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Abstract
While high-frequency deep brain stimulation is a well established treatment for Parkinson’s

disease, its underlying mechanisms remain elusive. Here, we show that two competing

hypotheses, desynchronization and entrainment in a population of model neurons, may not

be mutually exclusive. We find that in a noisy group of phase oscillators, high frequency per-

turbations can separate the population into multiple clusters, each with a nearly identical

proportion of the overall population. This phenomenon can be understood by studying

maps of the underlying deterministic system and is guaranteed to be observed for small

noise strengths. When we apply this framework to populations of Type I and Type II neu-

rons, we observe clustered desynchronization at many pulsing frequencies.

Author Summary

While high-frequency deep brain stimulation (DBS) is a decades old treatment for alleviat-
ing the motor symptoms Parkinsons disease, the way in which it alleviates these symptoms
is not well understood. Making matters more complicated, some experimental results sug-
gest that DBS works by making neurons fire more regularly, while other seemingly contra-
dictory results suggest that DBS works by making neural firing patterns less synchronized.
Here we present theoretical and numerical results with the potential to merge these com-
peting hypotheses. For predictable DBS pulsing rates, in the presence of a small amount of
noise, a population of neurons will split into distinct clusters, each containing a nearly
identical proportion of the overall population. When we observe this clustering phenome-
non, on a short time scale, neurons are entrained to high-frequency DBS pulsing, but on a
long time scale, they desynchronize predictably.

Introduction
High frequency deep brain stimulation (DBS), a medical treatment in which high-frequency,
pulsatile current is injected into an appropriate brain region, is a well established technique for
alleviating tremors, rigidity, and bradykinesia in patients with Parkinson’s disease [1, 2]. While
the underlying mechanisms of deep brain stimulation remain unknown, it is well documented
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that local field potential recordings recorded in the subthalamic nucleus of patients with Par-
kinson’s disease display increased power in the beta range (approximately 13–35 Hz) [3–5].
These findings have led to the hypothesis that pathological synchronization among neurons in
the basal ganglia-cortical loop contribute to the motor symptoms of Parkinson’s disease [6–8].
This hypothesis has been supported by findings that when DBS is applied to the STN, abate-
ment of motor symptoms is correlated with a decrease the power in the beta band of the local
field potential recorded from STN [9–11]. This line of thinking has led researchers to develop
new strategies for desynchronizing populations of pathologically synchronized oscillators, [12–
14], some of which have shown promise as new treatment options for Parkinson’s disease in
animal and human studies [15, 16].

While many factors including the location of the DBS probe, stimulus duration, and stimu-
lus magnitude influence the efficacy of DBS, one factor that is difficult to explain is the strong
dependency on stimulus frequency. Low-frequency stimulation (� 50 Hz) is generally ineffec-
tive at reducing symptoms of Parkinson’s disease while high-frequency stimulation from 70 to
1000 Hz and beyond has been shown to be therapeutically effective [17–19]. However, not all
high frequency stimulation is equally effective, and clinicians have generally settled on a thera-
peutic range at about 130–180 Hz. [20, 21].

In an effort to provide insight into the frequency dependent effects of DBS, the authors of
[22] postulated that specifically tuned pulse parameters might yield chaotic desynchronization
in a network of neurons. If desynchronization is the goal of DBS, then achieving it chaotically
is a worthwhile objective. However, this can generally only be seen in a small window of pulse
parameters and frequencies which may make it difficult to observe in real neurons. Further-
more, in both brain slices and in vivo recordings, individual neuronal spikes have been found
to be time-locked to the external high-frequency stimulation [23–28] which would be unlikely
if the spike times were chaotic.

Here we present a different viewpoint showing that with high frequency pulsatile stimula-
tion, in the presence of a small amount of noise, a population of neurons can split into distinct
clusters, each containing a nearly identical proportion of the overall population. We find that
the number of clusters, and hence desynchronization, is highly dependent the pulsing fre-
quency and strength. We provide theoretical insight into this phenomenon and show that it
can be observed over a wide range of pulsing frequencies and pulsing strengths. This viewpoint
merges two seemingly contradictory hypotheses, showing that the therapeutic effect of the peri-
odic pulsing could be to replace the pathological behavior with a less synchronous pattern of
activity, even if individual neuronal spikes are phase locked to the DBS pulses.

Results

Clustered Desynchronization in a Computational Neural Network
Consider a noisy, periodically oscillating population of thalamic neurons from [29]:

C _Vi ¼ fVðVi; hi; riÞ þ Ib þ uðtÞ þ �ZiðtÞ;
_hi ¼ fhðVi; hiÞ;
_ri ¼ frðVi; riÞ; i ¼ 1; . . . ;N:

ð1Þ

Here Vi, hi, and ri represent the transmembrane voltage and gating variables of neuron i,
respectively, with all functions and parameters taken to be identical to those found in [29],
DBS pulses are represented by an external current u(t), taken to be identical for each neuron,
ηi(t) is a Gaussian white noise process, C = 1μF/cm2 is the constant neural membrane
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capacitance, Ib = 1.93μA/μF is a baseline current chosen so that in the absence of external per-
turbations and noise the firing rate is 60 Hz, and N is the total number of neurons.

Using phase reduction, [30, 31], we can study Eq (1) in a more convenient form:

_yi ¼ oþ f ðyiÞdðmodðt; tÞÞ þ �ZiðtÞZðyiÞ þOð�2Þ; i ¼ 1; . . . ;N; ð2Þ

where θ 2 [0, 1) is the phase of the neuron with θ = 0 defined to be the time the neuron fires an
action potential, ω is the natural frequency of oscillation, f(θ) is a continuous function which
describes the effect of the DBS pulse, τ is a positive constant that determines the period of the
DBS input, and Z(θ) is the neuron’s phase response curve to an infinitesimal perturbation.
Here we assume that � is small enough so that higher order noise terms are negligible (c.f. [32,
33]). Fig 1 shows an example charge-balanced pulsatile stimulus. We take the positive portion
to be five times larger than the negative portion, with the positive current applied for 100 μs.
The bottom panel shows the function f(θ) for a given stimulus intensity, calculated using the
direct method [34]: a pulsatile perturbation is applied to a neuron at a known phase θp so that f
(θp) can be inferred by measuring the timing of the next spike. We note that even though the
DBS pulse itself is not a δ-function, it is of short enough duration that Eq (2) is an accurate
approximation to Eq (1).

We simulate Eq (1) with 1000 neurons, taking a pulse strength S = 110μA/μF, and noise

strength � ¼ ffiffiffiffiffiffiffiffiffi
0:05

p
, for various pulsing frequencies, with results shown in Fig 2. After some

initial transients, we find the network tends to settle to a state with different numbers of clus-
ters for different pulsing frequencies. From the probability distributions of neural phases ρ(θ),
the bottom panels show somewhat surprisingly that once the network settles to a clustered
state, each cluster contains a nearly identical portion of the overall population. Also, upon
reaching the steady distribution, neurons can still transition between clusters, but on average,
the amount that leave a given cluster must be identical to the amount that enter. Fig 3 shows

Fig 1. Charge-balanced DBS pulses. The top panel shows a simple, charge-balanced biphasic stimulus
chosen to represent a DBS pulse with frequency 1/τ and strength S. The bottom panel shows the relationship
between the phase at the onset of a pulse and the induced change in phase at a particular strength. The
effect of the stimulus is generally phase advancing.

doi:10.1371/journal.pcbi.1004673.g001
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individual voltage traces for 50 sample neurons from this population after the network settles
to a clustered state. Highlighted traces represent neurons from each cluster. In general, increas-
ing the number of clusters will decrease synchrony in the population. Furthermore, neurons
are more likely to transition between clusters as the overall number of clusters becomes larger.

