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Optimal Chaotic Desynchronization for Neural Populations∗

Dan Wilson† and Jeff Moehlis†

Abstract. A procedure is developed for finding an energy-optimal stimulus which gives a positive Lyapunov
exponent, and hence desynchronization, for a neural population. The procedure is illustrated for
three different neural models. Not only does it achieve desynchronization for each model, but it
also does so using less energy than recently proposed methods, suggesting a powerful alternative to
pulsatile stimuli for deep brain stimulation. Furthermore, we calculate error bounds on the optimal
stimulus which will guarantee a minimum Lyapunov exponent. Also, a related control strategy is
developed for desynchronizing neurons based on the population’s phase distribution.
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1. Introduction. Pathological synchronization among spiking neurons in the basal ganglia–
cortical loop within the brain is thought to be one factor contributing to the tremors exhibited
by patients with Parkinson’s disease [9]. Deep brain stimulation (DBS), a well-established
technique for mitigating these tremors, has been hypothesized to desynchronize these neurons
through the injection of a high-frequency, pulsatile input into an appropriate region of the
brain [26], [38], [41]. Typically, DBS is implemented with a permanent, high-frequency, pul-
satile signal which is administered in an open-loop fashion. This has motivated researchers to
search for alternative stimuli that consume less energy in order to prolong stimulator battery
life and to mitigate side effects of DBS such as aggregate tissue damage. Control methods that
employ feedback control are of particular interest because they can be used only when needed.
For example, in [37], double-pulse stimulation was shown to desynchronize a population of
noisy phase oscillators and prevent resynchronization. Nonlinear, time-delayed feedback was
used in [21] to experimentally desynchronize a system of electro-chemical oscillators. In [3], a
minimum time desynchronizing control based on phase resetting for a coupled neural network
was established using a Hamilton–Jacobi–Bellman approach, which was later extended by [24]
to desynchronize neurons using an energy-optimal criterion. In [4], an energy-optimal, charge-
balanced stimulus was used to control neural spike timing. More recently, [36] developed a
model to control neural networks using a light-sensitive protein instead of electrical stimuli.

In this work, we present a procedure for finding an energy-optimal DBS stimulus which
exponentially desynchronizes a population of coupled neurons. An advantage of this approach
is that it requires only knowledge of a neuron’s phase response curve (PRC), which is experi-
mentally measurable by perturbing an oscillatory neuron at different phases and determining
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the change in spike timing [25]. Unlike the methods in [3] and [24], our approach does not
need the full model for the dynamics, and unlike [10] and [4], it requires only a single input.
Methods presented in [33], [29], [40], [31], [22], and [30] use delayed-feedback stimulation to
counter the effects of mean-field coupling on an ensemble of heterogeneous oscillators, and
the method presented in this work notably differs from these methods because it is applicable
to networks without mean-field coupling and does not require simultaneous stimulation and
measurement. We compare this method to other recently proposed methods, to show not only
its desynchronizing capabilities for many types of neural models, but also its ability to act with
comparatively small control inputs. Furthermore, we compute error bounds on the optimal
stimulus that will guarantee a resulting signal with the properties required to desynchronize
a network of neurons, and propose a control strategy for desynchronizing a population based
on its phase distribution.

The organization of the paper is as follows. In section 2, we derive an expression for the
Lyapunov exponent for two neurons with similar initial phases and use the result to develop
a control method. Section 3 uses the optimal stimulus calculated in section 2 to develop
sufficient conditions for obtaining a stimulus with a predetermined guarantee on its Lyapunov
exponent. In section 4 we develop a control methodology based on a population’s phase
distribution. Section 5 examines the control methodology applied to three neural models in
order to make comparisons with previous work. Section 6 gives concluding comments.

2. Derivation of the Lyapunov exponent and optimal control. We present a procedure
for finding an energy-optimal DBS stimulus which exponentially desynchronizes a population
of neurons. An advantage of this approach is that it requires only knowledge of a neuron’s
PRC, which is experimentally measurable by perturbing an oscillatory neuron at different
phases and determining the change in spike timing [25]. The PRC can also be calculated
numerically if all equations and parameters in the neural model are known; see e.g., [2].
Through phase reduction, as illustrated, for example, in [2], we can obtain a reduced model
for a single neuron of the form

(1)
dθ

dt
= ω + Z(θ)u(t),

where θ is the phase of the neuron and is 2π-periodic on [0, 2π) and, by convention, θ = 0
corresponds to the spiking of the neuron. Here, ω gives the neuron’s baseline dynamics, which
are determined from its natural period T as ω = 2π/T ; Z(θ) is the PRC; and u(t) = I(t)/C,
with I(t) being the control input and C = 1μF/cm2 being the constant neural membrane
capacitance.

Lyapunov exponents are commonly used to describe the rate at which nearby trajectories
diverge, and they have proven useful in other problems, for example, by serving as biomarkers
for seizure prediction and control [16], [15], [28]. We now derive an expression for the Lyapunov
exponent for (1) by considering two identical neurons subject to a common stimulus:

(2)
dθi
dt

= ω + Z(θi)u(t), i = 1, 2.

Here we assume that the neurons are nearly in-phase, so that θ1 ≈ θ2. Letting φ ≡ |θ2 − θ1|,D
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278 DAN WILSON AND JEFF MOEHLIS

we obtain

(3)
dφ

dt
= Z ′(θ)u(t)φ+O(φ2).

Since we have linearized the equation, we assume that solutions are of the form φ ∼ eΛt, which
yields the finite time Lyapunov exponent (cf. [1])

(4) Λ(τ) =
log(φ(τ))

τ
=

∫ a+τ
a Z ′(θ(s))u(s)ds

τ
.

We now consider a population of neurons, each described by an equation of the form (1).
Suppose that for some time t1, for all stimuli u(t) that advance θ from θ(0) = 0 to θ(t1) = ωt1
(that is, stimuli that do not create any net change of phase), we want to find the stimulus
that minimizes the cost function G[u(t)] =

∫ t1
0 [u(t)2 − βZ ′(θ(t))u(t)]dt. Here,

∫ t1
0 [u(t)2]dt

corresponds to the power associated with the stimulus, and β > 0 is a scaling parameter that
determines the relative importance of minimizing the energy versus maximizing the Lyapunov
exponent, Λ(t1). We apply calculus of variations to minimize [7]

C[u(t)] =
∫ t1

0

{
u(t)2 − βZ ′(θ)u(t) + λ

(
dθ

dt
− ω − Z(θ)u(t)

)}
dt,(5)

where the Lagrange multiplier λ forces the neural dynamics to obey (1). The resulting Euler–
Lagrange equations are

u(t) = [βZ ′(θ) + λZ(θ)]/2,(6)

θ̇ = Z(θ)
[
βZ ′(θ) + λZ(θ)

]
/2 + ω,(7)

λ̇ = − [βZ ′(θ) + λZ(θ)
] [
βZ ′′(θ) + λZ ′(θ)

]
/2,(8)

where ′ = d/dθ. To find the optimal control, u(t), (7) and (8) must be solved subject to
the boundary conditions θ(0) = 0, θ(t1) = ωt1. This can be done by numerically finding the
initial condition λ(0) ≡ λ0 that satisfies the boundary conditions, for example, by using a
shooting method. We note that the above conditions are only necessary and not sufficient
for global optimality. However, the phase reduction (1) requires inputs of small amplitude so
that solutions remain close to the periodic orbit. Since u(t) is directly proportional to λ in
(6), we can limit our search to include solutions obtained with reasonably small values of λ(0)
in order to find a feasible solution.

