
phase resetting (respectively, immediate
phase resetting). Dashed lines are cal-
culated according to Eqs. (11) and (14)
and represent cutoff values for synchro-
nization in the system. Closed and open
circles represent simulations that remain
phase cohesive and lose phase cohesive-
ness, respectively.

by S(θ). In experimental trials, any measurable increase in
light intensity when θ > 5 elicits a nearly immediate spike,
and we take S(θ) = 0 in this regime. Numerical simulations
of Eq. (2) yield qualitatively similar results, and S(θ) is deter-
mined numerically with a shooting method for six oscillators
with different values of qi. The lowermost curve (respectively,
topmost curve) in panel (b) gives the trace calculated for
qi = 0.87 (respectively, qi = 0.50), with the remaining curves
representing intermediate values.

In both simulations and experiments, the STC can be
interpreted as follows: any perturbation P for which P ≥ S(θ)

will elicit an almost immediate spike; when P < S(θ), the per-
turbation falls in a regime that can be characterized by an
iPRC. For a synchronous population of oscillators for which
τ is close to the natural period of oscillation, perturbations
due to feedback occur primarily in this immediate phase reset-
ting regime. Notice from the phase response curves shown in
Fig. 1 that perturbations for which P ≥ S(θ) generally have
a much greater effect on the phase than perturbations for
which P < S(θ). For this reason, we will ignore the effects
of the iPRC in the analysis to follow and focus on the STC in
determining thresholds to maintain synchronization.

To proceed with the analytical derivation of the critical
coupling strength, suppose the coupling takes the form given
by Eq. (7). Feedback will produce an immediate spike in
oscillator i provided that the following holds:

K

N

N∑
j=1

f (θi, θj) > Si(θi), (12)

where Si represents the STC of oscillator i. The following
assumptions will be used to calculate Kc in this regime. First,
suppose Eq. (8) is initially synchronized with all spikes occur-
ring at the same instant, i.e., θi = 0 at t = t0 for all i. Recall

that θi = 0 corresponds to the moment that oscillator i reaches
its maximum gray level value. From the coupling, the result-
ing spike will be felt by other oscillators at t = t0 + τ . We
find that in both numerical simulations and experiments, the
baseline intensities between oscillators are effectively similar,
but the maximum value of the intensities varies between oscil-
lators. Therefore, we will define Mj as the maximum value of
f (θi, θj) (i.e., the difference between the maximum intensity of
oscillator j and baseline intensity of oscillator i). Furthermore,
feedback ramps up quickly and decays rapidly; we assume
that coupling either elicits a spike at t = t0 + τ or is not suf-
ficient to cause a premature spike. Taken together, we can
guarantee that the system will remain synchronized, i.e., cou-
pling will be strong enough to elicit spikes in all oscillators at
the same time, provided

K > max
i

[Si(τωi)] /M̄ , (13)

where M̄ ≡ (1/N)
∑N

j=1 Mj. Equation (13) can be used to
bound the critical coupling strength to maintain synchroniza-
tion,

Kc ≤ Smax(τωmin)/M̄ , (14)

where Smax(θ) ≡ maxi[Si(θ)]. In Eq. (14), we use the fact that
S(θ) is monotonically decreasing so that the slowest oscillator
determines the coupling strength required for synchroniza-
tion. In this scenario, τ sets the period of the coupled oscilla-
tion, and since dKc/dτ < 0, the coupling strength required to
maintain synchronization increases with decreasing τ . Here,
the synchronization we observed can be described as phase
cohesiveness; the phases diverge until they are brought back
together with a synchronizing pulse. If self-coupling is instead
omitted from the network, following the same set of steps used
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FIG. 7. (a) For τ = 6 s, the spread
in natural frequencies and the coupling
strength provides the best prediction of
synchronization in the network of oscil-
lators. (b) and (c) For large values of
τ , the coupling strength and minimum
natural frequency are the best predictors
of synchronization. (d) and (e) Plotting
the order parameter against the opposite
combination of parameters does not yield
a clear pattern.

to derive Eq. (14) yields the critical coupling bound

Kc ≤ NSmax[τωmin]/[M̄ (N − 1)], (15)

which only differs from Eq. (14) by a factor of N/(N − 1).
The important parameters that determine Kc in Eqs. (14)

and (11) are quite different; for the former, the difference in
natural frequencies is directly proportional to the upper bound
on Kc; for the latter, the minimum natural frequency sets the
bound, and the spread in natural frequencies is not important
(τ , however, must still be smaller than the smallest natural
period). As we will see, Eq. (14) provides a remarkably close
estimate of the threshold required to maintain synchronization
in a network of BZ oscillators.

