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Experimental and theoretical studies are presented on the design of perturbations that enhance

desynchronization in populations of oscillators that are synchronized by periodic entrainment. A

phase reduction approach is used to determine optimal perturbation timing based upon

experimentally measured phase response curves. The effectiveness of the perturbation waveforms

is tested experimentally in populations of periodically and stochastically synchronized

chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase

coherence in groups of stochastically synchronized neuronal oscillators is discussed. VC 2015

AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4937724]

Stochastic synchronization involves the statistical align-
ment of the phases of oscillators due to the presence of a
common noise signal. It has been proposed as a possible
mechanism for pathological phase coherence in commun-
ities of neurons. Here, we demonstrate stochastic
synchronization in an experimental system of Belousov-
Zhabotinsky chemical micro-oscillators subject to com-
mon colored noise. A phase reduction approach, based
upon experimentally measured phase response curves, is
then used to investigate the design of a suitable signal for
effective desynchronization. The designed signal is imple-
mented and tested in the experimental system. Such an
approach may lead to improved design and optimization
of perturbing stimuli associated with therapeutic meth-
ods such as deep brain stimulation.

I. INTRODUCTION

Synchronous oscillations are important for many physio-

logical processes,1 such as hormones synchronized to the

diurnal cycle2 or communication between populations of

neurons during perception navigation.3 Many diseases can

be linked to dysregulation of synchronous oscillations such

as depression,4 Parkinson’s disease,5 and essential tremor.6

Therapeutic interventions that help reestablish normal oscil-

lations include timed drug delivery for depression7 or electri-

cal stimulation of the brain for Parkinson’s disease8 and

essential tremor.9

In the nervous system, voltage oscillations seen at the

scalp are thought to emerge from the weak synchronization

of large populations of neurons.10,11 Synchronization of

dynamical oscillators, such as neurons, is typically thought

to occur through either mutual coupling or entrainment to a

regular common signal.12 An alternative form of synchroni-

zation that leads to phase coherence is termed stochastic

synchrony.13–15 This type of synchronization, also known as

noise-induced synchronization, arises when a set of

uncoupled oscillators synchronizes to a common noise

input.16 Theoretical studies have demonstrated it to be a gen-

eral behavior, commonly occurring in oscillators with a

resetting threshold, which have a propensity to align phases

when subject to a common signal.17,18 Noise-induced syn-

chronization has been shown to occur for both white noise

and other types of non-Gaussian noise that are common in

real-world systems.13,14,19–21 However, the phenomenon has

been subject to only limited experimental investigation.

Evidence of noise induced synchronization has been found

in vitro in the olfactory bulb, where neurons subject to an

aperiodic correlated signal synchronize,22 and in bursting of

sensory neuronal oscillators of the paddlefish when stimu-

lated with common electrical noise.23

Perturbations, using an appropriately designed external

driving signal, can desynchronize a system of synchronized

oscillators.24–26 Several approaches have been proposed to

effect such desynchronization.27–29 These include the appli-

cation of a single pulse during the vulnerable phase of the

coordinated cycle, double pulse perturbations, and time

delayed feedback.18,26,27,30 These and other methods have

been demonstrated using systems of coupled electrochemical

oscillators as well as in numerical simulations of model

neurons.18,26,27,30,31

It has been hypothesized that the therapeutic mechanism

of deep brain stimulation (DBS), used during the treatment

of Parkinson’s disease, involves the desynchronization of

neurons arising from the external periodic electrical stimula-

tion.32 DBS has been found to be most effective when its fre-

quency is higher than that of the underlying neuronal

oscillators.27 An understanding of the mechanism by which

it disrupts coordinated neurons is still under debate;33 how-

ever, computational models suggest that DBS applied at cer-

tain frequencies can induce chaotic desynchronization of the

neural oscillators.32 Assuming a chaotic desynchronization

mechanism of therapeutic DBS, it is possible to optimize the
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stimulus patterns by designing waveforms specifically for

this purpose. This may improve electrode and battery life by

reducing the energy delivered, while potentially improving

efficacy and minimizing side effects.