A Theoretical Basis for Clustered Desynchronization
For simplicity of notation, we will take ω = 1 for Eq (2) in the theoretical analysis, but note that
any other value could be considered to obtain qualitatively similar results. In the absence of
noise, one may integrate Eq (2) for a single neuron θ to yield

yðtÞ ¼ yð0Þ þ t; for t < t;

yðtÞ ¼ yð0Þ þ f ðyð0Þ þ tÞ þ t; for t � t < 2t:
ð3Þ

In this work, we are interested in the state of the system immediately after each pulsatile input.
By integrating Eq (2), the system dynamics can be understood in terms of compositions of a
map

yðntÞ ¼ g nð Þðy0Þ; n ¼ 1; 2; . . . ; ð4Þ

where g(s) = s + f(s + τ) + τ and g(n) denotes the composition of g with itself n times, and θ0 is
the initial state of a neuron. In Eqs (3) and (4), θ(t) and the arguments of f and g are always

Fig 2. Clustered desynchronization in thalamic neurons. In simulations of Eq (1), the top panel shows
snapshots of the probability distribution ρ(θ) taken immediately preceding every pulse for the 63 Hz
stimulation and every fourth, third, and second pulse for the 83 Hz, 94 Hz, and 120 Hz stimulation,
respectively. From left to right, the bottom panels show average probability distributions from the final fifty
snapshots while stimulating at 83, 94, and 120 Hz respectively. Horizontal dashed lines denote troughs of the
probability distributions. The probability contained between successive troughs is 0.27, 0.25, 0.25, and 0.23
in the left panels, 0.34, 0.33, and 0.33 in the middle panels, and 0.52 and 0.48 in the right panels.

doi:10.1371/journal.pcbi.1004673.g002
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evaluated modulo 1. If g(n) has a stable fixed point, then any oscillator which starts within its
basin of attraction will approach that fixed point as time approaches infinity [35].

With noise, the dynamics are more complicated. In this case, the phase of each neuron can-
not be determined exactly from Eq (2), but rather, follows a probability distribution. For a neu-
ron with known initial phase θ0, aftermτ has elapsed, the corresponding δ-function
distribution δ(θ − θ0) will be mapped to the Gaussian distribution

rðyÞ ¼ N ðm; ffiffiffi
n

p Þ; ð5Þ

with mean μ = g(m)(θ0) given by Eq (23) and variance ν given by Eq (24). In order to study the
infinite time behavior of Eq (2) it can be useful to calculate steady state probability distributions
for the population of neurons. To simplify the analysis, we will study Eq (2) as a series of sto-
chastic maps applied to an initial phase density (c.f. [22, 33]),

rðy; t þmtÞ ¼ Pmtrðy; tÞ; ð6Þ

where Pmτ is the linear Frobenius Perron operator corresponding to evolution for the timemτ,
and ρ(θ, t) is the probability distribution of phases at time t. We can approximate Pmτ by the

matrix Pmt 2 R
M�M by using eq (5) to determine each column of the matrix for a set of discre-

tized phases, Δθ = 1/M. In Fig 4 for instance, the map g(2) yields the stochastic matrix P2t,
shown in the panel on the right. The delta function distribution (arrow) is mapped to a Gauss-
ian distribution (solid line). The matrix Pmt has all positive entries, and since probability is
conserved, the matrix is column stochastic (i.e. the columns of Pmt sum to 1). For this class of
matrices, the Perron-Frobenius theorem allows us to write [36, 37],

lim
k!1

Pk
mt ¼ vwT ; ð7Þ

Fig 3. Voltage traces from thalamic neuron population simulations. Top, middle, and bottom panels
show clustered states achieved with pulsing at 83, 94, and 120 Hz, respectively. Highlighted traces represent
individual neurons from separate clusters. Dashed lines represent the time at which the pulses are applied.

doi:10.1371/journal.pcbi.1004673.g003
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where v and w are the right and left eigenvectors associated with the unique eigenvalue of 1,
and normalized so that wT v = 1. Recalling that Pmt is column stochastic, its left eigenvector
associated with λ = 1 is 1T. Therefore, as the map is applied repeatedly, any initial distribution
will approach a steady state distribution determined by v. We find that the existence ofm fixed
points of the underlying map g(m)(θ) provide the basis for the clustered desynchronization seen
in Fig 2, with a more formal main theoretical result given below.

Main Theoretical Result
Consider the map g(m) with the following properties:

1. g(m) has exactlym stable fixed points corresponding to a periodm orbit of g(1),

2. g(m) hasm unstable fixed points and no center fixed points,

3. g(m) is monotonic.

Then for a given choice of �1 � 1, we may choose � small enough in eq (2) so that the distribu-
tion of phases will asymptotically approach a state withm distinct clusters, each containing
1=mþOð�1Þ of the total probability density. A proof of this statement is given in the Methods
Section. In this detailed proof, we find that desynchronization can still be guaranteed even
when g(m) is not monotonic as long as a more general set of conditions is satisfied. Note that
because Eq (2) does not contain any coupling terms, noise will drive the system to a uniform,
desynchronized, distribution in the absence of DBS input. In the sections to follow, we give
numerical and theoretical evidence that clustered desynchronization can emerge in a popula-
tion of pathologically synchronized neurons when the DBS pulses overwhelm the terms
responsible for the synchronization.

Fig 4. Deterministic and stochastic maps. The left panels show an example map g(1) and g(2), which is obtained from g(1) for a given value of τ. The right
panel shows stochastic matrix corresponding to g(2), with darker regions representing larger numbers. After 2τ has elapsed, the delta function distribution
(arrow) is mapped to a Gaussian distribution (solid line) while the uniform distribution is mapped to a bimodal distribution (dashed line).

doi:10.1371/journal.pcbi.1004673.g004
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Arnold Tongues and Lyapunov Exponents
Using the main theoretical result, we can calculate regions of parameter space where we expect
clustered desynchronization. The top-left panel of Fig 5 gives regions of parameter space where
clustering is expected, giving the appearance of Arnold tongues [35]. White regions in the
graph represent regions where either clustering is not guaranteed, or where we expect more
than five clusters. However, we do not include these regions in the figure because they only
exist for very narrow regions of parameter space. At around 60 Hz, the natural unforced period
of the neural population, exactly one cluster is guaranteed, corresponding to 1:1 locking (one
DBS pulse per neural spike). This locking corresponds to a highly synchronous state, which we
found when forcing the population at 63 Hz in Fig 2. For pulsing frequencies between 80 and
120 Hz, we see prominent tongues corresponding to states with three, four and five clusters,
which correspond to the states in Fig 2 where we force at 83 Hz and 94 Hz. A very wide tongue
corresponding to 2:1 locking (two DBS pulses per neural spike) exists at frequencies ranging
from 120 to 200 Hz, which is where DBS is often seen to be effective. Pulsing in this region
manifests in the behavior seen with 120 Hz forcing in Fig 2.