While the previous procedure will produce an energy-optimal stimulus, it will not necessar-
ily be charge-balanced (CB). The importance of CB stimuli in DBS has been known for many
years. Over time, non–charge-balanced (NCB) stimuli can create an accumulation of charge
and cause harmful Faradaic reactions that may damage surrounding neural tissue or the DBS
electrode [23]. If we consider the total charge q imparted to a neuron to be the integral of
the current, then q̇(t) = Cu(t), and we can derive an optimal CB stimulus by optimizing the
same cost function as in the NCB case, G[u(t)], subject to the additional constraints q(0) = 0
and q(t1) = 0, the latter ensuring that the stimulus will be charge neutral at t1. We again
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apply calculus of variations [7] to minimize C[Φ(t), Φ̇(t), u(t)] =
∫ t1
0 M[u(t)]dt, where

M[u(t)] = u(t)2 − βZ ′(θ)u(t) +
[
λ1(t) λ2(t)

] [dθ
dt − ω − Z(θ)u(t)

dq
dt − u(t)

]
(9)

and Φ(t) = [θ(t), q(t), λ1(t), λ2(t)]
T . The Lagrange multipliers λ1 and λ2 force the dynamics

to satisfy the evolution equations for θ and q given above. The associated Euler–Lagrange
equations are

(10)
∂M
du

=
∂

∂t

(
∂M
∂u̇

)
,

∂M
dΦ

=
∂

∂t

(
∂M
∂Φ̇

)
.

With the above boundary conditions, this is a two-point boundary value problem for u(t) which
is solved using a double bisection algorithm described in [4]. As with the NCB formulation,
(10) is only necessary and not sufficient for global optimality, but we can limit our search for
λ1(0) and λ2(0) so that the resulting solutions yield optimal stimuli that are small enough
that the phase reduction (1) is still valid.

3. Guaranteed Lyapunov exponents. In an experimental setting, errors in measuring
the PRC will induce errors in the calculated optimal stimulus. An important question to ask
is whether or not these errors will stifle the desynchronizing efforts of the electrical signal,
and how large these errors need to be before they completely degrade its desynchronizing
capabilities. To answer these questions, we consider an NCB optimal stimulus, Iopt(t), found
using methods from section 2. Consider another stimulus, Ic(t), that is different from Iopt(t).
We define the error signal as Ie(t) = Ic(t)− Iopt(t) and the infinity norm of Ie(t) as

(11) ||Ie(t)||∞ = sup
0≤t≤t1

|Ie(t)|,

where t1 is the duration of the optimal signal. As we will demonstrate in section 5, a signal
with a larger Lyapunov exponent will desynchronize two neurons with similar initial phase
more quickly. For this reason, we use the Lyapunov exponent from (4) as a measure of the
desynchronizing capabilities of a signal. In order to identify a bound on ||Ie(t)||∞ which can
guarantee desynchronization, we must find the worst possible Lyapunov exponent for any
signal with ||Ie(t)||∞ ≤ E, where E is a constant. To do so, we define the cost function
L[Ie(t)] =

∫ t1
0 [Iopt(t) + Ie(t)]Z

′(θ(t))dt subject to (1), θ̇ = ω + Z(θ)[Iopt(t) + Ie(t)], with the
additional constraint −E ≤ Ie(t) ≤ E for all t ∈ [0, t1]. Here, L[Ie(t)] corresponds to the
Lyapunov exponent for a stimulus Ic(t). The inequality constraint ensures that ||Ie(t)||∞ ≤
E. Using Pontryagin’s minimum principle [20], a necessary condition for the control that
minimizes L[Ie(t)] is that the control minimize the Hamiltonian

(12) H(θ(t), Ie(t), p1(t)) = [Iopt(t) + Ie(t)]Z
′(θ(t)) + ωp1(t) + [Iopt(t) + Ie(t)]p1(t)Z(θ(t))

and be given by Ie(t) = −Esign(Z ′(θ) + p1(Z(θ)), where ′ = d/dθ and p1 is a Lagrange
multiplier. Furthermore,

θ̇ = ω + Z(θ)[Iopt(t) + Ie(t)],(13)

ṗ1 = −[Iopt(t) + Ie(t)]Z
′′(θ)− p1Z

′(θ)[Iopt(t) + Ie(t)],(14)
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with the boundary condition θ(0) = 0. From the problem formulation, we have only one
boundary condition, and in order to find the global minimum of L[Ie(t)], we must simulate (13)
and (14) for all plausible values for p1(0) to determine the minimum (worst case) Lyapunov
exponent of the associated signals. Using this approach, we can find boundaries on a stimulus
that are sufficient, but not necessary, to yield a given Lyapunov exponent.

θ

ρ(
θ)

(θ
M

,ρ
M

)

Figure 1. The maximum value, ρM , for a large distribution of neurons.

4. Optimal control of the phase distribution. The methods from section 2 are optimal for
desynchronizing two neurons with close initial phase. However, brain regions can contain on
the order of billions of neurons [27]. For large populations of neurons, rather than examining
individual neurons, which can be too large to simulate in silico, it is appropriate to monitor
the probability density of neurons with phase θ at a given time, ρ(θ, t). For an uncoupled
population that obeys (1), the probability density evolves according to the advection equation,
as described in [38]:

(15)
∂ρ(θ, t)

∂t
= − ∂

∂θ
[{ω + Z(θ)u(t)} ρ(θ, t)] = −ρ∂ν

∂θ
− ν

∂ρ

∂θ
,

where ν(θ, t) = ω + Z(θ)u(t). In section 5, we show that the CB and NCB optimal signals
obtained using methods from section 2 can effectively desynchronize a network of 100 coupled
neurons for many different neural models. Therefore, it is no surprise that the same signal is
effective at desynchronizing a population evolving according to (15) (not shown).

However, we wish to approach this problem from a neural population perspective, to see if
we can find an effective control strategy to desynchronize large neural populations. Suppose
that we are interested in the evolution of the maximum of the distribution, ρM , at θ ≡ θM ;
see Figure 1. Noting that the total time derivative of the distribution is dρ

dt =
∂ρ
∂t +

∂ρ
∂θ

dθ
dt , and

that ∂ρ
∂θ = 0 at the local maximum, we find

(16)
dρM
dt

= −ρM ∂ν

∂θ
(θM , t) = −Z ′(θM )u(t)ρM .
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Note the similarity of (16) to (3). From the two-neuron optimal control formulation, Z ′(θ)u(t) >
0 corresponds to increasing the phase difference, whereas here it corresponds to a decreasing
value of ρM . In order to find an equation for the evolution of θM , we again make use of the
relation ∂ρ

∂θ |θM = 0. Taking the total time derivative yields

0 =
∂

∂θ

dρ

dt

=
∂

∂θ

[
ρθ
dθM
dt

+ ρt

]

=
∂

∂θ

[
ρθ
dθM
dt

− νθρ− ρθν

]
,

ρθθ
dθM
dt

= νθθρ+ 2νθρθ + ρθθν.(17)

All expressions in the above equation are evaluated at ρM and θM ; thus ρθ = 0. Also, since
ρM is a local maximum, ρθθ < 0, and (17) becomes

(18)
dθM
dt

= ω + Z(θ)u(t) +
ρM
ρθθ

Z ′′(θ)u(t).

Equations (16) and (18) are special cases of the equations derived in [32]. In order to effectively
use (18), we must find some function κ(θM , ρM ) ≈ ρθθ. One such κ, which works well in
practice, can be obtained by starting with a Gaussian distribution and assuming that the
distribution remains Gaussian for all time. We note that while the phase reduction is valid for
θ ∈ [0, 2π), a Gaussian distribution is defined for all θ. However, because we are considering
synchronized systems with a small variance, the values of the Gaussian distribution that we
are ignoring are insignificant. Using this strategy, one can easily show that κ(ρM ) = −2πρ3M .