In this work, we will test stimulus waveforms designed

to desynchronize oscillators that are synchronized through

noise-induced synchronization. We will demonstrate how

stimulation delivered at particular phases of an oscillation

can advance or retard the oscillation phase, and how the

most effective phase for maximizing or minimizing stimula-

tion can be predicted from the phase response curve. This pa-

per will focus on applying stimulation to modulate

synchrony in chemical oscillators. We rely upon the direct

measurement of the phase response curves (PRCs) to a stim-

ulus input and use the resulting PRCs to design the stimulus

waveform to achieve synchronization or desynchronization.

We show both experimentally and in a model system

that an appropriately timed low-frequency periodic signal

desynchronizes the stochastically synchronized chemical

system. The study is conducted in two stages. In order to

investigate the importance of the timing of the perturbing

signal, a desynchronizing signal is applied at controlled

phases to a population of initially synchronized oscillators.

The initial synchronization is achieved through entrainment

to an appropriate common periodic signal. We then use a

common stochastic signal to statistically synchronize a popu-

lation of uncoupled chemical oscillators and examine the

impact of the desynchronizing signal.

II. EXPERIMENTAL METHODS

Our experimental system consists of a population of

addressable photosensitive Belousov-Zhabotinsky (BZ)

chemical micro-oscillators.34 The BZ reaction was first dis-

covered in the 1950s and has since been used extensively as

a model system for the investigation of the dynamical prop-

erties of many different natural systems.35–38 The reaction

involves the oxidation of an organic substrate in the presence

of a metal catalyst and, under appropriate conditions, exhib-

its periodic relaxation oscillations. During one cycle of an

oscillation, the catalyst changes between oxidized and

reduced states. Each of the states has a different color, which

allows for convenient monitoring of both the period and

phase of an oscillation. In this study, individual BZ micro-

oscillators are created by chemically attaching the metal cat-

alyst to small cation-exchange particles (average radius

¼ 100 lm).34,39 When these particles are placed into a

catalyst-free solution, and spatially separated, each particle

acts as an independent chemical micro-oscillator. The fre-

quency distribution of the oscillators is predominantly con-

trolled by the underlying size distribution of the cation-

exchange particles. The gray level Ij of each oscillator is

monitored with a CCD camera. The use of the photosensitive

RuðbipyÞ2þ3 catalyst allows the manipulation of the phase of

the individual oscillators by illumination with a spatial light

modulator (SLM).40–42

The experimental arrangement is shown in Figure 1.

The beam splitter allows the micro-oscillators to be

viewed from above using the illumination provided by the

SLM. During an experiment, the light intensity is updated

and images are taken every 3 s. Approximately 35 micro-

oscillators are used in each experiment. The oscillators

are positioned at least 3 diameters apart in the catalyst-

free solution to eliminate diffusive coupling. Due to natu-

ral aging of the catalyst-free solution, the natural fre-

quency of the oscillators increases during the experiment.

The local mean natural frequency of the oscillators can

be estimated based upon a subpopulation of five oscilla-

tors. These control oscillators are selected at random at

the start of an experiment and are subject to a constant

light intensity for the duration of the experiment. Their

average frequency is calculated throughout the experiment

and used as an estimate of the mean natural frequency of

the other oscillators.

III. THEORETICAL BACKGROUND

The prediction of synchronization or desynchronization

by external perturbations is based on the change in the phase

difference between two oscillators following a perturbation.