IV. EVALUATION OF ANALYTICALLY DETERMINED
BOUNDS FOR SYNCHRONIZATION

All experiments and simulations are performed with
N = 40 oscillators. In simulations of Eq. (2), we take
qi = 0.68 + (i − 1) 0.12

39 with resulting natural periods T ∈
[33.7, 38.5]. Crosses in Fig. 6(a) represent the true value
of Kc numerically determined by Eq. (2) by first taking K
large enough so that the population is initially phase cohe-
sive and slowly decrementing until phase cohesiveness is lost.
When τ is between 10 and 20 time units, the population does
not support phase cohesive solutions, even at large coupling
strengths. The allowable heterogeneity of the iPRC, Figs. 1(b)

and 1(c), is used to calculate β at various values of τ according
to the strategy given in Appendix B, and this information is
used to provide the bound for Kc in Eq. (11), shown as a solid
black line in Fig. 6(a). The calculation of this bound assumes
that the iPRC completely characterizes the spiking behavior
of this system; however, this is not exactly true. Consider,
for instance, oscillators that are lagging the most in a phase
cohesive system when τ is relatively small. When the lead-
ing oscillators spike, τ time units later, the coupling felt by
the lagging oscillators, which have yet to spike, ramps up
quickly. Because the lagging oscillators are near the end of
their cycle, this perturbation will generally be in excess of
the threshold to elicit an immediate spike. Here, the effect
of coupling is significantly underestimated for the lagging
oscillators and we can remedy this situation with the approx-
imation �max(ϕi,j) = −∞ when ϕi,j < −(2πτ)/T . Note that
when τ is small and the system is phase cohesive, the lead-
ing oscillators do not feel much coupling near the end of their
cycle and do not have immediate spiking; therefore, we do not
need to apply any corrections to �min. We recalculate β with
this new assumption on �max, and the resulting upper bound is
shown as the dashed line in Fig. 6(a). Equation (14) is used to
estimate Kc at larger values of τ , shown as a dash-dotted line.
Here, M̄ is found numerically to be 0.9.

In Figs. 6(b) and 6(c), each cross represents a simu-
lation of Eq. (2) with parameter qi = νσi + 0.74, where σi

is chosen from a standard normal distribution and ν varies
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between 0 and 0.1 for each simulation. In the case that ν

is large, qi is further constrained to be between 0.68 and
0.8 (respectively, 0.5 and 0.87) in simulations in Fig. 6(b)
[respectively, Fig. 6(c)], which sets the allowable amount of
heterogeneity and ensures that each oscillator has a well-
defined limit cycle. In each simulation, K is chosen between
0.2 and 2. Starting from an initial synchronous state, the order
parameter, R, is recorded once the long-time behavior has
been established. In Fig. 6(b), the vertical dashed line shows
β calculated for τ = 6 time units from Eq. (11) and we would
expect all data points to the left to be phase cohesive. Closed
(respectively, open) circles indicate simulations which remain
phase cohesive (respectively, lose phase cohesiveness). The
leftmost open circle occurs at a value only 14% larger than the
dashed line threshold, indicating that the upper bound on the
critical coupling strength is reasonably tight for these popula-
tions of oscillators. In Fig. 6(c), the vertical line corresponds
to a cutoff for phase cohesiveness predicted by Eq. (14). In
these simulations, however, some open circles occur slightly
to the left of the cutoff. The reason for this discrepancy
can likely be attributed to neglecting the effect of infinitesi-
mal perturbations in Eq. (13), which have a small effect on
the phase dynamics. Nevertheless, the analytical predictions
agree quite well with the results of the numerical simulations.

