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We present a control mechanism for tuning a fast-slow dynamical system undergoing a supercritical
Hopf bifurcation to be in the canard regime, the tiny parameter window between small and large
periodic behavior. Our control strategy uses continuous feedback control via a slow control variable
to cause the system to drift on average toward canard orbits. We apply this to tune the FitzHugh-
Nagumo model to produce maximal canard orbits. When the controller is improperly configured,
periodic or chaotic mixed-mode oscillations are found. We also investigate the effects of noise on
this control mechanism. Finally, we demonstrate that a sensor tuned in this way to operate near the
canard regime can detect tiny changes in system parameters. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2804554�

Canards are special periodic orbits that are associated
with a dramatic change in amplitude and period due to a
very small change in a parameter. Since canards typically
exist only for very small regions of parameter space, they
are extremely difficult to observe experimentally. In this
paper we present a continuous feedback control mecha-
nism that uses only the instantaneous position of the sys-
tem in phase space to tune the system to be in the canard
regime. This involves controlling a slow variable to drift
on average toward the canard parameter region, and is
inspired by the dynamics of mixed-mode oscillations. A
system controlled in this way could serve as a sensor that
can detect extremely small changes in system parameters.

I. INTRODUCTION

Canards are periodic orbits for which the trajectory fol-
lows both attracting and repelling slow manifolds. They are
associated with a dramatic change in amplitude and period
over a very narrow interval of a parameter. Canards may be
present in singularly perturbed systems of ordinary differen-
tial equations: a common scenario in which they arise is that
a “small” stable periodic orbit is born in a supercritical Hopf
bifurcation and rapidly changes to a “large” relaxation oscil-
lation periodic orbit as a parameter is varied. Canards are the
intermediate periodic orbits between the small and large or-
bits. The shape of these periodic orbits in phase space can
resemble a duck; hence the name “canard,” the French word
for duck. Canards were first found in studies of the van der
Pol system,1–3 and have since been found and analyzed to
varying degrees for a variety of chemical, biological, and
other systems.4–22 Because canards typically only exist for
very small regions of parameter space, they are extremely
difficult to observe experimentally.

In this paper we present a control mechanism that tunes
a system to be in the canard regime. This is a continuous
feedback control law that uses only the instantaneous posi-

tion of the system in phase space, and is conceptually similar
to one approach used for tuning a system to be at a Hopf
bifurcation.23 Our control mechanism is inspired by the rela-
tionship of canards to mixed-mode oscillations �MMOs�,
which are solutions consisting of sequences of small and
large orbits in phase space, as determined by whether the
traced orbits are smaller or larger than the corresponding
canard solutions. MMOs have been found and analyzed for
various systems24–29 �also see the other articles in this issue�.
MMO occur, for example, for fast-slow dynamical systems
when a variable on average drifts toward and then across a
transition from its present state �respectively, tracing a large
or small orbit� to a different state �respectively, tracing a
small or large orbit�. Most commonly, such transitions occur
periodically, giving MMOs that can be characterized by the
repeating sequence in which the small and large orbits occur,
although chaotic MMOs can also occur. Our control mecha-
nism involves a slow variable that similarly drifts toward the
canard transition. However, unlike MMOs, by tuning the dy-
namics of the control variable appropriately, it is possible for
the controlled system to converge to the canard behavior,
rather than repeatedly switching between a large and small
orbit.