The behavior of two oscillators, which are initially entrained

to a synchronizing stimulus and then subject to a desynchro-

nizing signal, is analyzed in the Appendix. Assuming that

the slower oscillator remains entrained and the faster oscilla-

tor escapes entrainment, the phase difference, w, grows

according to

w tð Þ � Dxþ X

K
eKt � 1ð Þ;

K ¼ 1

T

ðT

0

Z0
� / tð Þð Þu� tð Þdt;

X ¼ 1

T

ðT

0

Z� / tð Þð Þu� tð Þdt;

(1)

where Z�ð/Þ is the PRC to a T-periodic negative external

perturbation u�ðtÞ; Dx ¼ x0 � 2p=T, where x0 is the natu-

ral frequency of the faster oscillator, / is the phase of the

FIG. 1. Experimental Belousov-Zhabotinsky (BZ) chemical system. The

photosensitive micro-oscillators are monitored with the CCD camera and

are illuminated with the SLM according to an illumination algorithm.
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slower oscillator, and 0 � d=d/. The finite time Lyapunov

exponent, K, determines the rate of exponential desynchroni-

zation between the two oscillators (cf. Refs. 28 and 43).

Figure 2(a) shows an experimentally obtained PRC, in

response to a negative perturbation, using the “direct meth-

od.”44,45 The PRC is constructed by applying an intermittent

perturbation, of duration Dt ¼ 2 s, to a set of independent

micro-oscillators, allowing at least one unperturbed period

between perturbations. The phase of each oscillator at the

time of perturbation is determined by assuming the period is

the same as that of the previous cycle, during which no per-

turbation occurred. The unperturbed period also allows the

phase advance/retardation D/ to be calculated. The points in

the PRC are then calculated according to Zð/Þ ¼ D/
uDt

, where

u is the absolute value of the amplitude and Dt is the duration

of the perturbation used to construct the PRC. In the case of

Figure 2(a), the background illumination applied to the oscil-

lators is 180 gray scale units; during a perturbation, the light

intensity is reduced to 0 gray scale units. The data points in

the interval / ¼ ½0; 4:4� follow a linear trend and a line of

best fit, shown in green, is obtained using linear regression.

Owing to the positive slope of the PRC, any signal applied

during this initial portion of an oscillatory cycle will lead to

phase separation of a pair of synchronized oscillators. The val-

ues of K and X associated with such a signal can be approxi-

mated using /ðtÞ ¼ xt, where x ¼ 2p=T, which is valid in

the limit that the magnitude of the external stimulus is small (a

similar approximation was used in Refs. 28 and 29), in con-

junction with Eq. (1) and the linear fit shown in Figure 2(a).

In contrast, application of a negative stimulus towards

the end of the oscillatory cycle will lead to a negative value

of K. Similar “resetting” behavior is found if the PRC associ-

ated with a positive perturbation is used, Figure 2(b). In the

interval [0, 2.7], D/ of this positive perturbation PRC is

approximately zero, while during the remainder of the cycle

the PRC has a constant negative slope. Thus, both a positive

perturbation and a late, in the phase cycle, negative perturba-

tion will enhance synchronization in this chemical system.

IV. EXPERIMENTAL RESULTS: PERIODIC
ENTRAINMENT SIGNAL

The micro-oscillators are initially synchronized by

entrainment to a common periodic positive pulse light signal.

Figure 3(a) shows the projected light intensity that is applied

as a repeated positive pulse above the background light in-

tensity. The periodic positive pulse is introduced at t¼ 120 s.

Each positive pulse is of a fixed amplitude and lasts for 9.0 s,

after which the background intensity is restored. The fre-

quency of the forcing signal was chosen to be slightly higher

than the mean frequency of the control oscillators because

our preliminary studies indicated that this leads to the most

effective entrainment. In order to accommodate drift in the

natural frequency of the oscillators during an experiment, the

frequency of the common light signal is continuously

updated based upon the natural frequency of the control

oscillators.