Equation (16) is separable, and we can solve explicitly to determine the change in the
value of ρ over some time interval of length T :

∫ a+T

a

1

ρM
dρM = −

∫ a+T

a
Z ′(θM )u(t)dt

=⇒ log

(
ρM (a+ T )

ρM (a)

)
= −

∫ a+T

a
Z ′(θM )u(t)dt.(19)

If we want to minimize ρM while taking into account the energy expended, we can use calculus
of variations [7] to minimize C[Φ(t), Φ̇(t), u(t)] =

∫ t1
0 G[u(t)]dt, where

G[u(t)] = u(t)2 − βZ ′(θ)u(t) +
[
λ1(t) λ2(t)

] [dθ
dt − ω − Z(θ)u(t)− ρM

κ(θM ,ρM )Z
′′(θ)u(t)

dρM
dt + ρMZ

′(θ)u(t)

](20)

and Φ(t) = [θM (t), ρM (t), λ1(t), λ2(t)]
T . Lagrange multipliers λ1 and λ2 force the dynamics

to satisfy (16) and (18). Note the similarity of (20) to the NCB cost function (5). When
κ(θM , ρM ) � ρMZ

′′(θ)u(t) (as might be the case for a highly synchronized network), the
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function that minimizes (20) is approximately the same function that minimizes (5). Taking
κ(ρM ) = −2πρ3M as previously mentioned, the associated Euler–Lagrange equations are

u(t) =

[
βZ ′(θM ) + λ1

(
Z(θM )− 1

2πρ2M
Z ′′(θM )

)
− λ2ρMZ(θM)

]/
2,(21)

˙ρM = −ρMZ ′(θM )u(t),(22)

˙θM = ω + Z(θM )u(t)− 1

2πρ2M
Z ′′(θM )u(t),(23)

λ̇1 = λ1u(t)

[
1

2πρ2M
Z ′′′(θM )− Z ′(θM )

]
+ Z ′′(θM )u(t) [ρMλ2 − β] ,(24)

λ̇2 = u(t)

[
−λ1Z

′′(θM )

πρ3M
+ λ2Z

′(θm)
]
.(25)

Unlike the problem for finding the maximum Lyapunov exponent, the distribution minimiza-
tion problem depends on the initial height of the distribution, ρM (0). We will take θM (0) = 0,
which leaves two initial conditions to be determined later.

5. Results and discussion.

5.1. Maximizing Lyapunov exponents for the thalamus model. Because pathological
neural synchronization in the thalamus is thought to play an important role in Parkinson’s
disease [9], we consider a three-dimensional model to describe thalamic neural activity [34]:

V̇i =

(
− IL(Vi)− INa(Vi, hi)− IK(Vi, hi)− IT (Vi, ri)

+ ISM +
1

N

N∑
i=1

αij(Vj − Vi) + u(t) + ηi(t)

)/
C,

ḣi = (h∞(Vi)− hi)/τh(Vi),(26)

ṙi = (r∞(Vi)− hi)/τr(Vi), i = 1, . . . , N.

We have augmented the voltage equation by additively including electrotonic coupling [18],
DBS input, and Gaussian white noise. Here, N is the total number of neurons; Vi, hi, and ri
are membrane voltage and gating variables for neuron i; αij characterizes the coupling strength
between electrotonically coupled neurons i and j, with αij = αji and αii = 0 for all i; ηi(t) =√
2DN (0, 1) is the independent and identically distributed (i.i.d.) noise associated with each

neuron, assumed to be zero-mean Gaussian white noise with variance 2D; and u(t) = I(t)/C
represents a common control input. In this equation ISM represents the baseline current, which
we take to be 5μA/cm2. For a full explanation of the functions IL, INa, IK , It, h∞, τh, r∞, and
τr, we refer the reader to [34].

The baseline current causes the neuron to fire with period T = 8.395ms. To obtain the
optimal control, we take t1 = 7.35ms (corresponding to θ = 5.5 on the limit cycle) and β = 40.
Note that t1 sets the duration of the stimulus and could be chosen differently, provided that
it is sufficiently smaller than T , and β has been chosen so that a positive Lyapunov exponent
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Figure 2. Numerically computed PRC (A) and its derivative (B) for the thalamus model (26). (C) The
CB and NCB optimal stimuli are shown as dashed and solid lines, respectively.

is favored but also so that the magnitude of the control input is small enough so that the
phase reduction from (1) is still valid. We solve (7) and (8) numerically with a fourth order
Runge–Kutta solver, and the optimal control is found from (6). We do the same for the
Euler–Lagrange equations from (10).

Panels (A) and (B) of Figure 2 show the PRC and its first derivative for (26), numerically
obtained using the software X-Windows Phase Plane (XPP) [6]. Panel (C) of Figure 2 shows
the optimal CB and NCB stimuli. Both stimuli are similar because the NCB stimulus is
nearly CB. We note that the optimal stimulus is strikingly similar to Z ′(θ) for θ ≤ 5.5 and
explain this occurrence by noting that the equation for the optimal stimulus from (6) depends
directly on the sum of βZ ′(θ(t)) and λ(t)Z(θ(t)). The optimal stimulus has a relatively small
magnitude, so θ(t) ≈ ωt and, numerically, we find that λ(t) is relatively small compared to β.

In order to numerically verify that the NCB stimulus is optimal for minimizing the cost
function, we analyze five other stimuli given by ui(t) = uopt(t) + 0.5Wi(t), i = 1, . . . , 5, where
uopt is the optimal NCB stimulus shown in Figure 2 and Wi is a Wiener process, added to
corrupt the optimal stimulus. We note that each of these stimuli are subject to the same
end point conditions described in section 2. Figure 3 shows these stimuli as well as the
NCB optimal stimulus for reference. As we can see from Table 1, uopt does have the best
performance in terms of overall cost, but the other stimuli still yield comparable Lyapunov
exponents. This prompts the question of how robust this procedure is to errors, which will be
addressed later.

The Lyapunov exponents calculated using (4) for NCB and CB stimuli are 0.066 and 0.060,
respectively. We find that requiring the CB constraint decreases the Lyapunov exponent and,
hence, the rate of desynchronization. Figure 4 shows the phase separation of two neurons
which obey (2) for the PRC found in Figure 2 subject to repeated iterations of both the
NCB (panels (A) and (B)) and CB (panels (C) and (D)) stimuli. We find that the neurons
exponentially desynchronize at a rate determined by their Lyapunov exponent until they are
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Figure 3. The NCB optimal stimulus uopt and five instances of uopt that have been corrupted by noise.
Indeed, out of the five stimuli, uopt yields the smallest value of C[u(t)] from (5), but the other stimuli give values
that are close to optimal.

Table 1
Stimulus properties from Figure 3.

Stimulus Λ(T ) Energy C[u(t)]
uopt 0.066 11.66 -10.43
u1 0.055 8.80 -9.68
u2 0.062 10.7 -10.03
u3 0.058 9.66 -9.89
u4 0.061 10.44 -10.06
u5 0.086 19.98 -8.95

nearly π radians out of phase. At this point, the assumption that the neurons are close in
phase is no longer valid, and no further desynchronization occurs.