A system tuned to be at or near a point in parameter
space for which a bifurcation or canard transition occurs can
be used to sense parameter changes: one type of behavior
indicates the parameter changed in one direction, while an-
other type of behavior indicates the parameter changed in the
other direction. For example, suppose a system is tuned to be
at a supercritical Hopf bifurcation, as in Fig. 1�a�. If the
parameter decreases a stable fixed point will be reached,
while if the parameter increases a stable periodic orbit will
be reached. However, the size of the periodic orbit shrinks to
zero as the Hopf bifurcation is approached; if it is difficult to
distinguish a fixed point from a small periodic orbit, such a
system would have trouble detecting small parameter
changes. On the other hand, suppose that a system is tuned to
be at a subcritical Hopf bifurcation, with the periodic orbit
gaining stability in a saddlenode bifurcation, as in Fig. 1�b�.
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If the parameter increases even a small amount, a large pe-
riodic orbit will be reached, which might be easily distin-
guished from a stable fixed point. However, such a system
would not easily detect a subsequent small decrease in the
parameter: hysteresis makes the system stay on the stable
periodic orbit branch. In order to “reset” such a sensor, it
would be necessary to decrease the parameter by a substan-
tial amount �past the saddlenode bifurcation�, then retune the
system to be at the subcritical Hopf bifurcation. In contrast,
consider a system that is tuned to be at a canard transition
near a supercritical Hopf bifurcation, as in Fig. 1�c�. The
presence of a large periodic orbit indicates a positive change
in the parameter, while the presence of a small periodic orbit
indicates a negative change in the parameter. Note that, be-
cause of the nature of the canard transition, this will be true
even for very small changes in the parameters. If it is rela-
tively easy to distinguish a large from a small periodic orbit,
such a sensor could detect extremely small parameter
changes while avoiding issues with hysteresis. These proper-
ties make this final canard scenario a good candidate for
sensing tasks. In our present application, we envision using a
slow control variable to tune the system to be in the canard
regime, then using the system to detect a small change in a
system parameter.

In Sec. II, we discuss the presence of canards in the
FitzHugh-Nagumo �FHN� model, a prototypical model for
neural dynamics that will serve as the example throughout
this paper. In Sec. III, we describe the control mechanism
that tunes our system to be in the canard regime. Next, in
Sec. IV, we determine how well the control works for differ-
ent parameters in the control law. This includes the result

that for certain parameters, the control law leads to MMOs.
We also consider this control mechanism for this system sub-
jected to white noise. In Sec. V, we demonstrate how a sen-
sor tuned to operate near the canard regime can detect tiny
changes in system parameters. We give concluding thoughts
in Sec. VI. While we focus on the FitzHugh-Nagumo equa-
tions, we expect that the mechanism that we describe will
work for other appropriate systems, provided appropriate
tuning of the parameters in the control law is done.

II. CANARDS

The system we consider is the FitzHugh-Nagumo model
of neuron spiking behavior.30–32 The dynamics are described
by the differential equations

v̇ = − w − v�v − 1��v − a� + I � f�v,w;I� , �1�

ẇ = ��v − �w� � �g�v,w� . �2�

Here, ��1 is a time-scale separation parameter, and v and w
refer to voltage and recovery variables, respectively. Follow-
ing Brøns,33 we set a=0.1, �=1, and �=0.008. The param-
eter I represents an external current applied to the model, and
in this section we treat it as a bifurcation parameter. As
shown in Fig. 2, the FHN model with these parameters un-
dergoes a supercritical Hopf bifurcation around I=0.0553
and shortly thereafter, the amplitude and shape of the stable
periodic orbit change dramatically over a very narrow range
of I. This narrow range of I is the canard region: a sample of
canard periodic orbits is shown in Fig. 3. For this paper we
will consider orbits to be small periodic orbits if they are
smaller than orbit �a� and large periodic orbits if they are
larger than orbit �e� in Fig. 3.

FIG. 1. Bifurcation diagrams showing fixed point �f.p.� and periodic orbit
�p.o.� branches for �a� supercritical Hopf bifurcation, �b� subcritical Hopf
bifurcation, and �c� canard transition. Solid �dashed� lines indicate stable
�unstable� solutions, while the arrows point to the location of the transition.
The parameter changes along the horizontal axis, and the vertical axis is a
measure of the size of the periodic orbit.