The oscillators rapidly entrain to this signal and synchron-

ize with each other. This is indicated by the increase in the am-

plitude of the mean signal, shown in Figure 3(a), as well as the

alignment of the individual oscillator signals and the increase

in the order parameter, Figures 3(b) and 3(c). The peak in the

mean oscillator signal typically occurs between 6 and 9 s after

the start of each light pulse. At t¼ 1200 s, a periodic negative

pulse train is added to the common signal in an attempt to

desynchronize the system. This negative pulse train is phase

locked relative to the positive perturbations. The chemistry of

the system is less sensitive to a reduction in light intensity, and

we, therefore, make the negative pulse longer in duration. The

PRC analysis outlined above suggests that negative pulses

should be applied in the first half of the phase cycle of the

synchronized oscillators to lead to effective desynchronization.

The applied signal is shown in Figure 3(a), which is phase

locked to the entraining signal so that it occurs during the first

half of the entraining signal cycle. The negative pulses quickly

lead to phase advancement of a number of the oscillators,

breaking the synchrony of the original group of oscillators.

This can be seen in the individual time series plots, Figure 3(b),

as well as by the reduction in the peak amplitude of the mean

signal, Figure 3(a). Figure 3(c) shows the corresponding

changes in the Kuramoto order parameter, with a large

decrease in its value after t¼ 1200 s from close to 1.0 to 0.46.

The importance of the timing of the applied negative

perturbations can be further demonstrated. According to the

PRC analysis, if the timing of the applied perturbation corre-

sponds to a region where the PRC has a negative slope (neg-

ative Lyapunov exponent), then the perturbation will support

synchronization, rather than leading to desynchronization.

This is confirmed in Figure 3(d), which shows the result of

applying negative pulses that are timed to occur towards the

end of the entraining signal cycle. The mean signal and indi-

vidual time series of ten representative oscillators show that

FIG. 2. Phase response curves (PRCs) showing change in phase as a func-

tion of phase at which a perturbation is applied. (a) The PRC corresponding

to negative perturbations. A line, Z � 104 ¼ 1:50/� 0:04, is fitted to the

data in the region [0, 4.4]. (b) The positive perturbation PRC. The negative

and positive perturbations have amplitudes of 180 and 70 gray scale units

(1.67 mW cm�2 and 0.64 mW cm�2), respectively, and duration of 2 s. The

baseline intensity is 180 gray scale units. The composition of the catalyst-

free solution is [NaBrO3]¼ 0.48M, [MA]¼ 0.08M, [NaBr]¼ 0.02M, and

[H2SO4]¼ 0.78M.
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a large amplitude regular mean signal and coherent firing are

maintained. The order parameter during the experiment

remains close to 1.0, indicating sustained synchronization af-

ter applying negative pulses in the latter half of the phase

cycle.

V. EXPERIMENTAL RESULTS: NOISE ENTRAINMENT

SIGNAL

The behavior of the oscillators in the absence of any

imposed signal is shown in Figure 4. The mean signal of the

oscillators is aperiodic with a small amplitude, Figure 4(a).

The individual oscillators proceed at their natural frequen-

cies, leading to a low value of the order parameter, Figures

4(b) and 4(c). In Sec. IV, we saw that such oscillators are

entrained to a common periodic signal. In this section, the

response of the oscillators to a common noise signal is

explored. An exponentially correlated noise signal X(t), with

mean value X0, can be generated using the Ornstein-

Ohlenbeck equation14,46

_XðtÞ ¼ �hðXðtÞ � X0Þ þ
ffiffiffiffiffiffiffiffiffiffi

2hr2
p

gðtÞ; (2)

where h determines the rate at which the process reverts to the

mean, and r2 determines its variance. The i.i.d. (independent

and identically distributed) Gaussian white noise, g, has a zero

mean and autocorrelation hXðtÞXðsÞi ¼ dðt� sÞ.

A typical noise signal produced using the Euler-Maruyama

method47 and a random initial value X(0) is shown in Figure

4(d). Figures 4(e) and 4(f) show the behavior of the individual

oscillators in the presence of this common noise signal.

Regions of strong intermittent phase coherence among the indi-

vidual oscillator signals are seen together with corresponding

increases in the mean signal amplitude and order parameter.