Results from Figure 4 apply only to neurons obeying the phase reduction (1). In order to
determine the validity of the phase reduction for (26), we simulate the deterministic version
of (26), i.e., with D = 0, using a fourth order Runge–Kutta solver. The top panel of Figure 5
shows time histories of three neurons with initial conditions that correspond to θ = −0.1, 0,
and +0.1 on the periodic orbit. The control is applied every time the reference neuron, with
initial phase θ = 0, fires. We find that after 70ms, the neurons no longer show any evidence
of their initial synchronization.

We now apply the NCB optimal control found above to a network of N = 100 coupled,
initially synchronized, noisy neurons, with an identical coupling strength of αij = 0.1 and
i.i.d. noise with D = 1, in order to test the desynchronizing effects on the full neural model.
We define the mean voltage as our system observable, V̄ (t) = 1

N

∑N
i=1 Vi(t). The controller has

two states: active and inactive. When the controller is active, a new stimulus is triggered when

V̄ > −45mV and ˙̄V < 0, with the caveat that a new stimulus cannot occur until the previous
stimulus is either finished or within 0.3ms of finishing. This last condition is included to give
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Figure 4. (A)–(B) Phase difference between two neurons over time for the NCB optimal stimulus (giving

Λ = 0.066) applied repeatedly to two neurons with nearly identical initial phases. (C)–(D) The same plots for
the CB stimulus (Λ = 0.060). In both cases the neurons desynchronize at a rate determined by Λ, calculated
from (4), until φ ≈ 2, at which point the solution begins to asymptotically approach φ ≈ π, i.e., the antiphase
state. Dashed lines show exponential functions based on the Lyapunov exponents.
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Figure 5. Time histories of three neurons with initial conditions θ = −0.1, 0, and +0.1 on the periodic
orbit. A new stimulus is applied each time the reference neuron with initial phase θ = 0 (shown as the black
curve) fires.

the controller flexibility in when to start the next stimulus because the system is sensitive
to the time when the stimulus is presented. Once V̄ no longer spikes above −45mV, the
controller changes to an inactive state. It changes back to the active state if V̄ registers above
−40mV. We use the algorithm presented in [14] to simulate the noisy system (see Figure 6).
The desynchronizing effect of the stimulus can clearly be seen in the raster plot. We call this
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Figure 6. Results for a population of N = 100 noisy, coupled neurons. The first panel shows the network
in the absence of control. The second panel shows results for the same network with the event-based control
applied, and the third panel shows the associated applied control. The traces give the mean voltages for the
system, and the horizontal dotted line shows the control activation threshold in the top two panels. Substantial
desynchronization can be seen from the raster plot at the bottom.

event-based control because the controller is triggered only when the mean voltage crosses
a certain threshold. It is worth noting that the optimal stimulus works equally well for a
network of neurons that are synchronized by a common pulsatile input, which [41] suggests is
the mechanism that yields synchronization. Results for such a system are qualitatively similar
to the results presented in this paper.

The critical advantage of using this control strategy is that it requires knowledge only
of the PRC for the system. Methods for controlling neurons that require precise knowledge
of the neural model (see [24], [3]) are difficult to implement because, despite recent progress
[35], it is challenging to obtain accurate full scale models of real neurons for control purposes.
Methods that rely on the PRC are attractive because it is experimentally measurable. To
illustrate the effectiveness of this method, we employ the following method, which we will
refer to as the direct method [17], to obtain a PRC for a single neuron obeying (26). In order
to obtain one data point, a short-duration pulse of current is applied to a neuron at a random
phase θ, and the resulting phase change is measured by observing the change in spike time.
The resulting value Z(θ) is Δθ

Qp/C
, where Qp is the total charge imparted to the neuron from

the pulse and Δθ is the change in phase. An experimentally reasonable sampling size of 300
data points was obtained for noise levels of both D = 1 and 0.25, and the data was fit to
a sixth order polynomial constrained to be zero at θ equals both 0 and 2π, as in [25]. The
results are shown in Figure 7(A). As expected, a larger noise value yields a larger spread in
the data and a less reliable PRC. The optimal stimuli obtained using the fit PRC are shown
in panel (B). Finding the PRC with a D value of 0, 0.25, and 1 yields an optimal stimulus
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Figure 7. (A) Obtaining the PRC from a noisy system with the direct method. Data points associated with
noise level D = 1 and 0.25 are shown as dots and x’s, respectively, with the sixth order polynomial fits given
as a dashed and dot-dashed lines, respectively. Pearson correlation coefficients of the polynomial fits for D = 1
and 0.25 are 0.3617 and 0.6638, respectively. For comparison, the numerically computed (exact) PRC is shown
as a solid line. (B) NCB optimal stimuli computed with experimentally determined PRC’s with D = 1 and 0.25
are shown as dot-dashed and dashed lines, respectively. The true NCB optimal stimulus from Figure 2 is shown
as a solid line for reference. (C)–(D) Phase differences between two neurons over time for the optimal stimulus
obtained from systems with noise level D = 1, 0.25, and 0 applied repeatedly to two neurons with dynamics
governed by the exact PRC and with close initial phase differences are shown as dot-dashed, dashed, and solid
lines, respectively.

with Λ = 0.066, 0.055, and 0.046, respectively. When we do not know the PRC exactly, the
performance of the desynchronizing stimulus is somewhat degraded, as evidenced in panels
(C) and (D), but the stimulus still performs remarkably well. We note that for a noise level
of D = 1, the spread in the collected data for the PRC is similar to data previously collected
for in vitro neurons [25].

Figure 8 shows results from a simulation using the optimal stimulus obtained from this
data applied to 100 coupled neurons obeying (26) with the same noise and coupling parameters
as the test shown in Figure 6. The stimulus still shows desynchronizing capabilities similar to
the stimulus obtained from the true PRC.

To model more realistic neural networks, we include network heterogeneities. For compar-
ison, our homogeneous network simulations will use N = 100, αij = 0.1, and Ib = 5. Other
simulations will consider network heterogeneities in coupling strength by drawing αij values
from a normal distribution with mean ᾱ = 0.1 and a standard deviation σα = 0.02; panel (A)
of Figure 9 shows the specific distribution used for each simulation. Network heterogeneities
in Ib are also considered by simulating a system with baseline currents drawn from a normal
distribution (shown in Figure 9(B)). In each N = 100 neuron simulation, we use the same
control logic as in the simulation with results shown in Figure 7 to determine when to apply
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Figure 8. Results for a population of N = 100 noisy, coupled neurons with optimal stimulus found using
the direct method for a noisy (D = 1) neuron. The top panel shows the results of the network simulation, and
the bottom panel shows the associated event-based control applied. The traces give the mean voltages for the
system, and the horizontal dashed line in the top panel shows the control activation threshold.
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Figure 9. (A) Normal distributions of the coupling strengths with αij ∈ N (0.1, 0.02). (B) Normal distri-
butions of the baseline currents with Ib,j ∈ N (5, 0.25).

each new stimulus. Again, we use the algorithm presented in [14] to simulate the noisy system.
Results of each simulation are shown in Figure 10. Each row in the figure shows a network

simulation (left) and the associated applied control (right). From top to bottom, the networks
shown have homogeneous coupling strength and baseline current, coupling strengths drawn
from a random distribution but homogeneous baseline current, baseline currents drawn from
a distribution but homogeneous coupling strengths, and heterogeneous baseline and coupling
strengths. For homogeneous distributions, Ib = 5μA/cm2 and αij = 0.1. Parameters for
heterogeneous simulations are drawn from a random distribution (shown in Figure 9). We
find that when we include heterogeneity, the network requires fewer applications of the op-
timal stimulus to desynchronize. The bottom panel shows results for a network with both
heterogeneous coupling and baseline currents. Overall, we find that heterogeneity in a net-
work decreases its tendency to resynchronize, which increases the effectiveness of the optimal
control.