FIG. 2. Bifurcation diagram from simulations of the FHN model, showing a
stable fixed point �f.p.� spawning a stable periodic orbit �p.o.� through a
supercritical Hopf bifurcation at I=0.0553. The size of the periodic orbit is
displayed using the maximum value of v along the orbit. A canard transition
occurs around I=0.0568, where the size of the orbit increases sharply over a
very narrow range of I. Solid �dashed� lines represent stable �unstable�
solutions.
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The canard phenomenon can be understood as follows.
The system has two nullclines: a cubic v-nullcline, where
f�v ,w�=0, and a linear w-nullcline, where g�v ,w�=0. If � is
set equal to zero, then ẇ=0 and the v-nullcline is a curve of
fixed points and is normally hyperbolic on the pieces for
which its slope is bounded away from zero; i.e., away from
its local minimum and local maximum when plotted in the
�v ,w� phase space �see Fig. 3�. For �=0, the “left” and
“right” parts of the v-nullcline are found to be stable to trans-
verse perturbations, while the “middle” part is found to be
unstable to transverse perturbations.

Invariant manifold theorems imply that, for � sufficiently
small, invariant manifolds persist within O��� of these nor-
mally hyperbolic pieces of the v-nullcline, with the mani-
folds inheriting their normal stability properties from the sta-
bility properties of the pieces of the v-nullcline.34–36 There
will thus be a slow manifold MS, with stable foliation, within
O��� of the “left” part of the v-nullcline, a different slow
manifold, with stable foliation, within O��� of the right part
of the v-nullcline, and a slow manifold MU, with unstable
foliation, within O��� of the middle part of the v-nullcline.
The manifolds MS and MU can be extended beyond the local
minimum and local maximum according to the flow, but the
extensions may leave an O��� distance of the v-nullcline, and
may also lose their normal stability properties.

Generically, the distance between MS and MU is nonzero
near the local minimum of the v-nullcline. This distance
changes as parameters are varied. For the FHN model, a
small stable periodic orbit is born in a supercritical Hopf
bifurcation, with the manifolds as sketched in Fig. 4�a�. As I
is increased from the Hopf bifurcation point, the relative po-
sition of the manifolds switches to the case sketched in Fig.
4�b�. For particular parameters, the manifolds MS and MU

connect smoothly; for parameters O�e−K/�� close to this for
some K�0,3,12 the periodic orbit is called a canard, and it
follows MU for a substantial distance.

Singular perturbation theory can be used to predict the
parameter values at which these manifolds connect.7,15,19 Of
particular utility, Eqs. �3.10� and �3.23� of Brøns19 predict the

Hopf bifurcation point �IH in our notation below� and canard
point �IC in our notation below�, respectively. Since functions
f and g in Eqs. �1� and �2� have no dependence on �, Brøns’
equations in our notation simplify to

a1 = −
1

16
�fvv

2 gw + gvfwfvvv� , �3�

� =
fvvgwfI

gvfw
, �4�

IH��� = Ibase −
gwgvfw

�gvfw
� + O��2� , �5�

IC��� = IH��� −
8a1

fvv
2 �

� + O��2� . �6�

Here, Ibase is the parameter value at which the w-nullcline
intersects the v-nullcline at its local minimum, and the de-
rivatives are evaluated at this intersection in phase space. For
our system �1� and �2�, this intersection occurs at

vi = �1 + a − �1 − a + a2�/3 � 0.048 687, �7�

wi = vi/� � 0.048 687, �8�

Ibase =
vi − 2vi

2 + viwi − 2vi
2wi + vi

2wi

� − 2wi
� 0.051 064, �9�

and this theory predicts that the Hopf bifurcation point and
canard point will occur at IH�0.0553 and IC�0.0566, re-
spectively. Both of these results are accurate to first order in
�, and match the numerical results shown in Fig. 2 to that
order.