To make comparisons with [22] we calculate the average Lyapunov exponent of the result-
ing steady state distributions using Eq (12). For Lyapunov exponents greater than zero (resp.,
less than zero), the pulsatile stimulus will, on average, desynchronize (resp., synchronize) neu-
rons which are close in phase, and this has been proposed as an indicator of the overall desyn-
chronization that might be observed in a population of neurons receiving periodic DBS pulses.
The Lyapunov exponent is calculated for multiple parameter values for a system with a noise
strength � = 0.1. Results are given in the bottom-left panel of Fig 5. We note that results are not
qualitatively different for different noise strengths. Compared with the Arnold tongues in the
top-left panel, we find very narrow regions where the Lyapunov exponent is positive at rela-
tively high stimulus strengths. The top-right panels show the steady state distribution for a

Fig 5. Clustered desynchronization and Lyapunov exponent calculations for thalamic neurons. The top-left panel shows regions of parameter space
where clustered desynchronization is guaranteed for small enough noise. The bottom-left panel shows the regions associated with a positive average
Lyapunov exponent (LE). Panels A-D give steady state probability distributions for stimulus parameters corresponding to black dots on the left.

doi:10.1371/journal.pcbi.1004673.g005
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population with pulses of strength S = 50μA/μF at a rate of 119 Hz (resp., 180 Hz) correspond-
ing to a two (resp., three) cluster steady state. The bottom-right panels show the steady state
distribution for a pulsing strength of S = 208μA/μF at 120 Hz and S = 206μA/μF at 290 Hz cor-
responding to regions with positive Lyapunov exponents. Even though the clustered states
have very negative Lyapunov exponents, they show similar clustering behavior to the states
with a positive Lyapunov exponent. However, the clustered desynchronization in the top-right
panels can be accomplished using a significantly weaker stimulus and can be observed at a
much wider range of pulsing parameters.

Heterogeneous Pulsatile Inputs
Results thus far have focused on populations of neurons receiving homogeneous pulsatile
inputs. However, it is well established that voltage fields vary significantly with distance from
an external voltage probe [38]. In computational models such heterogeneity has been shown to
create complicated patterns of phase locking that are dependent on the stimulation strength
[39] and can improve methods designed to desynchronize large populations of neurons [14].

To understand the emergence of clustered synchronization when external inputs are differ-
ent among neurons, we can modify the stochastic differential eq (2) as follows

_yi ¼ oþ fiðyiÞdðmodðt; tÞÞ þ �ZiðtÞZðyiÞ þOð�2Þ; i ¼ 1; . . . ;N: ð8Þ

Here, fi(θ) is calculated based on the pulsatile input to each neuron. For each neuron, we use
Eq (7) to calculate its steady state probability distribution. The state of each neuron is indepen-
dent of the others, so that the average of the individual distributions gives an overall probability
distribution for the population.

As an illustrative example, we model 1000 neurons of the form Eq (1) receiving a charge bal-
anced input of the same shape as in Fig 1 with τ = 1/(140 Hz) and S drawn from a normal dis-
tribution with mean 168 μA/μF and standard deviation 20, giving values of S between
approximately 100 and 240. From the top-left panel of Fig 5, this range of stimulus parameters
is mostly, but not completely, contained in a two cluster region. g(2)(θ) is plotted in black in the
top left panel of Fig 6 for a randomly chosen subset of these neurons with the identity line plot-
ted in red for reference. The top-right panel shows each neuron’s steady state probability distri-
bution (calculated from its associated stochastic matrix) in black for a noise strength of

� ¼ ffiffiffiffiffiffiffi
0:4

p
. While the main clustering results are guaranteed when the noise strength is small

enough, we find that clustering can still occur at higher levels of noise. The steady state proba-
bility distribution in corresponding simulations of Eq (1) with heterogeneous pulsing strengths
(blue dashed curve) agrees well with the theoretical probability density (red dashed curve) cal-
culated from the average of each black curve in the top-right panel. The bottom panel shows
corresponding cumulative distributions for the theoretical (red) and computationally observed
(blue) probability densities highlighting that similar numbers of neurons are contained in each
cluster.

Similar clustering results can be obtained for different heterogeneous stimulus parameters.
For instance, from Fig 5, three-cluster behavior will emerge for pulsing frequencies of 200 Hz
and stimulus strengths between approximately 90 and 170 μA/μF.

Desynchronization of Neural Populations
Our main clustering results are for single population of neurons which do not explicitly take
interactions between multiple populations of neurons into account, as is the case for the brain
circuit responsible for Parkinsonian tremor. Here, we provide evidence that clustered
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desynchronization can still emerge when additional forcing terms are much smaller in magni-
tude than the external DBS pulses.

Populations of coupled oscillators subject to common external forcing have been widely
studied in the form of the forced Kuramoto model [40–42]. Synchronization can be observed
when either external forcing or intrinsic coupling dominate the system dynamics. For interme-
diate coupling and external forcing strengths, a complicated bifurcation structure emerges and
the macroscopic order parameter, describing the overall synchronization of the population,
can oscillate. These behaviors have been observed in chemical oscillator systems [43] and have
implications to externally forced biological rhythms such as circadian oscillations and neural
oscillations [44]. We simulate Eq (1) with an additional external sinusoidal forcing frequency
which could represent an aggregate input from a separate, unperturbed neural population. We
note that this is not meant to represent a physiologically accurate model of DBS, but instead is
meant to illustrate clustered desynchronization in the presence of a common periodic pertur-
bation. Here, we take u(t) = 0.1 sin(ωext t) + uDBS(t), where ωext is chosen so that the frequency
of oscillation is the same as the natural period of the unperturbed neurons (60 Hz) and uDBS(t)
represents the common pulsatile input. For these simulations, N = 1000. As we show in the
Methods Section we may write this system in an identical form as Eq (2), for which the main
theoretical result still holds. For this particular example, clustering results are identical to those
in the top left panel of Fig 5. Results are shown with a pulsing strength S = 110μA/μF and noise

strength of � ¼ ffiffiffiffiffiffiffiffiffi
0:02

p
in Fig 7. We find that the presence of a sinusoidal external stimulus is

sufficient to synchronize the network in the absence of DBS forcing. When the DBS is turned

Fig 6. Heterogeneous pulsatile inputs. The top-left panel shows g(2)(θ) (black lines) for DBS input at 140
Hz at multiple stimulation strengths with the identity line plotted in red for reference. The top-right panel shows
the associated theoretical steady state probability distributions (black lines), average theoretical probability
distribution (dashed red line), and computationally observed probability distributions (dashed blue line). The
bottom panel shows the cumulative distributions for the average theoretical (red line) and computational (blue
line) distributions.

doi:10.1371/journal.pcbi.1004673.g006
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on at both 83 and 94 Hz, we see three and four cluster states, respectively, just as we observed
in the simulation without external forcing. However, in this simulation, the mean phase of
each cluster varies with the external sinusoidal stimulation. Note that 120 Hz stimulation in
this network also leads to two cluster desynchronization but is not shown.

When neurons are synchronized through forcing that is not periodic, clustered desynchro-
nization may still emerge when the DBS pulsing overwhelms the stimulation responsible for
synchronization. As a second example, we model a network of neurons Eq (1) with an addi-
tional synaptic current, with each neuron’s transmembrane voltage dynamics taking the form

C _Vi ¼ fVðVi; hi; riÞ þ Ib þ uðtÞ þ �ZiðtÞ þ Isyni ðtÞ. Here,

Isyni ðtÞ ¼ K
N

XN
k¼1

ðVi � VGÞskðtÞ ð9Þ

where K determines the magnitude of the synaptic current, VG is the reversal potential of a
given neurotransmitter, and sk an additional synaptic variable associated with neuron k that
evolves according to (c.f. [30]) _sk ¼ a2ð1� skÞð1=ð1þ expð�ðVk � VTÞ=sTÞÞÞ � b2sk, where
α2 = 2, VT = -37, σT = 2, and β2 = 0.1. We simulate the resulting network withVg = 60mV,

K = 0.015 and a noise strength of � ¼ ffiffiffiffiffiffiffiffiffi
0:02

p
; neurons form a single synchronized cluster in the

absence of DBS input shown in panel B of Fig 8. starting at t = 0.5 ms, we apply 180 Hz