Clearly the optimal stimulus works well for desynchronizing a neural network, even when
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Figure 10. Results for a population of N = 100 coupled neurons with i.i.d. noise strength D = 1. Each
row in the figure shows a network simulation (left) and the associated applied control (right). From top to
bottom, the networks shown have homogeneous coupling strength and baseline current, coupling strengths drawn
from a random distribution but homogeneous baseline current, baseline currents drawn from a distribution
but homogeneous coupling strengths, and heterogeneous baseline and coupling strengths. Once the network is
sufficiently desynchronized, the controller will activate only once the voltage has crossed the threshold, shown
as a horizontal line in the left set of panels.

only an approximation to the true PRC is known. This prompts the search for error bounds
on the optimal stimulus that can still guarantee desynchronization. In an ad hoc manner,
using methods from section 3, we fix a particular value of E for the signal Ie and minimize
(12) to find the minimal (worst case) Lyapunov exponent. We then simulate (26) with the
associated signal to determine whether it can affect network desynchronization. Using this
strategy with different E values, we find that, for a network of 100 neurons with homogeneous
coupling αij = 0.1 and baseline current Ib = 5μA/cm2, we require a Lyapunov exponent of
at least Λ = 0.024, corresponding to E = 0.8, in order to achieve sufficient desynchronization
so that spikes of V̄ remain below −40mV. Thus, ||Ie(t)||∞ ≤ 0.8 will guarantee Λ ≥ 0.024.
To illustrate the utility of this measure, we choose a simple, piecewise linear signal which is
contained nearly entirely in the boundary ||Ie(t)||∞ ≤ 0.8:

u(t) =

{
t, 0 ≤ t ≤ 2.2,

−4.4− t, 2.2 < t ≤ 7.35.(27)

The signal in (27) is used in a simulation of the same homogeneous network with the same
control logic described previously. The results are shown in Figure 11. Numerically, we find
Λ = 0.0577 for this stimulus. We note that, even though the stimulus is not entirely contained
within the shaded region shown in the top panel of Figure 11 and is therefore not guaranteed
to desynchronize the system, it still produces a sufficiently high Lyapunov exponent to achieve
desynchronization.

D
ow

nl
oa

de
d 

03
/1

8/
14

 to
 1

28
.1

11
.7

0.
25

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

290 DAN WILSON AND JEFF MOEHLIS

Figure 11. Results for the population of N = 100 coupled neurons from Figure 4 with the simple, piecewise
linear stimulus from (27). The top panel shows the stimulus as well as a shaded boundary that will ensure
sufficient desynchronization. The traces in the middle panel give the mean voltages for the system, and the
horizontal line gives the control activation threshold. We see in the third panel that desynchronization occurs,
but requires more applications of the stimulus than the optimal stimulus, which is expected due to a smaller
Lyapunov exponent.

5.2. Optimally decreasing the peak of a distribution for the thalamus model. We
now turn our attention to controlling populations of neurons using the methods described
in section 4 to optimally decrease the peak of their phase distribution. Here, we attempt
to provide reasonable values for the still undetermined parameters in the Euler–Lagrange
equations (21)–(25). Because we have undetermined parameters, we cannot claim to have
found an optimal stimulus to minimize our cost function, but we can still gather powerful
insight about stimuli that will affect network desynchronization. In order to make explicit
comparisons with the optimal stimulus which maximizes the Lyapunov exponent, we take
t1 = 7.35ms and β = 40. We take our initially synchronized distribution to be a normal
distribution with standard deviation σd = 0.2 centered at θ = 0, which corresponds to a
spiking event. These conditions were chosen as a reasonable approximation of the observed
distribution for simulations of network (26) just before the control threshold V̄ = −40mV
is reached. This gives θM (0) = 0 and ρM (0) = 1.995 as initial conditions to (22) and (23);
however, we still need to determine λ1(0) and λ2(0). In order to find the best choice of the
remaining initial conditions, we minimize the cost function for reasonable choices of λ1(0) and
λ2(0). Using this approach, we find that λ1(0) = 18 and λ2(0) = 2 approximately minimizes
the cost function and gives the stimulus shown in Figure 12, which will be referred to as uD.

We apply uD to (15) and (26) with N = 250, D = 0, and αij = 0 to determine the validity
of the results found using the phase reduction. Throughout the simulation, we infer the phase
of each neuron in (26) by simulating each neuron separately in the absence of DBS input and
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Figure 12. The optimal stimulus uD for decreasing the peak of the phase distribution is shown as a solid
black line. For reference, the NCB optimal stimulus for maximizing the Lyapunov exponent is shown as a grey
dashed line.
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Figure 13. Three panels from the accompanying animation (90170 01.avi [local/web 5.49MB]). In order
to clearly present the results, the mapping θ ∈ (π, 2π) → (−π, 0) is used; e.g., θ = 3π

2
is plotted as θ =

−π
2
. Theoretical and numerical evolutions are shown in black and blue, respectively. The red curve gives the

theoretical evolution of the distribution in the absence of stimulus and is shown for reference.

noise to determine when its next spiking event occurs. The phase evolution is illustrated in
the accompanying animation (90170 01.avi [local/web 5.49MB]). Figure 13 shows three frames
from this animation. In order to clearly present the results, the mapping θ ∈ (π, 2π) → (−π, 0)
is used; e.g., θ = 3π

2 is plotted as θ = −π
2 . Theoretical and numerical evolutions are shown in

black and blue, respectively. The red curve gives the theoretical evolution of the distribution in
the absence of stimulus and is shown for reference. Throughout the simulation, the dynamics
of the 250 neuron system are well approximated by (15), and the optimal stimulus brings
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ρM from 1.995 to 0.776. We now see the utility of the approach which minimizes the peak
of the distribution compared to an approach which maximizes the NCB Lyapunov exponent
(producing a stimulus we will refer to as uΛ). From (22), we see that a stimulus has the
potential to greatly decrease a distribution when |Z ′(θM )| is relatively large. For the thalamus
model, this can be done by applying a large negative stimulus when θM ≈ 5.8. As shown in
Figure 12, uD and uΛ are nearly identical for 0 ≤ t < 2, but from about 2 ≤ t < 6, uD > uΛ at
a time when Z(θM ) > 0 and Z ′(θM ) ≈ 0. This has the effect of speeding up the distribution
but not decreasing the peak height, as demonstrated in 90170 01.avi [local/web 5.49MB]. The
extra effort used in speeding up the peak is repaid when θM ≈ 5.8, when a large negative
stimulus decreases the peak rapidly at a time when Z ′(θ) < 0. The distribution deforms in
such a way that ρM remains at θM ≈ 5.8 longer than we would expect for a system of only
two neurons, which is reflected in the inequality uD < uΛ for t ≈ 6.
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Figure 14. Comparing uD to uΛ. Representative excerpts from a 1000ms simulation using uD (top) or uΛ

(bottom) as the control.