III. CONTROL METHOD

Our goal is to design a control mechanism that steers the
FHN model to the canard regime, without precise foreknowl-
edge of where this occurs in parameter space. Since I is a
natural bifurcation parameter in Eqs. �1� and �2�, it makes a
natural control variable as well. We will choose the control
law so that I evolves slowly enough that the behavior for an
instantaneous �but slowly changing� value of I can be well
approximated by that predicted from Fig. 2 for constant I. If
the dynamics are �approximately� those of a large periodic
orbit, I should then be decreased, and if the dynamics are
�approximately� those of a small periodic orbit, I should be

FIG. 3. �Color online� Stable periodic orbit evolution over a small range of
parameter I in the FHN model: �a� I=0.056 838, �b� I=0.056 838 45, �c� I
=0.056 838 48, �d� I=0.056 838 58, �e� I=0.056 84. Here, and in later phase
plane figures, the dashed line is the v-nullcline, where f�v ,w�=0.

FIG. 4. The two generic situations for the relative positions of the slow
manifolds MS and MU near the local minimum of the v-nullcline. A trajec-
tory follows MS, and after passing near the local minimum of the
v-nullcline, either �a� returns quickly to a neighborhood of MS, or �b� un-
dergoes a large excursion before returning to a neighborhood of MS.
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increased. If the changes in I cause it to drift back and forth
across the canard region, this strategy would produce
MMOs. However, when properly tuned, as described below,
it will converge to the intermediate canard orbits.

We choose to use continuous feedback control based on
the position of the system in phase space, similar to the ap-
proach of Moreau and Sontag for tuning to a Hopf
bifurcation.23 The local minimum of the v-nullcline is the
base point for our measurements and we construct a control
circle around this point to determine whether trajectories are
instantaneously on a small or large orbit. Specifically, we
will assume that a trajectory outside the control circle is �ap-
proximately� on a large periodic orbit, and I should be de-
creased. On the other hand, a trajectory inside the control
circle is assumed to �approximately� be on a small periodic
orbit, and I should be increased. While this identification is
not always correct �for example, large periodic orbits spend
some time within the control circle�, we show below that
under proper tuning, I will cycle over a small range, with a
corresponding canardlike trajectory that balances the effects
of sometimes being inside and sometimes outside the control
circle.

To include this control strategy in the FHN model, we
augment Eqs. �1� and �2� with the following differential
equation for I:

İ = c�r0 − r� . �10�

The new variable r=��v−vi�2+ �w−wi�2 is the instantaneous
Euclidean distance from the local minimum of the
v-nullcline. The parameters c and r0 determine the control
strength and radius of the control circle, respectively, and
will be tuned as described in the next section to produce a
“good” canard. This control strategy is memoryless, as it
depends only on the instantaneous position in phase space,
and also does not require foreknowledge of the parameter
values for which canards exist. That being said, it is only
expected to work for fast-slow systems near a supercritical
Hopf bifurcation, where the system must begin in an oscil-
latory region of parameter space but can start with the con-
trol variable on either side of the canard point. This control
strategy also requires approximate knowledge of the size of
periodic orbits on either side of the canard point to pick an
initial value for r0. For the present application, setting r0 to
one third of the distance from the local minimum of the
v-nullcline to the local maximum is a reasonable starting
point as it approximately balances the amount of time trajec-
tories near the canard region spend inside versus outside the
control circle.

IV. TUNING TO THE CANARD REGIME

To compare the effectiveness of this control strategy for
various values of c and r0, we would like to measure the
distance over which the trajectory remains in the neighbor-
hood of the slow manifold MU. This manifold is within O���
of the middle portion of the v-nullcline. This implies that the
slope of MU must be close to that of v-nullcline. When a
trajectory departs from a neighborhood of MU, it does so
abruptly, making a sharp turn with a large change in slope.

With these considerations in mind, our distance measurement
begins when the trajectory passes the local minimum of the
v-nullcline. We consider the trajectory to have departed the
neighborhood of MU when its slope differs by 0.09 from that
of the v-nullcline with the same value of v. This value,
which is an order of magnitude larger than �, was chosen so
that the trajectory with the longest measurement has a large
change in slope just before the local maximum of the
v-nullcline. Fig. 5 shows several trajectories and how our
method classifies their distance. We emphasize that this dis-
tance measure is only used for diagnostic purposes; it is not
used in the control law itself.

