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Abstract

Ž .Symmetry-increasing bifurcations of strange attractors in systems with O 2 symmetry are shown to produce traveling
waves that reverse their direction of propagation in a chaotic fashion. The resulting dynamics are illustrated using the normal
form describing the triple zero instability. q 1999 Elsevier Science B.V. All rights reserved.
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w xIn a previous Letter 1 we have identified a
simple mechanism responsible for generating direc-

Ž .tion-reversing waves in systems with O 2 symme-
try. In translation-invariant systems on a line with

Ž .periodic boundary conditions O 2 symmetry is gen-
erated by translations T : x™xq ll and the reflec-ll

tion R : x™yx. Such systems often possess a cir-
cle of nontrivial steady states, parametrized by a
phase f representing the distance of a node from an
arbitrarily chosen origin xs0. Each of these states
is reflection-symmetric and neutrally stable with re-

w xspect to translations 2 . Direction-reversing waves
Ž .hereafter RW result from a Hopf bifurcation from
this circle of steady states that breaks their reflection

w xsymmetry 1 . The resulting RW are periodic in time
Žthey reverse their direction of propagation in a

.periodic fashion , and if they are attracting produce a

1 Corresponding author. E-mail:
knobloch@physics.berkeley.edu

reflection-symmetric attractor, even though at any
instant the RW solution itself is not reflection-sym-
metric. In this Letter we describe a mechanism that
produces RWs that reverse their direction of propa-
gation chaotically. This mechanism involves symme-

Ž .try-increasing bifurcations of asymmetric strange
w xattractors 3,4 and is, like the above mechanism, of

codimension one.
We illustrate the mechanism using the equations

w x1

d z1
sz , 1Ž .2d t

d z2
sz , 2Ž .3d t

d z3 2< <syl z yn z yhz q z z . 3Ž .1 2 3 1 1d t

These equations are the normal form for a triple zero
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Ž .bifurcation with O 2 symmetry and as such have a
number of applications, particularly in fluid dynam-

w xics 5 . Here z is the complex amplitude of a1
Ž . Ž 2p i x r L.physical field of interest, c x,t sRe z e ,1

where L is the spatial period of the system, and l,n ,
and h are real unfolding parameters: at lsnshs

Ž . Ž .0 the trivial state z , z , z s 0,0,0 has three zero1 2 3

eigenvalues of double multiplicity. In the following
˙Ž . Ž . Ž .we let fsarg z . Thus, if f)0 -0 c x,t1

Ž .takes the form of a waÕe traveling to the left right .
w . Ž . Ž .For each fg 0,2p the system 1 – 3 has a reflec-

Ž . Ž .tion-invariant subspace S s z , z , z with arg zf 1 2 3 j
˙sf, js1,2,3; in these subspaces fs0. Different

Ž .S are related to each other by translation rotation .f

Each contains the trivial steady state and may con-
tain a pair of nontrivial steady states SS and anf

oscillation in the form of either a symmetric or
Ž .asymmetric periodic or chaotic standing wave SW ,f

Ž .with asymmetric waves ASW distinguished byf

their lack of reflection symmetry within S withf

respect to the origin. Other solutions described below
Ž .such as traveling waves TW and modulated waves

Ž .MW do not lie in reflection-invariant subspaces.
Ž .Fig. 1 shows representative solutions to Eqs. 1 –

Ž .3 when ns2.0, hs1.5, projected onto the com-
plex z plane. At ls5.0 the SW solutions shown1 f

Ž .in Fig. 1 a are unstable to traveling wave distur-
bances and decay into stable TW. These TW have

˙< < Žconstant amplitude z and constant nonzero f Fig.1
Ž ..1 b ; because of reflection symmetry left- and

right-propagating TW coexist. At ls6.70 there are
two stable reflection-related tori, one with drift
strictly to the left and the other strictly to the right.