We have found stimuli for desynchronizing neural networks using two different approaches.
Both approaches produce similar results, but we would like to know if one is better than the
other. To answer this question, we simulate (26) with N = 250, D = 1, and αij = 0.1 for
1000ms using the same control strategy as for the simulations from Figure 10. The initial
phase distribution is drawn from a normal distribution with σd = 0.2 centered at θ = 0. A
representative portion of the comparison is shown in Figure 14. When we use uD as the control,
the overall energy use is 533 units, while for uΛ the energy consumption is 460 units. In terms
of energy, uD performs slightly worse than uΛ, most likely because the neuron distribution
is not quite Gaussian throughout the simulation as we had assumed to derive uD, but both
strategies yield an effective control input using a comparable amount of energy. We also note
that uD desynchronizes the network more quickly than uΛ as calculated from (4). This is

D
ow

nl
oa

de
d 

03
/1

8/
14

 to
 1

28
.1

11
.7

0.
25

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

90170_01.avi
http://epubs.siam.org/doi/suppl/10.1137/120901702/suppl_file/90170_01.avi


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL CHAOTIC DESYNCHRONIZATION 293

expected because the Lyapunov exponents for uD and uΛ as calculated from (4) are 0.107 and
0.066, respectively. However, uD requires more energy per application of the stimulus.

5.3. Maximizing Lyapunov exponents for the reduced Hodgkin–Huxley model. We
next apply our optimization method to a population of neurons, each described by a two-
dimensional reduction of the renowned four-dimensional Hodgkin–Huxley (HH) model [12]
that reproduces the essential characteristics of a neuron’s dynamical behavior (cf. [19], [13]).
An alternative strategy for desynchronizing populations of such neurons was investigated in
[24]; we will make comparisons with that method later in the present paper. The population
of neurons is modeled as follows:

V̇i = fV (Vi, ni) +
1

N

n∑
i=1

αij(Vj − Vi) + u(t) + ηi(t),

ṅi = fn(Vi, ni).(28)

Here, i = 1, . . . , N , where N is the total number of neurons; Vi and ni are membrane voltage
and gating variables for neuron i; αij characterizes the coupling strength between electroton-
ically coupled neurons i and j [18], with αij = αji and αii = 0 for all i; ηi(t) ∈

√
2DN (0, 1)

is the noise associated with each neuron, assumed to be zero-mean Gaussian white noise with
variance 2D; and u(t) = I(t)/C represents a common control input, where I(t) is a DBS input
current in μA/μF and C = 1μF/cm2 is the membrane capacitance. Furthermore,

fV = (Ib − ḡNa[m∞(V )]3(0.8− n)(V − VNa)− ḡKn
4(V − Vk)− ḡL(V − VL))/C,

fn = an(v)(1 − n)− bn(V )n.

Other functions and parameters for the reduced model are

m(V ) =
am(V )

am(V ) + bm(V )
,

am(V ) = 0.1(V + 40)/(1 − exp(−(V + 40)/10)),

bm(V ) = 4 exp(−(V + 65)/18),

an(V ) = 0.01(V + 55)/(1 − exp(−(V + 55)/10)),

bn(V ) = 0.125 exp(−(V + 65)/80,

VNa = 50mV, VK = −77mV, VL = −54.4mV,

ḡNa = 120mS/cm2, ḡK = 36mS/cm2,

ḡL = 0.3mS/cm2, c = 1μF/cm2,

Ib = 10μA/cm2.

Here, ḡNa, ḡK , and ḡL represent the conductances of the sodium, potassium, and leakage
channels, respectively, and VNa, VK , and VL are their respective reversal potentials. Note
that Ib, the neuron’s baseline current, represents the effect of the surrounding brain regions
on the neuron. This is a bifurcation parameter, with the value Ib = 10μA/cm2 chosen to
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Figure 15. Top panels show the numerically computed PRC (left) and its derivative (right) for the reduced
HH model. The bottom panel shows the CB and NCB optimal stimuli as dashed and solid lines, respectively.

ensure that the neuron is in an oscillatory (periodically spiking) regime. The natural period,
T , of oscillation is 11.81ms.

The PRC, Z(θ), for this system is computed numerically with the software XPP [6] and is
shown in Figure 15. To perform computations with the PRC, we approximate it as a Fourier
series with 1200 terms. We take this many terms to get a reasonably nonoscillatory estimate
of Z ′′′(θ) when solving (24).

The bottom panel of Figure 15 shows the result of the optimization process with and
without the CB constraint for the choice of parameters t1 = 10.34ms (corresponding to θ = 5.5
on the limit cycle) and β = 9. Note that t1 sets the duration of the stimulus and could be
chosen differently, provided that it is sufficiently smaller than the natural period, T , of the
neuron, and β is chosen so that a positive Lyapunov exponent is favored but also such that
the magnitude of the control input will be small enough so that the phase reduction is still
valid. We find that the CB stimulus looks nearly identical to the NCB stimulus except for a
downward shift. This is to be expected since, as is the case in the thalamus model, the NCB
stimulus is nearly CB. Also, we find that the optimal control looks similar to the derivative of
the PRC, as shown in Figure 15. An explanation for this phenomenon is given in section 5.1.

Panels (A) and (B) in Figure 16 show the phase difference between two neurons with
nearly identical initial phases, subject to the NCB optimal stimulus shown in Figure 15. The
optimal stimulus is event-based and is applied every time the phase of the trailing neuron
crosses θ = 0. Panels (C) and (D) show the results of a similar test with the CB stimulus.
The Lyapunov exponents, Λ, for the NCB and CB stimuli are found to be 0.0823 and 0.0782,
respectively. Dashed lines show exponential functions based on the Lyapunov exponents. We
find that all of the plots match closely until φ ≈ 1, with the NCB stimulus performing slightly
better than the CB stimulus. In this case, balancing charge comes at the cost of degrading
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Figure 16. (A)–(B) The phase difference between two neurons over time for the NCB optimal stimulus
(giving Λ = 0.0823) applied repeatedly to two neurons with nearly identical initial phases. (C)–(D) The same
plots for the CB stimulus (Λ = 0.0782). In both cases the neurons desynchronize at a rate determined by Λ,
calculated from (4), until φ ≈ 1. Dashed lines show exponential functions based on the Lyapunov exponents.

performance.
It is natural to wonder to what degree the optimal control found from the phase model

will desynchronize neurons that obey the set of equations with which we started. To this end,
we simulate the deterministic version of equations (28), i.e., with D = 0, using a fourth order
Runge–Kutta solver. The top panel in Figure 17 shows the time histories of three neurons with
initial conditions that correspond to θ = −0.1, 0, and+0.1 on the periodic orbit. The control
is applied every time the reference neuron, with initial phase θ = 0, fires. Figure 17 also shows
the input for reference. We find that after 90ms, the neuron that started at θ = +0.1 now fires
approximately 6ms after the reference neuron, while the neuron that started at θ = −0.1 fires
approximately 2 milliseconds before the reference neuron. The reason for this discrepancy
can be explained by noting the shape of the PRC. We see in Figure 15 that the PRC has a
local minimum at θ ≈ 4. Approximately 9ms after the optimal stimulus is first presented, the
remaining stimulus has negative sign, the reference neuron has a phase corresponding to a
positive value on the PRC, and the neuron which starts behind has a phase of θ ≈ 4. Because
of these conditions near the end of the cycle, the optimal stimulus brings the phases closer
together, negating the desynchronization achieved earlier in the cycle.

We now apply this optimal control to a network of N = 100 coupled, initially synchronized,
noisy neurons, with an identical coupling strength of αij = 0.05 and i.i.d. noise with D = 0.7.
The control logic used is similar to the logic presented in section 5.1, with the controller
switching to the inactive state if spikes remain below −40mV and switching back to the
active state if a spike registers above −30mV.