Comparison of the time average order parameter in Figure 4(c),

with no common noise present, to the time average order pa-

rameter in Figure 4(f), with common noise present, reveals an

increase from 0.15 to 0.57. The behavior is better characterized

statistically by finding the mean of the individual time averaged

order parameters obtained from separate experiments. Each

experiment uses a different set of micro-oscillators and a differ-

ent random initial condition for the noise signal. Based upon

this approach, the mean time averaged order parameter was

found to be 0:1660:03, with no common noise present, com-

pared to 0:5360:08, with common noise present. The statistics

are based upon ten separate experiments of each type.

Statistical comparison (t-test) of these mean order parameter

values shows them to be significantly different, providing

strong evidence of noise induced synchronization in the system.

The impact of a periodic negative pulse signal on the

noise induced synchronized oscillators is shown in Figure 5.

The frequency of the signal is again determined based upon

the natural frequency of five control oscillators. The timing

of the pulse relative to the phase of the oscillators now

FIG. 3. Effect of periodic perturbations

on oscillators entrained by periodic sig-

nal. (a) A common periodic pulse light

signal (blue line), of duration 9.0 s, is ini-

tiated at t¼ 120 s. A second perturbation,

in which the light intensity is decreased

for a duration of 1/2 of the synchronizing

signal period, is introduced at t¼ 1200 s.

It is timed to occur in the first half of the

entraining signal cycle. Mean oscillator

signal (black line). (b) Individual time

series of ten representative oscillators.

(c) Kuramoto order parameter. The forc-

ing signal has a period that is 9.0 s

shorter than the mean natural period of

the control oscillators. (d)–(f) The same

as (a)–(c) except the dark signal is timed

to occur in the latter half of the synchro-

nizing cycle. The mean natural fre-

quency of the control oscillators changes

during the experiment from 81 s to 72 s

(a)–(c) and 75 s to 65 s (d)–(f). The

experiments use 30 micro-oscillators and

5 control micro-oscillators. The baseline,

positive pulse, and negative pulse light

intensities are 180, 240, and 0 gray scale

units (1.67, 2.23, and 0 mW cm–2),

respectively. Chemical concentrations as

in Figure 2. Inset in (a) and (d) shows

blowup of the periodic perturbations and

oscillator response for 1500 s – 1700 s.
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cannot be predetermined. It is clear from Figure 5 that the

application of the negative pulses leads to a decrease in aver-

age amplitude of the mean signal and a decrease in the time-

averaged order parameter. As previously, the experiment is

repeated ten times and the mean time-averaged order param-

eter is determined to be 0.276 0.05. Statistical comparison

(t-test) of this value against either the noise-free value or the

common noise value indicates it to be significantly different

from both of them. This indicates that the application of the

negative pulses leads to a degree of desynchronization,

though not complete incoherence as seen in the system with

no common noise.

The important role associated with the slope of the PRC is

demonstrated by examining the impact of a positive pulse train,

as shown in Figures 5(d)–5(f). The addition of positive pulses

on top of the noise signal leads to effective synchronization of

the oscillators. Following an initial transient, the order parame-

ter has a value close to 1.0 for the remainder of the experiment.

If the desynchronizing signal is applied repeatedly, the

oscillators will eventually move to a cluster state, as in

FIG. 4. Oscillations without any entrain-

ment signal and in the presence of com-

mon colored noise signal. (a) Mean

signal of 30 oscillators, black line. (b)

Individual time traces of 10 representa-

tive oscillators. (c) Kuramoto order pa-

rameter. (d) Mean signal of 30

oscillators, black line, in the presence of

a common colored noise signal. The

noise signal scaled between 0 and 1,

blue line. (e) and (f) Same as (b) and (c)

except in the presence of the noise signal

shown in (d). Each experiment has a

total duration of 2000 s, though for

clarity only 1000 s are shown. Noise pa-

rameters: h ¼ 0:08, r¼ 50, background

light intensity¼ 140 gray scale units

(1.29 mW cm� 2).