Fig 7. Simulations of (2) with additional sinusoidal forcing. In the top panel, snapshots of the probability
distribution are taken immediately preceding every third and fourth pulse for the 83 and 94 Hz DBS pulsing,
respectively. When there is no DBS pulsing, snapshots are taken at the sinusoidal forcing frequency. As
averaging the term associated with the sinusoidal forcing would suggest, we observe desynchronization into
three and four clusters for pulsing at 94 and 83 Hz pulsing, respectively. When the DBS pulsing is turned off
at t = 8 seconds, the system quickly settles to a synchronized state. The bottom panels show the probability
density averaged over multiple snapshots �rðyÞ after the initial transient has decayed. Horizontal dashed lines
denote troughs of the probability distributions. The probability contained between successive troughs is 0.32,
0.35, and 0.33 in the left panels, and 0.26, 0.26, 0.25, and 0.23 in the right panels.

doi:10.1371/journal.pcbi.1004673.g007
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stimulation with S = 200μA/μF, the pulsing quickly overwhelms the synchronizing influence of
the coupling, and the population splits into two separate clusters as shown by the probability
densities in Panels A and individual voltage traces in panel C. When DBS is applied, we see
from the average probability distributions and cumulative distributions in panels F and E,
respectively that there are nearly equal proportions of neurons in each cluster. Other computa-
tional modeling [29] has suggested that pulsatile DBS may help regulate neural firing patterns,
and help alleviate strongly oscillatory synaptic inputs. Panel D shows a similar phenemenon,
when DBS is on, high amplitude oscillations in synaptic current are replaced by oscillations
with a higher frequency but smaller amplitude. The desynchronization results here can be
observed for many choices of parameters provided the pulsatile stimulation is significantly
stronger than the synchronizing stimulation and that clustering behavior is expected in the
absence of coupling.

Clustered Desynchronization in Type II Hodgkin-Huxley Neurons
Consider a two dimensional reduction of the classic Hodgkin-Huxley equations [45] which
reproduce the essential dynamical behavior [46]:

C _Vi ¼ f HV ðVi; niÞ þ Ib þ uðtÞ þ �ZiðtÞ;
_ni ¼ fnðVi; niÞ; i ¼ 1; . . . ;N:

ð10Þ

Here Vi and ni represent the transmembrane voltage and gating variables, respectively. All

Fig 8. Simulations of (2) with synaptic coupling. Panels B and C show traces for 30 representative
neurons from a synaptically coupled network without and with 180 Hz DBS pulsing, respectively. In Panel A,
snapshots of the probability density are taken at 90 Hz. At t = 0.5 seconds, pulsatile stimulation is turned on.
Panel D shows characteristic synaptic currents felt by a single neuron with and without DBS pulsing. Panel F
shows the probability density �rðyÞ averaged over multiple snapshots after initial transients have decayed
when DBS pulsing is on and panel E gives the cumulative distribution. Here, we observe a similar clustering
pattern, with nearly equal amounts of neurons in each cluster.

doi:10.1371/journal.pcbi.1004673.g008
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functions and parameters are identical to those given in [47]. DBS pulses are represented by
the external current u(t), which is given identically to each neuron, ηi(t) is a white noise pro-
cess, C = 1μF/cm2 is the constant neural membrane capacitance, Ib = 10μA/μF is a baseline cur-
rent yielding a firing rate of 84.7 Hz in the absence of external perturbation, and N is the total
number of neurons.

Unlike the model for thalamic neurons used in the main text, the Hodgkin-Huxley neuron
displays Type II phase response properties, i.e., a monophasic pulsatile input can act to either
significantly increase or decrease the phase of the neuron. The top panel of Fig 9 shows an
example monophasic stimulus which will be applied to the network Eq (10) at different
strengths, S and periods τ. For this example, the pulse duration will be 100 μs, approximately,
one percent of the neural firing rate.

For this model, using our main theoretical results, we can also calculate regions of parameter
space in which we expect to observe clustered desynchronization, with results shown in the
middle panel of Fig 10. The Arnold tongues for clustering greater than five become quite nar-
row and are not included in this figure. We also calculate the average Lyapunov exponent for
the steady state distribution using eq (12) from the main text for a noise strength of � = 0.15,
with results shown in the bottom panel. We note that unlike for the thalamic neurons, the Lya-
punov exponent for the Hodgkin-Huxley network is never positive. We find that regions with
the lowest Lyapunov exponents tend to correlate with regions where clustered desynchroniza-
tion is guaranteed. Even though the Lyapunov exponent might be quite negative, the steady
state distribution can still be relatively desynchronized if there are a large number of clusters,
as evidenced by the four cluster state in the top panel.

Finally, we simulate Eq (10) with N = 1000 neurons with a pulse strength S = 10μA/μF and

� ¼ ffiffiffiffiffiffiffi
0:3

p
for pulsing frequencies that are expected to yield clustered desynchronization deter-

mined from Fig 10. Results are shown in Fig 11. We find clustered states begin to form almost
immediately, and in the bottom panel, after the system has approached the steady state distri-
bution, each cluster contains an approximately identical proportion of the population.

Fig 9. Monophasic DBS pulses. The top panel shows a pulsatile monophasic stimulus applied to the
Hodgkin-Huxley neural network with frequency 1/τ and strength S. The bottom panel shows the relationship
between pulse onset and the resulting change in phase.

doi:10.1371/journal.pcbi.1004673.g009
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Fig 10. Clustering and Lyapunov exponent calculations for the Hodgkin-Huxley network. The middle
panel gives regions of parameter space where clustered desynchronization is guaranteed to occur for small
enough noise. The bottom panel shows the average Lyapunov exponent for the steady state distribution. The
top panel shows the steady state probability distribution for stimulus parameters shown with black dots in the
middle panel.

doi:10.1371/journal.pcbi.1004673.g010

Fig 11. Clustered desynchronization in Type II reduced Hodgkin-Huxley neurons. The top panel shows
snapshots of the probability distribution of phases ρ(θ) from of simulations of Eq (10). Snapshots are taken
immediately preceding every pulse for the 86 Hz stimulation, and after every third, second, and third pulse for
the 127, 175, and 260 Hz stimulation, respectively. From left to right, bottom panels show average probability
distributions from the final fifty snapshots while stimulating at 127, 175, and 260 Hz stimulation, respectively.
Horizontal dashed lines denote troughs of the probability distributions. The probability contained between
successive troughs is 0.34, 0.33 and 0.33 in the left panels, 0.51, and 0.49 in the middle panels, and 0.33,
0.33, and 0.34 in the right panels.

doi:10.1371/journal.pcbi.1004673.g011
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Discussion
While deep brain stimulation is an important treatment for patients with medically intractable
Parkinson’s disease, its fundamental mechanisms remain unknown. Making matters more
complicated, experimental studies have shown that the symptoms of Parkinson’s can be allevi-
ated using strategies that seek to desynchronize a population of pathologically synchronized
oscillators [15, 16], while other seemingly contradictory studies have shown that neurons have
a tendency to time-lock to external high-frequency pulses [23–27], supporting the hypothesis
that entrainment is necessary to replace the pathological neural activity in order to alleviate the
symptoms of Parkinson’s disease. In this work we have have shown that these two phenome-
non may be happening in concert: in the presence of a small amount of noise, high frequency
pulsing at a wide range of frequencies is expected to split a larger population of neurons into
subpopulations, each with a nearly equal proportion of the overall population. The number of
subpopulations, and hence the level of desynchronization, is determined by phase locking rela-
tionships which can be found by analyzing the phase reduced system in the absence of noise.
We note that other theoretical [12] and experimental [16][15] work has yielded control strate-
gies that are specifically designed to split a pathologically synchronized neural population into
distinct clusters. The theory presented in this paper suggests that clinical DBS may be accom-
plishing the same task with a single probe.