Ž . Ž .One of these tori is shown in Fig. 1 c , with Fig. 1 d
˙showing the corresponding time series for f. If l is

increased to 7.37 each torus has period-doubled into
chaos forming two reflection-related strange attrac-

˙tors, with f remaining bounded away from zero.
Ž .One such attractor is shown in Fig. 1 e with the

˙Ž .corresponding time series in Fig. 1 f . At ls7.39 f

is no longer bounded away from zero and changes
sign irregularly, indicating chaotic reversals in the
direction of propagation. As described below, these
chaotic reversals are the result of a symmetry-in-
creasing bifurcation of strange attractors associated

Ž . w x Ž .with an interior crisis 6,7 . Fig. 2 a shows one
such reversal in the form of a space-time plot show-

Ž .ing c x,t for ls7.39 and Ls100. During this

reversal the drift in phase comes nearly to a com-
plete halt and the oscillation temporarily resembles
an asymmetric standing wave oscillating at constant

Ž .f. Fig. 2 b shows that at other times the oscillation
may temporarily resemble a standing wave without
reversing direction, and that reversals may occur in
which the oscillation does not resemble a standing
wave for any appreciable time.

Ž . Ž .The behavior of Eqs. 1 – 3 is summarized in the
bifurcation diagram shown in Fig. 3 with l as the
bifurcation parameter. For l-0 the trivial state is
unstable, and as l increases the trivial state acquires
stability at a subcritical steady state bifurcation at
ls0 and loses it again at a supercritical Hopf
bifurcation at ls3.000. The Hopf bifurcation gives
rise to a branch of stable TW and a branch of
unstable periodic SW . The TW lose stability to MWf

at l '6.176 which then undergo a torus-dou-MW
Žbling cascade hereafter type T torus-doubling cas-

.cade . Meanwhile each SW undergoes a symmetry-f

breaking pitchfork bifurcation at ls6.613 giving
Ž .rise to two asymmetric standing waves ASW thatf

are stable in each S and have one real unstablef

Floquet multiplier perpendicular to S until lf

reaches l '7.791; here the period-doubled MW,PB

having undergone a reverse period-doubling cascade
Ž .hereafter type PB torus-doubling cascade , termi-
nates on the circle of ASW in a parity-breakingf

w xbifurcation 8 and the ASW acquire stability. As lf

is increased further the ASW branch terminatesf

when the ASW collide with a SS fixed pointf f

forming a homoclinic orbit in S . This occurs atf

ls8.01 and results in Shil’nikov dynamics in each
w x Ž .S , cf. 5 . The reflection-symmetric SW branchf f

terminates in a heteroclinic bifurcation, also associ-
ated with Shil’nikov dynamics, at ls12.50.

The evolution with l of the strange attractors
arising from the period-doubling cascades mentioned
above is shown in Fig. 4. The figure shows the

˙instantaneous value of f for a single attractor at
each l value whenever the trajectory pierces the

Ž .Poincare section defined by Re z z s0. At a given´ 1 2

l value the attractor may or may not be symmetric
˙about fs0. In the latter case a reflection-related

attractor is also present but is not shown. The reflec-
tion-symmetric attractors correspond to direction-re-
versing waves, and form as a result of symmetry-in-
creasing or symmetry-decreasing bifurcations of
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Ž . Ž . Ž .Fig. 1. Representative solutions to Eqs. 1 – 3 projected onto the complex z plane; unstable SS solutions are indicated by plus signs. a1 f

Ž . Ž . Ž .An unstable SW solution and b a stable TW solution, both at ls5.0. c,d Stable MW solutions at ls6.7. e,f Stable chaotic solutionsf

˙ Ž .at ls7.37; since f is always of the same sign the waves always travel in the same direction. g,h Stable direction-reversing waves at
ls7.39. The parameters are ns2.0, hs1.5.
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Ž .Fig. 2. Space-time representation of c x,t at ls7.39 illustrating the physical manifestation of the reversals. Time increases upward.