Figure 7 shows an analogous set of experiments using
the experimental system of photosensitive BZ chemical oscil-
lators. In Fig. 7(a), we find that R qualitatively matches the
results from the numerical system for smaller values of τ ,
i.e., gradually increasing as ωmax − ωmin decreases and as K
increases. For the experimental system, we approximate the
STC with a piecewise linear fit to the measured data points
shown in Fig. 5 and assume the STC among all oscillators
is identical. In the regime with a negative slope, our fit is
S(θ) = aθ + b, with coefficients a = −0.53 mW cm−2 rad−1

and b = 2.61 mW cm−2. Substituting this value for the STC
into Eq. (15), the condition to maintain synchronization can
be expressed as (KM̄ − b)/ωmin > aτ . Figures 7(b) and 7(c)
show the result of experiments with τ = 50 s and 60 s, respec-
tively. We see a clear cutoff between systems with high and
low order parameters in these experiments. These cutoff loca-
tions are very close to their predicted values of −27.0 and
−32.4 mW cm−2 · (rad/s)−1 for τ = 50 s and 60 s, respec-
tively. As expected, as τ increases, the threshold for syn-
chronization shifts to values which require smaller coupling
strengths. Figures 7(d) and 7(e) show similar data plotted
against the other set of parameters. In contrast to the panels
above, there is not a clear pattern when the opposite combina-
tion of parameters is plotted against the order parameter.

V. DISCUSSION AND CONCLUSION

Motivated by the understanding of synchronization in
populations of coupled BZ oscillators, we have developed
strategies for predicting and understanding synchronization
in populations of all-to-all coupled heterogeneous limit cycle
oscillators. For the first strategy, the effects of coupling are
assumed to be small enough that the response to perturbations
can be understood using an iPRC. Under these assumptions,
the difference in natural frequencies among oscillators is

a desynchronizing influence that must be overcome by
strong enough phase difference coupling and is in qualita-
tive agreement with other results for populations of Kuramoto
oscillators.41,47 The overall dispersion of the phases of the
oscillators grows as coupling decreases until phase cohesive-
ness is ultimately lost. As a result, in Figs. 6(b) and 7(a), we
observe that the order parameter varies relatively smoothly as
the coupling strength decreases; once phase cohesiveness is
lost, the population still remains relatively synchronized.

In the second strategy, we investigate the stability of
phase cohesive solutions for stronger perturbations which
result in near-immediate spikes. The development and use of
an STC allows for the understanding of synchronization in this
regime, for which the oscillator with the smallest natural fre-
quency determines the coupling strength necessary to main-
tain phase cohesiveness. In simulations for which coupling
tends to elicit spikes in an all-or-nothing fashion, populations
either remain phase cohesive or are completely asynchronous
[see, e.g., Figs. 6(c), 7(b), and 7(c)]. Intuitively, this behav-
ior is due to the all-or-nothing spiking from the coupling; if
synchronization is not maintained for some oscillators, the
feedback signal will become less concentrated, decreasing its
magnitude and causing other oscillators to lose synchroniza-
tion. This process continues until the feedback signal is too
weak to elicit immediate spikes in most oscillators.

We are unaware of the use of a phase dependent, all-
or-nothing spike threshold curve in the literature and believe
that such a strategy could be useful for predicting and under-
standing synchronization in periodically spiking systems. For
instance, using this framework, we find that strong excitatory
coupling in a population of BZ oscillators can have a syn-
chronizing influence even though strategies often used under
the weak coupling assumption48–50 would predict desynchro-
nization. While the analytical predictions given in this work
assume that perturbations can be understood with either an
iPRC (for weak perturbations) or an STC (for stronger pertur-
bations), it is likely that both mechanisms work in tandem to
synchronize populations of coupled BZ oscillators. In the con-
text of the standard phase reduction, Eq. (6), the immediate
spiking mechanism could be implemented with the additional
constraint that u(t)Zi[θ(t)] = 2π − θi(t) when u(t) > Si(θ),
where S(θ) is the STC. Strategies that make use of the STC
can be implemented without the need for considering addi-
tional variables in the reduction, and the development of
analytical strategies which use both mechanisms could be of
interest for obtaining tighter bounds for the critical coupling
strength and for understanding more complicated population
behavior, such as the emergence of chimera states.21,26