The conditions we have developed guarantee clustered desynchronization for small enough
noise, but we do not give any a priori estimate of how small the noise needs to be so that dis-
tinct clusters can be observed. If the noise is too large, the clusters may start to merge into one
another, particularly when there are a large number of clusters (see the bottom left panel of Fig
2). Even in this case, however, we still have discernible clusters, throughout which the overall
population of neurons is spread relatively evenly. We also note that this theory does not give
any estimates on the time it takes for the system to achieve its steady state population distribu-
tion, but this can be calculated for a specific population by examining the second smallest
eigenvalue in magnitude, λ2, of a given stochastic matrix Pmt (c.f. [33]). As λ2 becomes closer
to 1, more iterations of the map Pmt will be required for the transient dynamics to die out, and
it will take longer for the system to approach the steady state distribution. In general, we find
that for a given map, λ2 becomes closer to one as noise strength decreases, which is consistent
with the notion that the average escape time between clusters will increase as the strength of
the external noise decreases [48].

For the networks that we have investigated, regions of parameter space which are associated
with either clustered desynchronization or positive Lyapunov exponents can display similar
levels of desynchronization. However, numerics show that the regions with positive Lyapunov
exponents are quite small and may be difficult to find without explicit calculation. In contrast,
the regions of parameter space associated with clustered desynchronization are fairly large and
are likely to be observed without knowledge of the system properties. If desynchronization of
the overall population is an important mechanism of high-frequency DBS, doing so chaotically
may be an overly restrictive objective if clustered desynchronization is sufficient to alleviate the
motor symptoms of Parkinson’s disease.

This study is certainly not without limitations. For instance, the computational neurons
considered in this study are based on simple, low-dimensional models of neural spiking behav-
ior. However, we have developed the theory to understand the clustered desynchronization
phenomenon in such a way that it can easily be extended to more complicated neural models
with more physiologically detailed dynamics provided the neural phase response properties
can be measured experimentally in vivo[49]. Furthermore, while we only considered homoge-
neous populations in this study, the phase response properties and natural frequencies of a
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living population of neurons will surely have a heterogeneous distribution. In this context, we
could still show that clustered desynchronization is expected by applying the theory developed
in this work to a family of neurons with different phase response properties and natural fre-
quencies. The expected steady state population could then be obtained as a weighted average of
the individual steady state distributions. Numerical results presented here apply to networks
for which external DBS perturbations overwhelm the intrinsic coupling between neurons. In
this work, we have not considered the complicated interplay between multiple populations of
neurons which give rise to the symptoms of Parkinson’s disease; more detailed modelling stud-
ies would be required to determine the effect of clustered desynchronization on the overall net-
work circuit. Others have studied synchrony and clustering behavior in coupled populations of
neurons [50–52] and it is possible that our results could be extended to describe clustering for
weaker pulsatile stimuli when coupling cannot be neglected.

Our results suggest that high-frequency external pulsing could have the effect of separating
a neural population into equal subpopulations in the presence of noise. This viewpoint could
help explain the frequency dependent nature of therapeutically effective DBS and could help
merge competing hypotheses, as desynchronization and entrainment are not mutually exclu-
sive when even small amounts of noise are present. If clustered desynchronization does provide
a mechanism by which the motor symptoms associated with Parkinson’s disease can be miti-
gated, it could provide a useful control objective for designing better open-loop DBS stimuli in
order to prolong battery life of the implantable device and to mitigate potential side effects of
this therapy.

Methods

Average Lyapunov Exponents
To make comparisons with [22] we calculate the average Lyapunov exponent of the resulting
steady state distributions, giving a sense of whether, on average, the orbits of the trajectories
oscillators from Eq (2) are converging or diverging. For instance, let ϕ denote the phase differ-
ence between oscillators θ1 and θ2 which are close in phase, i.e. ϕ(t)�|θ1(t) − θ2(t)|. Then from
Eq (3), immediately after a DBS pulse occuring at time τ,

�ðtþÞ ¼ jf ðy1ðt�ÞÞ þ y1ðt�Þ � f ðy2ðt�ÞÞ � y2ðt�Þj;
¼ jf ðy2ðt�ÞÞ þ f 0ðy2ðt�ÞÞ�ðt�Þ þOð�ðt�Þ2Þ þ y1ðt�Þ � f ðy2ðt�ÞÞ � y2ðt�Þj;
¼ �ðt�Þj1þ f 0ðy2ðt�ÞÞj þOð�ðt�Þ2Þ;

ð11Þ

where 0 � d/dθ and θ(τ−) (resp. θ(τ+)) denotes the limit of θ(t) as t approaches τ from below
(resp. above). Note that in the second line, we have used a Taylor expansion of f about θ2 for
small values of ϕ(τ−). Therefore, the oscillators converge or diverge locally depending upon the
derivative of f. For a population of neurons, the stochastic matrix Pt for a given pulsing rate
can be used to determine the steady state distribution ρ�(θ) before each pulse, with an average
Lyapunov exponent taken to be (c.f. [22]):

LE ¼ R 1

0
r�ðyÞ log ½1þ f 0ðyÞ�ð Þdy: ð12Þ

For LE> 0 (resp., LE< 0), the pulsatile stimulus will, on average, desynchronize (resp., syn-
chronize) neurons which are close in phase, and this has been proposed as an indicator of the
overall desynchronization that might be observed in a population of neurons receiving periodic
DBS pulses.
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Expected Value and Variance of a Noisy Neuron with External Pulses
For a single neuron with a known initial phase θ evolving according to the stochastic differen-
tial Eq (2), we calculate the expected value and variance with a strategy that is similar to the
one employed in [33]. We first asymptotically expand θ(t) in orders of �,

yðtÞ ¼ y0ðtÞ þ �y1ðtÞ þ . . . ; ð13Þ

with θ0(0) = θ(0), and θ1(0) = 0. Substituting Eq (13) into Eq (2) and taking ω = 1 for simplicity
of notation, allows us to write

_y0 ¼ 1þ f ðy0ðtÞÞdðmodðt; tÞÞ; ð14Þ

_y1 ¼ ZðtÞZðy0ðtÞÞ þ f 0ðy0ðtÞÞy1ðtÞdðmodðt; tÞÞ: ð15Þ

Integrating eq (14) for a time τ yields,

y0ðt�Þ ¼ y0ð0Þ þ t;

y0ðtþÞ ¼ y0ð0Þ þ f ðy0ð0Þ þ tÞ þ t:
ð16Þ

This relationship can be used to write θ0 in terms of compositions of a map:

y0ðtÞ ¼ g
t
tb cð Þðy0ð0ÞÞ þmodðt; tÞ; ð17Þ

where g(s) = s + f(s + τ) + τ and g(n) denotes the composition of g with itself n times. In Eqs (16)
and (17), θ(t) and the arguments of f and g are always evaluated modulo 1.

We now focus our attention on θ1. Integrating eq (15) yields

y1ðtÞ ¼
Z t

0

ZðsÞZðy0ðsÞÞdsþ
X1
m¼1

f 0ðy0ðmt�ÞÞy1ðmt�ÞHðt � tmÞ; ð18Þ

whereH(	) is the Heaviside step function. Note here that θ1(mτ−) denotes the limit of θ1(t) as t

approachesmτ from below. In the interval 0� t< τ, we note that y1ðtÞ ¼
R t

0
ZðsÞZðy0ðsÞÞds, so

that y1ðt�Þ ¼
R t

0
ZðsÞZðy0ðsÞÞds. With this in mind, we can rewrite Eq (18) as

y1ðtÞ ¼
Z t

0

ZðsÞZðy0ðsÞÞdsþ f 0ðy0ðt�ÞÞ
Z t

0

ZðsÞZðy0ðsÞÞds

¼ 1þ f 0ðy0ðt�ÞÞð Þ
Z t

0

ZðsÞZðy0ðsÞÞdsþ
Z t

t

ZðsÞZðy0ðsÞÞds for t � t < 2t:

ð19Þ

Likewise, using Eq (19) to determine θ1(2τ
−) allows us to write

y1ðtÞ ¼ 1þ f 0ðy0ðt�ÞÞð Þ þ f 0ðy0ð2t�ÞÞ 1þ f 0ðy0ðt�ÞÞð Þ½ �
Z t

0

ZðsÞZðy0ðsÞÞds

þ 1þ f 0ðy0ð2t�ÞÞð Þ
Z 2t

t

ZðsÞZðy0ðsÞÞdsþ
Z t

2t

ZðsÞZðy0ðsÞÞds for 2t � t < 3t:

ð20Þ

This process can be repeated indefinitely to find

y1ðmtþÞ ¼ Xm
0

R t

0
ZðsÞZðy0ðsÞÞdsþ Xm

1

R 2t

t ZðsÞZðy0ðsÞÞds
þ 	 	 	 þ Xm

m�1

R mt

ðm�1Þt ZðsÞZðy0ðsÞÞds;
ð21Þ
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where Xm
i is defined recursively so that

Xm
i ¼

0 if m < i;

1 if m ¼ i;

Xm�1
i þ f 0ðy0ðmt�ÞÞXm�1

i if m > i:

ð22Þ

8>>><
>>>:

Because Eq (21) is the sum of stochastic integrals which themselves are normally distributed
random variables, θ1(mτ+) will also be a normally distributed random variable [53]. Ultimately,
we are interested in calculating the expected value and variance of a neuron starting at θ(0)
after the application ofm DBS inputs. Using the asymptotic expansion Eq (13), we can calcu-
late the expected value of θ(mτ+) as E½yðmtþÞ� ¼ E½y0ðmtþÞ þ �y1ðmtþÞ þOð�2Þ�. Using the
relations Eqs (17) and (21) and noting that the noise η(s) has a mean of zero, E[θ1(mτ+)] = 0,
and hence, the expected value, μ, is

m � E½yðmtþÞ� ¼ y0ðmtþÞ ¼ g mð Þðyð0ÞÞ þOð�2Þ: ð23Þ

Again using Eqs (17) and (21), we can calculate the variance, ν, of θ(mτ+) to leading order �2:

n � E ðyðmtþÞ � E½yðmtþÞ�Þ2� �
¼ E½ð�y1ðmtþÞÞ2�

¼ �2 ðXm
0 Þ2
Z t

0

½Z2ðy0ðsÞÞ�dsþ ðXm
1 Þ2
Z 2t

t

½Z2ðy0ðsÞÞ�dsþ 	 	 	 þ ðXm
m�1Þ2

Z mt

ðm�1Þt
½Z2ðy0ðsÞÞ�ds

� �
:

ð24Þ

Note that in the last line, when squaring θ1(mτ+), the fact that any noise processes that do not
overlap in time are uncorrelated allows us to eliminate terms nonidentical noise processes.
Also note that for identical white noise processes, E[η(s)η(s)] = δ(0).

Proof of Clustered Desynchronization in the Limit of Small Noise
Suppose that conditions 1 and 2 from our main theoretical results are satisfied for g(m) withm
stable fixed points. Consider the corresponding stochastic matrix Pmt. Denote the stable and
unstable fixed points as θsi and θui, respectively. To begin, it will be convenient to define

gðmÞðyÞ ¼ yþ FðyÞ ð25Þ

so that FðyÞ � gðmÞðyÞ � y. With this definition, FðyÞ ¼ 0 corresponds to the fixed points of
the map g(m)(θ). We subdivide θ 2 [0, 1) into into 4m disjoint subregions with the following
procedure: Choose α> 0 and define the region si near each stable fixed point so that
si ¼ ½ysi � d�si ; ysi

þ dþsi �, where a ¼ Fðysi � d�
si
Þ ¼ �Fðysi þ dþsi Þ. Likewise, define the region

ui near each unstable fixed point so that ui ¼ ½yui � d�ui ; yui þ dþ
ui
�, where

a ¼ �Fðyui � d�uiÞ ¼ Fðyui þ dþuiÞ. Define the remaining regions nþ
i ¼ ðysi þ dþsi ; yui � d�uiÞ

and n�
i ¼ ðyui�1

þ dþ
ui�1

; ysi � d�
si
Þ. See Figs 12 and 13 for an example of how the matrix Pmt is

partitioned into submatrices according to this procedure.

In the analysis to follow we will show that the steady state probability distribution v �
lim
k!1

Pk
mtrðy; 0Þ exists and is invariant to ρ(θ, 0). We define subregions of va; a ¼

si; ui; n
þ
i ; n

�
i to represent the subset of v contained in the region a. We have carefully defined

the matrix partition in Fig 13 so that, for instance, jjP si!nþ
i

mt vsi jj1 corresponds to the amount of
probability that is mapped from the region si into to the region nþ

i when Pmt is applied to v.
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Fig 12. Example partitioning near a stable fixed point. In the top panel, horizontal bars represent a
particular choice of α. Vertical lines separate the resulting regions. The bottom panel shows the
corresponding regions for g(m)(θ) (solid line). For reference, the diagonal dotted identity line is also shown.

doi:10.1371/journal.pcbi.1004673.g012

Fig 13. Example partitioning of the matrix to test conditions 3a-c. The left panels show an example of g(1) and g(2) and P2t. Note that g(2) has two stable
and two unstable fixed points. The partition of P2t shown in the right panel with dashed lines can be determined from a given choice of α. We note that the
matrix has been flipped in the vertical direction to emphasize the correspondence between P2t and g(2)(θ) so that in this visual example, matrix multiplication

would not be performed in the usual way. From left to right, the submatrices denoted with asterisks are defined to be P
nþ
2
!u1

2t , Pu2!u1
2t , and P

n�
1
!u1

2t . From top to

bottom, the regions submatrices denoted with dots are defined to be P
u1!n�

1
mt , Pu1!u2

mt , and P
u1!nþ

2
mt . The steady state distribution calculated as the right

eigenvector of P2t associated with λ = 1 is shown to the right of P2t, along with the associated partition. Note that because the conditions guaranteeing
clustered desynchronization are satisfied, by taking � small enough, the difference between the amount of the steady state population found in s1 and s2 can
be made arbitrarily small.

doi:10.1371/journal.pcbi.1004673.g013
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This relation results because all entries of P and v are positive. See Fig 14 for a visual represen-
tation of this probability mapping process which is central to the proof to follow.

Suppose that there exists α for the resulting partition such that,

3a. for all y 2 nþi (resp., n�i ), g
ðmÞðyÞ 2 nþi (resp., n�i ) [si

3b. for all θ 2 si, gðmÞðyÞ 2 s̊i

3c. for all θ 2 ui, d
dy g

ðmÞjy > 1 and gðmÞðyÞ=2�uj for i 6¼ j

Note here that for a given set p, p̊ denotes its interior, and �p denotes its closure. Furthermore,

we will also assume, without loss of generality, that in the absence of noise, upon successive
iterations of the map g(1) the periodm orbit is θs1 ! θs2 ! 	 	 	 ! θsm ! θs1. Let γ = mod(i,m)
+ 1. Suppose then that

3d. for all θ 2 si, g
(1)(θ)2 the interior of n�g [ sg [ nþg

Then for any choice of �1 � 1, we may choose � (the noise strength) small enough in eq (2),
so that as time approaches infinity, regardless of initial conditions, the population will be split
intom distinct clusters, and to leading order in �1, each cluster will contain an equal portion of
the population. We note that if conditions 1 and 2 from our main theoretical result are satisfied
and g(m) is monotonic, then we will be guaranteed to be able to choose and α so that the
remaining conditions 3a-d are satisfied.

In order to prove the main theoretical result presented earlier, we will first show that for �
small enough, as time tends toward infinity, the probability of finding an oscillator far from
any of the stable fixed points isOð�1Þ. We will then show that as time approaches infinity, the
chance of finding a randomly chosen oscillator near any of the stable fixed points is identical to
leading order �1.