Figure 18 shows the result of this simulation. The top panel shows voltages of each neuron
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Figure 17. Top: Time histories of three neurons with initial conditions θ = −0.1, 0, and +0.1 on the
periodic orbit. A new stimulus is applied each time the reference neuron with initial phase θ = 0 (shown as a
black line) fires. Once the neurons are no longer close in phase, the neuron which started ahead of the reference
neuron desynchronizes faster than the neuron that starts behind the reference neuron, which can be explained
by the shape of the PRC, as described in the main text. Bottom: Input to the neurons modeled above.
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Figure 18. Results for a population of N = 100 noisy, coupled neurons obeying the reduced HH model. The
top panel shows results in the absence of control. The second and third panels show results for the same network
with the event-based control applied. The traces give the mean voltages for the system, and the horizontal line
shows the control activation threshold. Substantial desynchronization can be seen from the raster plot.

as well as the average voltage of the coupled noisy system without control. We find that V̄
peaks near 0mV throughout the simulation, and the neurons stay synchronized. The second
panel shows the individual neuron voltages and mean voltage for the same coupled system
with both noise and control input. The horizontal line in this panel represents the threshold
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Figure 19. The optimal NCB stimulus, shown as a solid line, yields Λ = 0.0823. In order to guarantee a
stimulus with Λ ≥ 0.06, 0.04, 0.02, and 0, we require ||Ie(t)|| ≤ 0.242, 0.440, 0.615, and 0.797, respectively, for
all t. Darker shaded regions on the plot correspond to regions with larger guaranteed Lyapunov exponents.

voltage of −30mV. The control input is shown in the third panel. Clearly the control input
desynchronizes the network of neurons, as seen from the raster plot, and since the control is
event-based, it needs to be turned on only once V̄ crosses the threshold line.

In an experimental setting, it is unlikely that the optimal desynchronizing stimulus Iopt(t)
can be found exactly. For this reason, we would like to calculate bounds on Ie(t), where
I(t) = Iopt(t) + Ie(t) with I(t) found using an experimentally obtained PRC such that we
can guarantee a given Lyapunov exponent. Using the strategy developed in section 3, we
can determine a worst case Λ for a particular ||Ie||∞. Here, we use a shooting method to
determine that, in order to guarantee stimuli with Λ ≥ 0.06, 0.04, 0.02, and 0, we require
||Ie(t)|| ≤ 0.242, 0.44, 0.615, and 0.797, respectively, for all t. Graphical representations of
these error bounds are shown in Figure 19. We emphasize that these are only bounds that will
guarantee a certain value of Λ. As in section 5.1, even if a stimulus falls outside of a shaded
region, the associated Λ may still be larger than the value guaranteed for that shaded region.
For a network of neurons without coupling or noise, any stimulus with Λ > 0 should be able
to desynchronize an initially coupled neural network. However, for real networks, the value of
Λ required for desynchronization will depend on the strength of the coupling and noise.

We now compare the energy used by our NCB, event-based control shown in Figure 15
(which we will refer to as the exponential control) to the energy used by a control that will
desynchronize a system of neurons by optimally driving them to a phaseless set as developed
by Nabi et al. in [24] (which we will refer to as the phaseless control). For a system obeying
Ohm’s law, the power P applied by an input is given by P ∼ u2. A representative portion
of a comparison over 1500ms is shown in Figure 20. The top two panels show a noisy system
of coupled neurons stimulated by the exponential control, while the bottom two panels show
the same system stimulated by the phaseless control.

For a single application of the exponential control,
∫ t1
0 u2(t) ≈ 2.32, while for one applica-

tion of the phaseless control,
∫ Tend

0 u2(t) ≈ 194. Throughout the simulation, the exponentialD
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Figure 20. Comparing the NCB optimal (exponential) control to the control presented in [24] (phaseless).
Representative excerpts from a 1500ms test of the exponential and phaseless control are shown in the top two and
bottom two panels, respectively. The exponential control fires more often than the phaseless control (compare
second and fourth panels) but uses less energy because the magnitude of the stimulus is much smaller.

control is active for more time than the phaseless control; however, one cycle of the exponen-
tial control costs much less than one cycle of the phaseless control. Over the entire 1500ms
simulation, we find that the total power used is proportional to 236 and 1904 for the expo-
nential and phaseless controls, respectively. Not only is the maximum applied control much
less for the exponential control, but it also uses nearly an order of magnitude less energy.

5.4. Optimally decreasing distribution peak height for the reduced HH model. Finally,
we look from the perspective of controlling distributions by using the strategy described in
section 4 to see if we can find a more effective control to desynchronize (28) than the control
that maximizes the Lyapunov exponent. Here, we attempt to provide reasonable values for the
still undetermined parameters in the Euler–Lagrange equations (21)–(25). Because we have
undetermined parameters, we cannot claim to have found an optimal stimulus to minimize our
cost function, but we can still gather powerful insight about stimuli that will affect network
desynchronization. In order to make explicit comparisons to the optimal stimulus which
maximizes the Lyapunov exponent, we take t1 = 10.34ms. We choose β = 8 this time because
β = 9 gives a solution which is too large in magnitude and invalidates the phase reduction. As
in section 5.2, we take our initially synchronized distribution to be a normal distribution with
standard deviation σd = 0.2 centered at θ = 0. These conditions were chosen as a reasonable
approximation to observed distributions for simulations of the network (28) just before the
control threshold V̄ = −30mV is reached. This gives θM (0) = 0 and ρM = 1.995 as initial
conditions for (22) and (23). We optimize the cost function over reasonable values of λ1(0),D
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Figure 21. The optimal stimulus for decreasing the peak of a distribution is shown as a solid black line.
For reference, the NCB optimal stimulus for maximizing the Lyapunov exponent is shown as a grey dashed line.
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Figure 22. Three frames from the accompanying animation (90170 02.avi [local/web 4.40MB]). In order
to clearly present the results, the mapping θ ∈ (π, 2π) → (−π, 0) is used; e.g., θ = 3π

2
is plotted as θ =

−π
2
. Theoretical and numerical evolutions are shown in black and blue, respectively. The red curve gives the

theoretical evolution of the distribution in the absence of stimulus and is shown for reference.

λ2(0) in order to find the best choice for the remaining initial conditions. Using this approach,
we find that λ1(0) = 6 and λ2(0) = 0 approximately minimizes the cost function and gives
the stimulus shown in Figure 21, which will be referred to as uD.

We apply uD to (15) and (28) with N = 250, D = 0, and αij = 0 to determine the
validity of the results found using the phase reduction. For a given neuron, we can deduce its
phase at a given time by integrating the reduced HH equations without input or noise until
the neuron’s next spike. The phase evolution is shown in the accompanying file (90170 02.avi
[local/web 4.40MB]); Figure 22 shows three frames from this animation. In order to clearly
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present the results, the mapping θ ∈ (π, 2π) → (−π, 0) is used; e.g., θ = 3π
2 is plotted as

θ = −π
2 . Theoretical and experimental evolutions are shown in black and blue, respectively.

The red curve gives the theoretical evolution of the distribution in the absence of stimulus
and noise and is shown for reference. Throughout the simulation, the phase reduction well
approximates the dynamics of the 250 neuron system, and the optimal stimulus takes ρM from
1.995 to approximately 0.7. The stimuli uD and uΛ are nearly identical for the reduced HH
mode, with discrepancies in the two answers most likely due to the more restrictive constraints
on uΛ. The similar answers are of interest because we approached the desynchronization
problem from two different perspectives.

To gauge whether uD is an improvement over uΛ, we simulate (28) using the same pa-
rameters and control strategy as for the simulations from Figure 18. When we use uD as the
control, the overall energy use is 270 units, while for IΛ the energy consumption is 214 units.
This discrepancy is most likely because the assumption that uD is Gaussian is no longer valid
near the end of the cycle, which wastes a small amount of energy. Results for this simulation
do not differ significantly from the results in Figure 18 and are not shown.