w xstrange attractors 3 . One such bifurcation occurs at
Ž .lf7.38; at this l value an interior crisis occurs in

which an asymmetric strange attractor describing

chaotic waves with a preferred direction of propaga-
Ž Ž ..tion cf. Fig. 1 e,f collides with an unstable

Ž .period-quadrupled MW, producing a symmetric

² < < 2: < < 2 Ž .Fig. 3. Partial bifurcation diagram showing z , the time-average of z , as a function of l for ns2.0, hs1.5. Solid broken lines1 1
Ž .indicate stable unstable branches. The parity-breaking bifurcation at l from the circle of asymmetric standing waves is indicated by thePB

open circle; solid squares indicate period-doubling bifurcations. The arrow shows the unstable modulated wave involved in the interior crisis
at lf7.38 as described in the text.
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˙Fig. 4. Bifurcation diagram showing instantaneous values of f whenever the trajectory pierces the Poincare section defined by´
Ž . Ž . Ž .Re z z s0 from positive to negative values after transients have died out. The diagram shows symmetry-increasing -decreasing1 2

Ž .bifurcations at which direction reversals first appear disappear .

Žstrange attractor and chaotic reversals cf. Fig.
Ž .. w x1 g,h . In Ref. 4 such a symmetry-increasing bifur-

cation is called an attractor explosion. The explosion
apparently occurs when the unstable manifold of the
Ž .asymmetric standing waves ASW becomes tan-f

gent to the stable manifold of the unstable MW
indicated by the arrow in Fig. 3 and diamonds in Fig.

Ž w x.5 cf. 9 . A different transition occurs as l in-
creases through 7.5045. At this value the symmetric
strange attractor disappears and an asymmetric pe-

Žriod 12 MW appears in a tangent bifurcation see
.inset of Fig. 4 . This orbit undergoes a period-dou-

bling cascade as l increases; at ls7.515 the result-
ing attractor undergoes an interior crisis once again

Ž . Ž .Fig. 5. The return map constructed as in Fig. 4 plotted against the two variables that are indicative of drift. a ls7.37, b ls7.39. The
diamonds show the unstable modulated wave indicated by the arrow in Fig. 3. In this projection the S subspaces all lie at the origin.f
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forming a reflection-symmetric strange attractor.
There is also a symmetry-increasing bifurcation as-

w xsociated with a collision of strange attractors 4 as l

is decreased through 7.54. At this point a pair of
Žsymmetry-related strange attractors only one of

.which is shown in Fig. 4 collide with the surface
ḟs0. A different type of interior crisis occurs at
lf7.46 at which the size of the reflection-symmet-
ric attractor changes, but not its symmetry; more
points would fill in the larger attractor present in the
range 7.38-l-7.46.

We now discuss the two torus-doubling cascades
in more detail, starting with the T cascade. Because
of translation invariance one of the MW frequencies,
v , can be removed by going into a travelingTW

reference frame; in this frame the MW solutions are
Ž .singly periodic with a period T l . Near l theMW

evolution of the spatial phase f is therefore gov-
erned by the normal form

2c s 1qa lyl c qbc q . . . , 4Ž . Ž .nq1 MW n n

where

f yfn ny1 mc s yv , f sf nTr2 .Ž .n TW nmTr2

Here v is the phase velocity of the TW solutionTW

from which the MW bifurcates, m is the number of
period-doubling bifurcations which have occurred
between l and l, and a and b are constants.MW

This map is the stroboscopic map with period Tr2 m

with c the average phase velocity relative to then
Žtraveling wave over this time interval. We strobe

with period Tr2 m instead of T so that our strobe
.period is a continuous function of l. Thus the phase