Our synchronization results pertain to only the stabil-
ity of synchronized states; however, it would be of interest
to adapt them for studying spontaneous synchronization for
populations of oscillators that are not initially synchronized.
Additionally, the methodology used here could be adapted
to understand the stability of two-cluster solutions, which
are often observed in populations of spiking oscillators,22

and synchronization when oscillators are not coupled in an
all-to-all manner.51

The results of this work primarily focus on synchro-
nization in deterministic systems; however, it would be of
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practical interest to extend these results to investigate syn-
chronization of stochastic processes. Such applications arise,
e.g., in cardiac pacemakers, where calcium-induced-calcium-
release52,53 plays an important role in the synchronization of
stochastic ryanodine receptor openings. The authors of Ref. 1
showed that the magnitude of the calcium current gener-
ated from individual ryanodine receptor openings regulates
synchronization of calcium release throughout a diffusively
coupled network. The resulting synchronous release of cal-
cium from sarcoplasmic reticulum leads to diastolic depolar-
ization, subsequently activates L-type calcium currents, and
ultimately results in a spontaneous action potential.54–56 These
synchronized calcium releases that occur during the diastolic
interval have been referred to as the calcium clock57 in cardiac
pacemaking cells. While the strategies presented in the cur-
rent work are not explicitly suited for application to stochastic
processes, it is an intriguing possibility that they could be
extended to understand and predict synchronization in these
contexts.

Most results with applications to synchronization in pop-
ulations of coupled oscillators rely on the approximation
that perturbations are sufficiently weak so their effects can
be understood with an iPRC. In addition to the significant
reduction in complexity that phase reduction affords, this
mathematical framework is useful because as the response to
perturbations become larger, the effects on the phase can still
be qualitatively understood using an iPRC, even if quantita-
tive predictions may be slightly less accurate.58,59 In fact, in
many excitable biological systems, it is likely that immedi-
ate spikes in response to perturbations significantly contribute
to synchronization. For instance, in neurons, provided a suf-
ficiently long period of time has passed since the last action
potential, perturbations that drive the transmembrane voltage
above a threshold voltage produce action potentials.60 Simple
models of periodically firing neurons also have phase depen-
dent spiking thresholds that can be visualized in terms of
their voltage nullclines.50 Such behaviors cannot be repro-
duced using iPRC techniques which assume that perturbations
are sufficiently small that the state dynamics remain reason-
ably close to the unperturbed limit cycle. Immediate spiking is
commonly observed in the experimental measurement of neu-
ral PRCs, where larger perturbations applied near the end of
the cycle tend to produce immediate spikes.61,62 This behav-
ior is generally viewed as a nuisance, as it masks the actual
shape of the iPRC and is generally ignored in analytical work;
however, it is an actual feature of living neurons. It may be
possible to quantify the tendency of neurons to fire in response
to stronger perturbations in terms of a spike threshold curve.
Note that for the experimental and numerical BZ oscillator
system, the STC provides a phase dependent threshold per-
turbation necessary for the generation of an immediate spike.
In other systems, the magnitude and duration of a stimulus
may be important for determining conditions for an immedi-
ate spike to occur; however, such corrections will invariably
increase the number of variables necessary to characterize the
reduced system.

Given the accuracy we have found in the analytical
predictions, the use of the STC as described in this work
may represent a desirable trade-off between accuracy and

complexity of the resulting reduction. The use of iPRCs
together with STCs could provide a convenient framework for
further understanding the behavior of coupled oscillators in
situations where coupling is sufficiently large enough to elicit
immediate spikes.
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APPENDIX A: PROOF OF SYNCHRONIZATION
CONDITIONS USING INFINITESIMAL PHASE
RESPONSE CURVES

A derivation of the statements from Sec. III A regarding
synchronization among populations of limit cycle oscillators
subject to weak, all-to-all connectivity with self coupling
is given here. A proof of these statements also appears in
Ref. 45. For convenience, we restate the conditions (I) and
(II) from Sec. III A here: for some γ ∈ (0, π)

(I) For all i and j, mina∈[0,γ ]
[
�i(a) − �j(a − γ )

]
≥ (ωmax − ωmin)/K.

(II) For all i, there exists δi > 0 such that when −γ ≤ ϕ ≤ γ ,
d

dϕ
�i(ϕ) > δi.

Conditions (I) and (II) are used in statements (i) and (ii),
which give sufficient conditions for phase cohesiveness and
frequency synchronization, respectively.

(i) Sufficient condition for phase cohesion. If condition
(I) from Sec. III A is satisfied, then for some initial time t0
for which maxi,j |ϑi(t0) − ϑj(t0)| ≤ γ , it follows that |ϑi(t) −
ϑj(t)| ≤ γ for all t > t0.