5.5. Comparison to pulsatile input. As mentioned in section 1, clinical DBS is currently
implemented with a high-frequency pulsatile input. While the exact mechanism by which this
wave form mitigates the symptoms of Parkinson’s disease is unknown, Wilson, Beverlin, and
Netoff [41] postulated that DBS may be effective because it chaotically desynchronizes neurons
in the thalamus region of the brain. They used phase reduction to show that, for certain
stimulus intensities with frequencies that are approximately twice the natural frequency (2× 1

T )
of a neuron, pulsatile stimuli can effectively desynchronize a population of neurons. Using the
same conventions as [41], we take θ ∈ [0, 1) with θ = 0 corresponding to the spiking of a
neuron and scaled to 1 time unit. We use the same PRC as in [41], and apply our NCB and
CB optimization process with β = 1.5 and t1 = 0.85. The PRC, its first derivative, and the
resulting optimal stimuli are shown in Figure 23.

The respective Lyapunov exponents for the NCB and CB optimal stimuli from (4) are
1.429 and 1.937, with respective power consumptions (

∫ t1
0 u2dt) of 1.11 and 1.99. We note

that the CB stimulus outperforms the NCB stimulus at the expense of using almost twice as
much energy. Figure 24 shows the phase separation of two neurons which obey (2) for the
PRC shown in Figure 23, subject to repeated iterations of both the NCB (panels (A) and (B))
and CB (panels (C) and (D)) stimuli. As seen in previous sections, the neurons exponentially
desynchronize at a rate determined by their Lyapunov exponents until the neurons are nearly
antiphase.

We now apply the NCB optimal stimulus to a population of 100 noisy neurons:

(29) θ̇i = ω + Z(θi) [u(t) +Aγi(t) +Bζ(t)] +
A2 +B2

2
Z(θi)Z

′(θi), i = 1, . . . , 100,

where ω = 1 gives the neural baseline dynamics (recall that θ ∈ [0, 1)), γ and ζ are individual
and common white noise processes with strength A =

√
0.2 and B =

√
0.3, respectively, and

u(t) is the common DBS input. The final term in (29) corresponds to the Ito term for the
phase reduction [8]. In order to determine when the optimal stimulus should be presented,
we need to know when the average phase of the system of neurons is θ = 0. In real neurons, a
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Figure 23. Top panels show the PRC and its derivative for the model used in [41]. The bottom panel shows
the CB and NCB optimal stimuli as dashed and solid lines, respectively.
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Figure 24. (A)–(B) The phase difference between two neurons over time for the NCB optimal stimulus
(giving Λ = 1.429) applied repeatedly to two neurons with nearly identical initial phases. (C)–(D) The same
plots for the CB stimulus (Λ = 1.937). In both cases the neurons desynchronize at a rate determined by Λ,
calculated from (4) until φ ≈ 0.25, at which point the solution begins to asymptotically approach φ ≈ 0.5,
i.e., the antiphase state. Dashed lines show exponential functions based on the Lyapunov exponents.

spiking event is defined to be θ = 0 and can be observed as a sudden increase in voltage. For
the model under consideration, we are simulating a phase reduced model, with no observable
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voltage spikes. In lieu of V̄ for the system of neurons, we monitor the average phase of the
system, θ̄ = 1

N

∑N
i=1 θi. Note that θ̄ is equivalent to ψ in the first order Kuramoto parameter,

reiψ = 1
N

∑N
j=1 e

iθj . For a completely synchronized network, θ̄ varies between 0 and 1, while

for a network in the splay state, θ̄ remains constant at 0.5. This gives a continuum from which
we can qualitatively gauge the level of synchronization by noting the maximum value of θ̄ on
a particular cycle. To determine when to apply a new stimulus, a flag is set when θ̄ > 0.65,
indicating that the network is still sufficiently synchronized, and a new stimulus begins if the
flag is set and θ̄ < 0.5, indicating that a majority of the neurons have phase θ ≈ 0.

To characterize the desynchronization of the neural network, following [41], we use the
entropy

Entropy =

B∑
j=1

p(ψj) log(p(ψj)),

where p(ψj) is the probability of being in bin j of B total bins. The splay state has the highest
entropy for a population of 100 neurons at 4.6.

We note that the results from [41] were computed using a mapping based on the PRC to
determine the effect of a DBS pulse. In our trials, we found that adding pulse width somewhat
degraded the effectiveness of the pulsatile stimulus. In order to replicate Wilson’s results and
make comparisons, we use (29) with u(t) = 0 for all time, and instead iterate when a pulse
stimulus is presented as follows:

θi+1 = θi + Z(θi)δ,

where δ is the amplitude of the stimulus. For the simulation, we choose δ = 0.63 at a frequency
of 1.92Hz. These values are in the range with the best desynchronization capabilities for this
model [41]. We use an Euler–Maruyama method [11] to solve (29) for both the optimal and
pulsatile stimulus, with results shown in Figure 25. We find that both stimuli are able to
desynchronize the population to similar levels as characterized by the entropy of the system.
However, the pulsatile input takes approximately 15 seconds and 29 pulses for the entropy
to reach a reasonably steady entropy value of 3.5, while it only takes 5 seconds and three
applications of the optimal stimulus to increase the entropy to 3.5. Assuming the power usage
P ∼ u2, we cannot directly approximate the energy required by the pulsatile input since it
has no pulse-width (PW). However, in human trials, [5] and [39] used pulsatile inputs with a
PW-to-period ratio of 7.8 × 10−3 and 9.5 × 10−3, respectively. We take the average of these
two ratios to estimate a PW and require PW · u = δ, and we find that PW ∼ 0.0045 and
u ∼ 155 in order to be therapeutically effective. Letting the power consumption P = u2 ·PW,
we find that P ∼ 108 units. Conversely, for the optimal stimulus,

∫ t1
0 u2dt ∼ 1.11. As a very

rough estimate of total energy used to achieve steady desynchronization, three applications of
the optimal stimulus use 3.33 units of energy, while 29 applications of the pulsatile stimulus
use 3132 units of energy. Both stimuli are able to desynchronize the neural network, but the
optimal stimulus is able to do so using three orders of magnitude less energy.

6. Conclusion. We have described two methods for desynchronizing neural networks:
by optimally maximizing the Lyapunov exponent (4) and by optimally decreasing the peak
height of the phase distribution. Most notably, while each of these methods is based on a
different perspective, they produce answers that are quite similar. We find that the method
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Figure 25. Left panels show the entropy of 100 neurons (top) and the applied stimulus for the exponentially
desynchronizing control (bottom). Right panels show entropy of 100 neurons for the pulsatile input applied
at 1.92 Hz. Note that the bottom-right panel shows the map amplitude, δ, and not the stimulus intensity to
emphasize that the stimuli are simulated as delta functions. Each pulse uses 108 units of energy.

for optimally maximizing the Lyapunov exponent uses three orders of magnitude less energy
than a method that uses pulsatile stimuli to achieve desynchronization, which represents
an enormous potential savings in battery life of a pacemaker and could also mitigate some
of the negative side-effects of DBS. We have also shown that the approach of maximizing
the Lyapunov exponent is robust to inaccuracies in finding the optimal stimulus and found
bounds for a stimulus derived from a network without coupling that will guarantee a minimum
Lyapunov exponent required to give desynchronization for a given network with coupling.
Because this method is robust to inaccuracies, it has potential to work well in an in vitro
setting and could realistically provide an effective treatment for Parkinson’s disease.
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