FIG. 5. Effect of periodic perturbations

on noise-entrained oscillators. (a) The

applied common noise signal, blue line,

and the negative pulses, red line. The

period of the negative pulse train signal

is continually adjusted to be 9 s shorter

than the current period of the control

oscillators. The black line is the meas-

ured mean signal of all oscillators,

excluding the control oscillators. (b)

Individual time traces of 10 representa-

tive oscillators. (c) Kuramoto order pa-

rameter. (d)–(f) Same as (a)–(c) except

now using a positive perturbation pulse

train. The experiments in (a) and (d)

used 30 and 27 oscillators, respectively,

and five control oscillators. The nega-

tive and positive pulses have a duration

of 1/4 of their period. The baseline, pos-

itive pulse, and negative pulse light

intensities are 140, 240, and 0 gray

scale units (1.29, 2.31, and 0 mW

cm�2), respectively. Experimental con-

ditions as in Figure 2.
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Figure 3. If the desynchronization occurs by inducing chaos,

then it is expected that the rate of separation of the oscilla-

tions will be exponential in time. The time constant of the

separation is determined by the positive Lyapunov exponent.

As outlined in Sec. III and based upon the data shown in

Figure 3, where the oscillator period is 66 s and the dark sig-

nal is applied for a duration of 33 s, the theoretical values of

K and X can be determined using Eq. (1) to be K ¼ 0:0135
and X ¼ 0:0216.

Figure 6 compares this theoretical prediction with the

experimentally observed phase separation of pairs of oscilla-

tors. In the upper panels, red and blue traces show recordings

from oscillators within the population, the solid black line

shows the scaled background light intensity, and the vertical

dashed line represents the time at which the desynchronizing

stimulus is turned on. The experimentally observed phase dif-

ference, w, between the oscillators is plotted as individual dots

in the lower panels. In the lower panels, the dot-dashed line is

the maximum expected phase difference predicted by Eq. (1),

with Dx calculated using x2 from the fastest control oscilla-

tor, having a period of 72 s, and the solid line shows the data

fitted to an exponential function with the same form as (1).

The experimentally observed Lyapunov exponent, K exp, is

slightly higher than the Lyapunov exponent expected from the

phase reduction theory but is generally well within the stand-

ard error associated with the determination of the theoretical

value. We note that in Figure 6, even though K < K exp, the

theoretical curve is above the experimental curve because the

theoretical value of X is larger than what is observed.

VI. DISCUSSION

In this paper, we demonstrate in an experimental model

that phasic stimulation, selected by the PRC, can be used to

increase or decrease synchrony in a population of oscillators

synchronized by a common periodic or stochastic input. The

optimal timing of a desynchronizing signal can be deter-

mined directly from the PRC of the dynamical oscillator. In

the first set of experiments, using a fully entrained set of

oscillators, it is necessary to target the phase region with an

associated positive Lyapunov exponent (positive slope in the

PRC) to effect phase separation. The desynchronization

occurs due to a phase advance of the faster oscillators rela-

tive to the slower oscillators, with the slower oscillators

remaining entrained to the synchronizing periodic signal.

Stochastic synchronization is thought to generate syn-

chrony in uncoupled oscillators in many natural systems

such as brain activity and ecological communities. In this

work, we have demonstrated that stochastic synchronization

can lead to statistical synchronization in a population of

uncoupled experimental oscillators. The intermittent phase

alignment occurring through phase resetting by the synchro-

nizing noise leads to a statistically larger average order pa-

rameter. In this chemical system, both positive and negative

noise perturbations can lead to a degree of phase resetting if

they happen to occur towards the end of the phase cycle of

the individual oscillators. Theoretical work predicts that sto-

chastic synchronization will be more effective in oscillatory

systems with underlying type II PRCs, which take both posi-

tive and negative values, compared to systems with type I

PRCs, with only positive or only negative values.20,48 In our

case, the experimental system is a type I PRC but still dem-

onstrates phase alignment through noise.