Ž .dynamics near l are locally described by aTW

quadratic map, with c s0 corresponding to the TWn

state. On the other hand, near l , the correspondingPB

map must be equivariant under reflections since the
parity-breaking bifurcation generates both left- and
right-propagating MW. Thus the normal form near
l describing the evolution of the spatial phase isPB

w xthe cubic map, cf. 8 ,
3c s 1qa lyl c qbc q . . . , 5Ž . Ž .nq1 PB n n

where the c are now defined byn

f yfn ny1 mc s , f sf nTr2 ,Ž .n nmTr2

and c s0 corresponds to the SW state. Despiten f

Ž . Ž .their construction as normal forms the maps 4 , 5
turn out to provide a good qualitative description of
many features of the torus-doubling cascades. For
example, period one fixed points of the maps satisfy

g
a lylŽ .B

cs y , 6Ž .ž /b

where l sl ,gs1 for type T cascades andB MW
1

l sl ,gs for type PB cascades. Fig. 6 com-B PB 2

pares values of c obtained by direct integration of
Ž . Ž .Eqs. 1 – 3 near l and l with the correspond-MW PB

Ž .ing fits to Eq. 6 shown as dashed lines. Of particu-
lar interest in the context of direction reversals is the

Ž .fact that the cubic map 5 exhibits a pair of period-
Ž w x.doubling cascades related by reflection see e.g. 10

which undergo a symmetry-increasing bifurcation
when the reflection-related attractors collide at the

w xorigin 3 . This is analogous to the bifurcation re-
sponsible for the onset of chaotic reversals as l

Ž . Ž . Ž . Ž . Ž .Fig. 6. Equilibrated values of c' lim c computed from Eqs. 1 – 3 as a function of l near a l and b l diamondsn™` n MW PB
Ž . Ž .compared with fits of the form Eq. 6 dashed lines .
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decreases from l . However, in order to obtainPB
Ž .quantitative agreement between the map 5 and Eqs.

Ž . Ž . Ž .1 – 3 in this regime higher order terms in lylPB

and c must be included; a similar statement holdsn
Ž . Ž . Ž .for the map 4 . Note that the maps 4 and 5

cannot describe the dynamics due to the interior
Ž . Ž .crises found for Eqs. 1 – 3 since these involve

MW not described by them.
The chaotic phase dynamics described here are a

reflection of underlying amplitude chaos. More pre-
cisely, near l the phase velocity reflects the dy-PB

namics in the amplitude of the asymmetric part of
the solution. However, the dynamics of the symmet-
ric part of the solution may also be chaotic. When

Ž .this is the case the map 5 must be augmented by a
second map describing the dynamics in S , as dis-f

w xcussed by Lai 11 ; direction reversals will still be
produced by the collision of a pair of asymmetric

w xattractors 11 but these can now exhibit strong on-off
intermittency arbitrarily close to l .PB

In this Letter we have identified a new mecha-
nism responsible for producing chaotically reversing
waves. This mechanism is of codimension one and
generates spontaneous reversals in systems with peri-
odic boundary conditions, i.e., in systems in which

Ž .sidewalls and reflections from them are absent.
Such reflections are associated with reversals in the

w xdirection of propagation in other systems 12,13 . In
the present system the onset of reversals is associ-
ated with a symmetry-increasing bifurcation of
strange attractors which arise from cascades of
torus-doubling bifurcations. The mechanism is a nat-

w xural extension of the observation 14,15 that peri-
odic RW can also be produced via a gluing bifurca-
tion of asymmetric oscillations. Depending on the
eigenvalues of the symmetric steady state involved,
such a gluing bifurcation can itself produce chaotic
dynamics and these can be of Lorenz or Shil’nikov
type. In contrast, the mechanism described here does

not involve steady states at all. Other mechanisms
generating chaotic reversals can be envisaged as
well. These involve homoclinic connections of a
circle of standing waves to itself, or heteroclinic
connections between circles of steady states and

Ž w x.standing waves cf. 16,17 , and will be discussed
elsewhere.
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