Throughout this proof, we are interested in the unique steady state solution which solves

v ¼ Ptv. We note that for any positive integer k, Pkt ¼ Pk
t so that v ¼ Pktv, i.e. the unique

steady state solution of Pkt is the same for any choice of k. Using Eqs (23) and (24), we will
assume that � is taken small enough so that errors in the approximations of all necessary sto-
chastic matrices Pkt are negligible.

Bounding near unstable fixed points. To begin, for the stochastic matrix Pmt, we intend
to bound the row sums of the submatrix Pui!ui

mt , the portion of the matrix Pmt which maps ui

Fig 14. Mapping probability between regions. In the limit as time approaches infinity, the probability that a
neuron will be found in the region sa for a ¼ si;ui;n

þ
i ; n

�
i is given by jjvsa jj1. After the timemτ has elapsed, the

probability that a randomly chosen neuron started in sa and was mapped to sb for b ¼ si; ui; n
þ
i ;n

�
i is given by

jjPsa!sb
mt vsa jj1. Based on these relations, the above diagram gives an example characterizing how probability

initially found in the region si is mapped to all other regions after the timemτ has elapsed.

doi:10.1371/journal.pcbi.1004673.g014
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back to ui (see Fig 13 for an example of this notation). Let μθ and σθ correspond to the expected
value and standard deviation of any oscillator with initial condition θ, respectively. Let θL and
θR correspond to the left and right boundaries of ui. We assume that phase space is partitioned

into equal bins of length Dy ¼ 1=M ¼ Oð�1Þ, where Pmt 2 R
M�M . For row j of Pui!ui

mt corre-
sponding to θj, its row sum Rj can be calculated as

Rj ¼ N ðmyL
� yj; syL

Þ þN ðmyLþDy � yj; syLþDyÞ þ . . .
h

þN ðmyR�Dy � yj; syR�DyÞ þN ðmyR
� yj; syR

Þ
i
Dy;

ð26Þ

whereN ðy; sÞ ¼ 1
s
ffiffiffiffi
2p

p exp �y2

2s2

� �
is the equation for a Gaussian curve. As we showed in Eq (23),

μθ = g(m)(θ). Let yE ¼ arg min
y2½yL ;yR �

ðjmy � yjjÞ correspond to the closest to θj any oscillator in ui is

expected to map to. Taylor expanding around θE yields

gðmÞðyÞ ¼ gðmÞðyEÞ þ gðmÞ0 ðyEÞðy� yEÞ þOððy� yEÞ2Þ
¼ myE

þ gðmÞ0 ðyEÞðy� yEÞ þOððy� yEÞ2Þ:
ð27Þ

Similarly, we Taylor expand σθ around θE as

sy ¼ syE
þOðy� yEÞ: ð28Þ

Substituting Eqs (27) and (28) into Eq (26) yields,

Rj ¼ 	 	 	 þN ðmyE
� 2DygðmÞ0 ðyEÞ þOðð2DyÞ2Þ � yj; syE

þOð2DyÞÞ
h

þN ðmyE
� DygðmÞ0 ðyEÞ þOððDyÞ2Þ � yj; syE

þOðDyÞÞ
þN ðmyE

� yj; syE
Þ

þN ðmyE
þ DygðmÞ0 ðyEÞ þOððDyÞ2Þ � yj; syE

þOðDyÞÞ
þN ðmyE

þ 2DygðmÞ0 ðyEÞ þOðð2DyÞ2Þ � yj; syE
þOð2DyÞÞ þ 	 	 	

i
Dy:

ð29Þ

For a given choice of �1 � 1, we may choose � small enough yielding a standard deviation σθE
small enough so that Eq (29) can be approximated to leading order �1 with an arbitrarily small

number of terms. For the remaining terms, notice that @
@y qðy; sÞ ¼ �y

s3
ffiffiffiffi
2p

p exp �y2

2s2

� �
and that

@
@s qðy; sÞ ¼ 1ffiffiffiffi

2p
p

s2
exp �y2

2s2

� �
y2=s2 � 1
� �

. Therefore, if we choose � small enough, σθE will be

small enough so that the remaining Taylor expanded terms contribute at mostOð�1Þ error.
When we do this we may rewrite eq (29) as

Rj ¼ 	 	 	 þN ð�2DygðmÞ0 ðyEÞ; syE
Þ

h
þN ð�DygðmÞ0 ðyEÞ; syE

Þ
þN ð0; syE

Þ
þN ðDygðmÞ0 ðyEÞ; syE

Þ
þN ð2DygðmÞ0 ðyEÞ; syE

Þ þ 	 	 	 þOð�1Þ
i
Dy:

ð30Þ

Recall that μ(θE) − θj isOð�1Þ so that it can be lumped with the otherOð�1Þ terms upon Taylor
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expansion. Notice that Eq (30) can be written as a Riemann sum approximation to

Rj ¼
Z yR

yL

N ððy� yjÞgðmÞ0 ðyEÞ; syE
ÞdyþOð�1Þ

¼
Z yR

yL

1

syE

ffiffiffiffiffiffi
2p

p exp
�ððgðmÞ0 ðyEÞÞðy� yjÞÞ2

2s2
yE

 !
dyþOð�1Þ:

ð31Þ

The integral in Eq (31) is less than one because g0(m)(θk)>1 so that it falls off more quickly than
a Gaussian distribution. Therefore, if we choose Δθ and �1 small enough, Rj < 1, which implies
jjPui!ui

mt jj1 < 1.
Because the column sums of the stochastic matrix Pmt are all equal to one, and each entry is

positive, we may use Gershgorin disks to show all eigenvalues are less than or equal to one.
Using the Perron-Frobenius theorem, we know that there is exactly one eigenvalue equal to
one, so that the steady state solution, v, solves v ¼ Pmtv[36]. Recall that v

si is defined as the
subset of v contained in si. Then, because each element of the steady state vector and stochastic
matrix is positive,

jjvui jj1 ¼ jj 	 	 	 þ Pnþi !ui
mt vn

þ
i þ Pui!ui

mt vui þ P
n�
iþ1

!ui
mt vn

�
iþ1 þ . . . jj1: ð32Þ

The individual terms of Eq (32), for instance, Pnþ
i
!ui

mt vn
þ
i represent the steady state probability

density that is mapped from nþ
i to ui upon one iteration of the stochastic map. We note that

from the conditions 3a, 3b, and 3c, only oscillators which start in ui can map to the interior of
ui. This implies that we may choose � small enough so that the probability of transitioning
from anywhere outside of ui to ui will beOð�1=nÞ where n is the maximum length over all i of
ui. This implies jjPa!ui

mt jj1 � Oð�1=nÞ for a 6¼ ui. Finally, using properties of matrix norms
with Eq (32), we have

jjvui jj1 � jjPui!ui
mt vui jj1 þOð�1=nÞ:

� jjPui!ui
mt jj1 	 jjvui jj1 þOð�1=nÞ

) jjvui jj1 � Oð�1=nÞ
1� jjPui!ui

mt jj1
:

ð33Þ

Note that the final line results from rearranging the second line using the fact that
jjPui!ui

mt jj1 < 1. It follows immediately from properties of matrix norms that

jjvui jj1 � Oð�1Þ; ð34Þ

in other words, given �1 � 1, we may choose � small enough so that once the distribution
reaches its steady state, the probability that an oscillator can be found in a given region ui is of
order �1.