Proof: Suppose maxi,j |ϑi(t0) − ϑj(t0)| = γ . Consider a
subset of any two oscillators from the larger population ϑm

and ϑn such that ϑm(t0) − ϑn(t0) = γ . Using Eq. (10), we may
write

ϑ̇m − ϑ̇n = �ωm − �ωn − K

N

N∑
j=1

[
�m(ϕm,j) − �n(ϕn,j)

]
.

(A1)
For all j, we know that γ = ϕm,j(t0) − ϕn,j(t0) so that Eq. (A1)
becomes

ϑ̇m − ϑ̇n = �ωm − �ωn − K

N

N∑
j=1

[
�m(ϕm,j) − �n(ϕm,j − γ )

]
.

(A2)
Using condition (I), we can provide an upper bound for
Eq. (A1),

ϑ̇m − ϑ̇n ≤ (ωmax − ωmin) − K

N

N∑
j=1

[(ωmax − ωmin)/K]

= 0. (A3)

Equation (A3) implies that the phase difference of any two
oscillators cannot grow larger than γ ; therefore, the maxi-
mum phase difference between any two oscillators is upper
bounded by γ for t > t0, which implies statement (i).
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(ii) Sufficient condition for frequency synchroniza-
tion. If conditions (I) and (II) from Sec. III A are satis-
fied, then for some initial time t0 for which maxi,j |ϑi(t0) −
ϑj(t0)| ≤ γ , the network equation (10) is exponentially fre-
quency synchronized.

Proof: Suppose maxi,j |ϑi(t0) − ϑj(t0)| = γ . From the
above analysis, because (I) is satisfied, we know that the max-
imum phase difference between any two oscillators will be
upper bounded by γ for all future time, i.e., the population is
phase cohesive. Noting that we can write ϕi,j = ϑi − ϑj, we
take the time derivative of Eq. (10)

d

dt
ϑ̇i = −

N∑
j=1

ai,j(t)(ϑ̇i − ϑ̇j), (A4)

where ai,j(t) = K
N

d
dϕ

�i(ϕ)|ϑi(t)−ϑj(t). We can rewrite Eq. (A4)
as a linear time-varying consensus algorithm

d

dt
ϑ̇ = L(t)ϑ̇ , (A5)

where ϑ = [ϑ1, ϑ2, . . . , ϑN ]T and L is a matrix with diagonal
terms Li,i(t) = − ∑N

j �=i ai,j(t) and off-diagonal terms Li,j(t) =
ai,j(t). Notice that the row sums of L are always equal to zero.
From condition (II), we know that the off-diagonal terms,
ai,j(t) > K

N δi > 0, are bounded and continuous functions of
time. Furthermore, at each time instant, the matrix is fully
populated so that, in the graph theoretical sense,63 any node
is reachable from any other node. We invoke Theorem 1
from Ref. 64 to conclude that all components d

dt ϑ̇i must
exponentially approach the same value (i.e., they achieve
consensus).

Toward contradiction, suppose that limt→∞ d
dt ϑ̇ �= �0,

where �0 is an appropriately sized vector of zeros. Then when
the population achieves consensus, for all i, ϑ̇i is unbounded
in time. We know, however, from Eq. (10) that this is not
possible since �i is a bounded function so that ϑ̇i cannot
be arbitrarily large. Therefore, when the population achieves
consensus, d

dt ϑ̇ = �0. Thus, for each i, ϑ̇i will approach a
constant. Suppose that there exist some i and j such that
limt→∞ ϑ̇i = ω∗

i and limt→∞ ϑ̇j = ω∗
j with ω∗

i �= ω∗
j . If this is

the case, then at some time t1, |ϑi(t1) − ϑj(t1)| = π , which
contradicts (I), thereby implying statement (ii).

APPENDIX B: PRACTICAL USE OF THE UPPER
BOUND FOR DETERMINING CRITICAL COUPLING
STRENGTH

If the infinitesimal phase response curves of every oscilla-
tor in a given population equation (8) are known, the averaged
functions �i(ϕi,j) can be calculated for every oscillator; in
principle, the difference between �i and �j could be calculated
for all combinations of i and j in order to calculate β from
Eq. (11) and hence determine the upper bound on the critical
coupling strength for phase cohesiveness. In practice, how-
ever, this becomes a computationally exhaustive task as the
number of oscillators in the population grows larger. Further-
more, in many biological applications,46 exact measurements
of PRCs may be prohibitive. In these cases, we provide a strat-
egy for testing conditions (I) and (II) when the phase response
curves are allowed to exist in some predefined range. This

approach eliminates the need for knowing individual phase
response curves to determine an upper bound for Kc.