When applying a negative pulse train to a stochastically

synchronized system, there is a distribution of phases of the

oscillators at the time of the stimulus. Since the negative pertur-

bation PRC has both a negative and positive region, it will tend

to both push and pull the oscillators together and apart. By

applying the stimulus at certain phases of the oscillation, the

stimulus can counteract the effect of the noise induced synchro-

nization. The resultant order is found to lie intermediate

between the stochastic synchronized state and the fully

uncoupled incoherent state. Our work demonstrates the result-

ant state to be significantly different from both. It should be

noted, however, that other dynamics may be influencing our

chosen order measure, such as transient phase cluster states.25

FIG. 6. Analysis of the rate of phase separation. The top panels show traces from individual oscillators as red and blue lines, with the solid black line and

dashed line showing the scaled external light intensity and time at which the desynchronizing stimulus is turned on, respectively. Exponential desynchroniza-

tion is clearly demonstrated in the bottom panels, which show the experimentally observed phase difference, w, between the oscillators as a function of time,

from the top panels. The dotted-dashed line gives the expected desynchronization with values of K and X calculated from (1), and the solid line is a function of

the same form as (1) fitted to the experimental data. Experimental data from Figure 3.
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In future continuation of this work, it will be of interest to

compare the synchronization properties of the experimental

stochastically synchronized system with theoretically pre-

dicted properties. These properties, which are commonly des-

ignated through the probability density function of the phase

separation of the oscillators, are expected to depend on char-

acteristics of the frequency distribution of the applied com-

mon noise.20 Our system could also be used to explore the

selection of noise filters for optimal stochastic synchronization

and selection of cluster states. A better understanding of the

underlying stochastic synchronization will allow for a clearer

understanding of how the application of the periodic negative

perturbations results in a net desynchronizing effect.

This paper illustrates with a chemical system how stimu-

lus waveforms phase locked to an oscillation can both

advance and retard oscillation phase. In the nervous system,

increasing synchrony may enhance physiological oscillations

and may be used to improve memory, or alternatively,

decreasing synchrony may be used to mitigate pathological

oscillations seen in Parkinson’s disease. Chaotic desychroni-

zation achieved through phase response curve selection of

the stimulus phases that have the steepest positive slope (for

desynchronization) or steepest negative slope (for synchroni-

zation) provides a framework for optimizing stimulation

parameters and waveforms for closed loop stimulation. This

approach may have significant benefits for clinicians in tun-

ing parameters for biomedical devices or in industry where

mechanical or chemical oscillations are unwanted.
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APPENDIX: SUPPORTING THEORY FOR
EXPERIMENTALVALIDATION OF EXPONENTIAL
DESYNCHRONIZATION

When the desynchronizing stimulus is turned on, we

find that the synchronized oscillators split into two popula-

tions at an exponential rate. To explain this phenomenon,

consider the phase models49 of two oscillators

_/1 ¼ x1 þ Z�ð/1Þu�ðtÞ þ Zþð/1ÞuþðtÞ;
_/2 ¼ x2 þ Z�ð/2Þu�ðtÞ þ Zþð/2ÞuþðtÞ:

(A1)

Here, /1 and /2, both 2 ½0; 2pÞ give the phase of each respec-
tive oscillator, x1 and x2 are the natural frequency of each

oscillator, and Z�ð/Þ and Zþð/Þ are the phase response

curves associated with common negative and positive pertur-

bations u�ðtÞ and uþðtÞ, respectively. We note that because

u�ðtÞ and uþðtÞ are both perturbations with respect to the

baseline light intensity, it is not possible for both to be non-

zero at the same time. In general, the phase response curves

for a single oscillator can be measured through the “direct

method.”44,45 To obtain a single data point using this strategy,

a short pulse of light with duration Dt and magnitude u is

applied to an oscillator at a random phase /, the phase

change, D/, is measured by observing the change in spike

time, and the resulting data point is Zð/Þ ¼ D/
uDt

. We use this

strategy to calculate Z�ð/Þ, with results shown in Figure 2

from the main text. We can quantify the effect of Zþð/Þ by
noting that when a positive pulse is given later in the phase,