Bounding between stable and unstable fixed points. For yi 2 ðnþ
1 [ n�

1 [ 	 	 	 [ nþ
k [ n�

k Þ,
let b ¼ min jFðyiÞj, i.e., if an oscillator is expected to be found in either nþ

i or n�
i , it will move

at least β closer to si. Let k ¼ max iðdðx; siÞjx 2 nþ
i [ n�

i Þ where d(a, b) is the distance between
the sets a and b. Consider oscillator j with initial condition yjð0Þ 2 nþ

i [ n�
i [ si. Let c� dκ/βe.

From eq (23), E[θj(cmτ)] = g(cm)(θj(0)). The oscillator can be at most κ away from si and will
either move at least β closer to si, or will move inside si upon each iteration of g(m). Thus, after c
iterations of g(m), the oscillator is expected to be in si, and by condition 3b, E[θj((c + 1)mτ)] will
be in the interior of si. From Eq (24), the variance is proportional to �2, and therefore, we may
then choose � small enough so that an oscillator starting in nþ

i or n�
i will be mapped with prob-

ability 1�Oð�1Þ to a location in the interior of si. Furthermore, from condition 3b, any
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oscillator starting in si will be expected to be found in the interior si, we can choose � small
enough so that any oscillator starting in si will be mapped with probability 1�Oð�1Þ to a loca-
tion in the interior of si.

We have shown that by choosing � small enough, any oscillator which starts in nþ
i [ n�

i [ si
will map to si with probability 1�Oð�1Þ. Furthermore, from the previous section, we showed
that for a small enough choice of �, the steady state probability density contained in ui will be at
mostOð�1Þ for all i. Using these results, and recalling that the steady state solution of the sto-
chastic system also solves v ¼ Pðcþ1Þmtv, and using the same partitioning of v as we did in the

previous section, we will consider vsi , the proportion of the steady state probability density con-
tained in si:

jjvsi jj1 ¼ jjPnþ
i
!si

ðcþ1Þmtv
nþ
i jj1 þ jjPn�i !si

ðcþ1Þmtv
n�i jj1 þ jjP si!si

ðcþ1Þmtv
si jj1 þOð�1Þ;

jjvsi jj1 ¼ jjvnþi jj1 �Oð�1Þ
� �þ jjvn�i jj1 �Oð�1Þð Þ þ jjvsi jj1 �Oð�1Þð Þ þOð�1Þ;

Oð�1Þ ¼ jjvnþi jj1 þ jjvn�i jj1:
ð35Þ

In other words, for the steady state distribution v onlyOð�1Þ of the overall population will
be found inside nþ

i and n�
i .

Neurons are found in clusters near stable fixed points with nearly identical probabili-
ties. We have shown that if we take � small enough, for all i, the probability that we will find a
randomly chosen oscillator in regions ui, nþ

i and n�
i will be at mostOð�1Þ. Consequently, the

majority of the probability distribution will be contained in the regions near stable fixed points.
Here we show that the probability that an oscillator will be found in si is nearly equal to the
probability that the oscillator will be found in sj for any i and j.

Suppose, without loss of generality that in the absence of noise, upon successive iterations of
the map g(1) the periodm orbit is θs1 ! θs2 ! 	 	 	 ! θsm ! θs1. Recalling that τ is the period of
the external pulsing, we are interested in Pt, the matrix approximation to the Frobenius Perron
operator, which characterizes the time evolution of the system’s probability density at intervals
of τ. Let γ = mod(i,m) + 1. By condition 3d, for θ 2 si, g

(1)(θ)2 the interior of n�
g [ sg [ nþ

g .

Recall from Eq (23) that for an oscillator with phase θ, its probability distribution will be cen-
tered around g(1)(θ) after a time τ has elapsed, we may choose � small enough so that after τ has
elapsed, the probability of transitioning from si to n�

g [ sg [ nþ
g is 1�Oð�1Þ. When the distri-

bution reaches steady state, this implies,

jjvsg jj1 ¼ 	 	 	 þ jjPn�i !sg
t vn

�
i jj1 þ jjP si!sg

t vsi jj1 þ jjPnþi !sg
t vn

þ
i jj1 þ 	 	 	

¼ Oð�1Þ þ jjP si!sg
t vsi jj1

¼ Oð�1Þ þ jjvsi jj1 � jjP si!n�g
t vsi jj1 � jjP si!nþg

t vsi jj1 �Oð�1Þ
	 


:

ð36Þ

Note that in the second line, we have used the fact that jjvnþi jj1, jjvn
�
i jj1, and jjvui jj1 areOð�1Þ

terms for all i. In the last line, we have used the fact the sum of the probabilities of an oscillator

starting in si and mapping to either nþ
g (represented by jjP si!nþg

t vsi jj1), n�
g (represented by

jjP si!n�g
t vsi jj1), or sγ (represented by jjP si!sg

t vsi jj1) equals 1�Oð�1).
Next, from the previous section, we know that jjvnþg jj1 ¼ Oð�1Þ. Recalling that the steady

state solution of the stochastic system, v, solves v ¼ Ptv we will consider the proportion of the
probability density contained in nþ

g . Noting that because all of the entries of Pt and v are
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positive, we may write

Oð�1Þ ¼ jjvnþg jj1
¼ 	 	 	 þ jjPn�i !nþg

t vn
�
i jj1 þ jjP si!nþg

t vsi jj1 þ jjPnþ
i
!nþg

t vn
þ
i jj1 þ . . .


 jjP si!nþg
t vsi jj1:

ð37Þ

Using an identical procedure, we can formulate the boundOð�1Þ 
 jjP si!n�g
t vsi jj1. With these

bounds we may rewrite Eq (36) as

jjvsg jj1 ¼ jjvsi jj1 þOð�1Þ: ð38Þ

Applying eq (38) to each region si yields

jjvs2 jj1 ¼ jjvs1 jj1 þOð�1Þ
jjvs3 jj1 ¼ jjvs2 jj1 þOð�1Þ

..

.

jjvs1 jj1 ¼ jjvsk jj1 þOð�1Þ:

ð39Þ

Here, the sum of theOð�1Þ terms represents the probability that a given oscillator will be found
in a region without a stable fixed point of g(m). Finally, using Eq (39), and the fact that v is posi-
tive, one can show that for any vsi and vsj ,

jjvsi jj1 � jjvsj jj1 � Oð�1Þ; ð40Þ

which completes the proof.

Clustered Desynchronization with Common Periodic Perturbations
We consider a modified version of Eq (2) where each neuron feels a small, common periodic
perturbation

_y i ¼ oþ �f ðyiÞdðmodðt; tÞÞ þ �pðo1tÞZðyiÞ þ �ZiðtÞZðyiÞ þOð�2Þ; i ¼ 1; . . . ;N: ð41Þ

Here, p(ω1 t) is a periodic perturbation with period T1 = 1/ω1 common to each oscillator. This
perturbation may represent the effect of coupling from an external population of neurons or
coupling between neurons in the population under study. Here we give conditions for which
Eq (41) exhibits clustered desynchronization.

Defining ϕi� θi − ω1 t allows us to selectively average the term associated with p(ω1 t) from
Eq (41) [54], c.f. [55]:

_W i ¼ oþ �f ðWiÞdðmodðt; tÞÞ þ �GðWi � o1tÞ þ �ZiðtÞZðWiÞ þOð�2Þ; ð42Þ

where GðφÞ ¼ R T1
0
½pðo1tÞZðφi þ o1tÞ�dt and φi = ϑi − ω1 t. Here ϑi is a close approximation to

θi so that φi � ϕi. Noting that G is also T1 periodic, we selectively average Eq (42) to yield

_Y i ¼ oþ �K þ �f ðYiÞdðmodðt; tÞÞ þ �ZiðtÞZðYiÞ þOð�2Þ; ð43Þ

Here, Θi� ϑi and K ¼ R T1
0

Gðφi � o1tÞdt. Notice that Eq (43) is in an identical form as Eq (2)

for which our main theoretical result still holds.
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