To begin, we allow for heterogeneity in the phase
response curves of Eq. (8) by assuming Zi(θ) ∈ [Zmin(θ),
Zmax(θ)], where Zmin(θ) and Zmax(θ), respectively, represent
the maximum and minimum values that any Zi can take. We
also let Zi(θ) = Z(θ) + �Zi(θ), where

Z(θ) = [Zmax(θ) + Zmin(θ)]/2,

�Zi(θ) = Zi(θ) − Z(θ). (B1)

We then rewrite Eq. (10) as follows:

ϑ̇i = �ωi − εK

TN

∫ T

0

{ N∑
j=1

[
Z(ϕi,j + ωot) + �Zi(ϕi,j + ωot)

]

× f (ϕi,j + ωot, ωot)

}
dt

= �ωi − K

N

N∑
j=1

ε

T

∫ T

0

{ [
Z(ϕi,j + ωot)f (ϕi,j + ωot, ωot)

] }
dt

︸ ︷︷ ︸
�common

i (ϕi,j)

− K

N

N∑
j=1

ε

T

∫ T

0

[
�Zi(ϕi,j + ωot)f (ϕi,j + ωot, ωot)

]
dt

︸ ︷︷ ︸
�individual

i (ϕi,j)

= �ωi − K

N

N∑
j=1

[
�common

i (ϕi,j) + �individual
i (ϕi,j)

]

= �ωi − K

N

N∑
j=1

�i(ϕi,j). (B2)

Here, �common
i represents a phase difference coupling common

to each oscillator, and �individual
i is a phase difference deter-

mined by the particular value of Zi(θi). Note in the above
formulation

�i(ϕi,j) = �common
i (ϕi,j) + �individual

i (ϕi,j). (B3)

From Eq. (B1), for any oscillator, |�Zi(θ)| ≤ [Zmax(θ) −
Zmin(θ)]/2 ≡ Zd(θ), giving the bound

− 1

T

∫ T

0

[∣∣Zd(ϕi,j + ωot)f (ϕi,j + ωot, ωot)
∣∣]dt

≤ �individual
i (ϕi,j)

≤ 1

T

∫ T

0

[∣∣Zd(ϕi,j + ωot)f (ϕi,j + ωot, ωot)
∣∣]dt. (B4)

Here, �common
i (ϕi,j) is the same for all oscillators so that

Eq. (B4) can be used to calculate upper and lower bounds on
�max(ϕ) = maxi[�i(ϕ)] and �min(ϕ) = mini[�i(ϕ)], the max-
imum and minimum possible coupling functions, respectively,
for any oscillator in the population. Once �max and �min have
been obtained, it is relatively straightforward to calculate β

from Eq. (11) in order to determine the upper bound for phase
cohesiveness.

If we also require a guarantee of frequency synchro-
nization, condition (II) from Sec. III A mandates that the
derivatives of the phase difference coupling must always be
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positive and bounded away from zero. Similar to the strategy
used above, we can take the derivative of Eq. (B3) to yield

d

dϕ
�i(ϕ) = 1

T

∫ T

0

{ [
Z(ϕ + ωot)f (ϕ + ωot, ωot)

]′

+ �Z′
i(ϕ + ωot)f (ϕ + ωot, ωot)

+ �Zi(ϕ + ωot)f ′(ϕ + ωot, ωot)

}
dt

≥ 1

T

∫ T

0

{ [
Z(ϕ + ωot)f (ϕ + ωot, ωot)

]′

+ min

[
�Z′

i(ϕ + ωot)f (ϕ + ωot, ωot)

+ �Zi(ϕ + ωot)f ′(ϕ + ωot, ωot)

]}
dt, (B5)

where ′ ≡ d/dϕ. If we wish to guarantee that condition (II)
holds, we can restrict γ to include only values for which
d

dϕ
�i(ϕ) is guaranteed to be positive and bounded away from

zero for |ϕ| ≤ γ for any oscillator in the population.
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