the resulting change of phase is close to the causality line,50

meaning that the positive pulse immediately elicits a spike in

the range p � / � 2p. We also note that Zþð/Þ � 0 in the

range 0 � / � p=2. To proceed, we define a new variable,

w ¼ /2 � /1 so that

_w ¼ Dxþ Z�ð/2Þu�ðtÞ þ Zþð/2ÞuþðtÞ
� ðZ�ð/1Þu�ðtÞ þ Zþð/1ÞuþðtÞÞ; (A2)

where Dx ¼ x2 � x1.

In experiments, one group of oscillators remains phase

locked to the positive pulses when exponential desynchroni-

zation is observed. When the negative, desynchronizing per-

turbation is turned on, as we see from the PRC in Figure 2, it

has a net effect of speeding up the oscillation of each oscilla-

tor. When this happens, oscillators with a relatively fast natu-

ral frequency will be able to spike (i.e., rapidly increase in

amplitude) before the positive perturbation is applied, escap-

ing its synchronizing influence. Conversely, oscillators with

a relatively slow natural frequency will not fire before the

positive perturbation is applied and will remain synchron-

ized. Without loss of generality, we will take /1 to be the

phase locked oscillator. One can verify that there is no

observable difference between the phase locked oscillator

and an unforced oscillator with x1 ¼ 2p=T, with T being the

forcing frequency. We also find that the desynchronizing

stimulus speeds up the oscillation of the second oscillator so

that when the positive light perturbation is given, /2 � 0. If

this was not the case, the positive perturbation would cause

both oscillators to spike at the same time, maintaining syn-

chronization indefinitely. Averaging theory51,52 allows us to

approximate w by a new variable u, where

_u ¼ 1

T

ðT

0

Dxþ Z� /2ð Þu� tð Þ þ Zþ /2ð Þuþ tð Þ
�

� Z� /1ð Þu� tð Þ þ Zþ /1ð Þuþ tð Þ
� �

Þdt

¼ Dxþ 1

T

ðT

0

Z� /2ð Þu� tð Þ
� �

dt

�Dxþ 1

T

ðT

0

Z� uþ /1ð Þu� tð Þ
� �

dt

¼ Dxþ 1

T

ðT

0

Z� /1ð Þu� tð Þ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

X

þ 1

T

ðT

0

Z0
� /1ð Þu� tð Þ

� �
dt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K

uþO u2
� �

¼ Dxþ Xþ KuþOðu2Þ:

(A3)

Note that in the second line, the dynamics of the phase

locked oscillator /1 is approximated by an unforced oscilla-

tor, as mentioned earlier. We have also used the fact that
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Zþð/2Þ � 0 when the positive pulse is applied. In the fourth

line, we have used the Taylor expansion about Z�ð/1Þ so

that 0 � d=d/. Here, K is the finite time Lyapunov exponent

(cf. Ref. 43) which determines the rate of exponential

desynchronization. Note that the equation for u approxi-

mates w best when the external inputs are small. Finally, to

leading order in u, the solution to Equation (A3) is

u tð Þ ¼ Dxþ X

K
eKt � 1ð Þ � w tð Þ: (A4)

Above, we have assumed t¼ 0 corresponds to the instant

that the oscillators spike together right before the desynchro-

nizing stimulus is applied so that uð0Þ ¼ 0. The values K

and X can be approximated using /1ðtÞ ¼ x1t, as was used

in Ref. 28, which is valid in the limit that the magnitude of

the external stimuli is small. We note that the preceding deri-

vation is unique to the BZ system; a more general discussion

of desynchronization using finite time Lyapunov exponents

can be found in Refs. 28 and 29.
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