The results of a two-parameter study of c and r0 using
this distance measure are shown in Fig. 6, where we average
over multiple visits near MU to account for the possibility of
MMOs �see below�. Using other values for this slope differ-
ence threshold results in a slightly different specific largest
canard, but the results are very similar. As r0 increases from
0.15, the distance over which trajectories remain in the
neighborhood of MU generally increases until reaching its
peak around r0=0.234. The longest canard orbit in our study
occurs for c=10−8 and r0=0.234, and is shown in Fig. 7; we
will refer to this as the maximal canard. Just above this value
of r0, the length of trajectories drops sharply as the trajecto-
ries turn off a shorter distance up MU. As the two-parameter
study shows, using a smaller value of c produces longer
tracking of MU and thus more canardlike shapes. Using val-
ues of c less than 10−8 does not significantly improve the
distance measure.

The value of c must be smaller than 10−4 to tune the
system to the canard region. As demonstrated in Fig. 3, the
size of the canard region in I is smaller than 10−5, with maxi-
mal canards in a range of I several orders of magnitude
smaller. Our choice of memoryless, continuous control also
mandates very small corrections. This size constraint on c

FIG. 5. �Color online� Demonstration of how our distance measure classifies
several trajectories. The dashed line is the v-nullcline, with O��� of MU. The
thicker blue part of the trajectories count towards the distance following
MU; the thinner red pieces do not. Here, the longest distance is approxi-
mately 0.6 and the shortest 0.15.
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effectively creates three time scales for the system �1�, �2�,
and �10�, as 1���c. Over the maximal canard trajectory,
the control variable I is never stationary but enters into a
repeating cycle, as shown in Fig. 8. As the trajectory passes
near the local minimum of the v-nullcline, it is in the center
of the control circle and I increases most rapidly. The trajec-
tory then passes out of the circle on its way up MU, and I
starts to decrease more rapidly as the orbit moves through
the canard’s “head.” On its return to MS, the trajectory briefly
passes through the top of the control circle, resulting in the

short reversal in Fig. 8. As this occurs away from the
v-nullcline, the trajectory is moving quite rapidly, keeping
the reversal small.

While the canard trajectory shown in Fig. 7 traces a
single orbit each time around, this is not always the case. For
c=10−8, we also found MMOs with one large and one small
orbit, as shown in Fig. 9. These MMOs occur when the con-
trol strategy overcorrects for the value of I. When the trajec-
tory departs the local minimum of the v-nullcline headed for
a large orbit, it spends a substantial amount of time outside
the control circle, which lowers the value of I. When the
trajectory re-enters the control circle, I begins to increase
again. If the control circle is too small and/or the control
strength c too large, then when the trajectory departs again it
will have overcorrected the value of I, leading to a small
orbit. The trajectory then spends a substantial amount of time
inside the control circle, which increases the value of I, and
can lead to another large orbit.

FIG. 6. Contour plot of the average distance the trajectories remain in the
neighborhood of MU after transients have died out. Average is taken over at
least 40 successive visits near MU.

FIG. 7. �Color online� This canard trajectory, produced using control with
c=10−8 and r0=0.234, has the longest distance measure along MU. The axes
are not square, so the dot-dashed control circle appears elliptical.

FIG. 8. Evolution of I for the trajectory in Fig. 7.

FIG. 9. Bifurcation diagram for c=10−8 showing peak values of v, gener-
ated by adiabatically increasing the value of r0, omitting transients. There is
a period-2 bubble corresponding to a MMO with one small and one large
orbit as r is swept from 0.18 to 0.25. The maximal canard has vpeak�0.65.
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When c is increased, the window of MMOs expands.
Figure 10 shows bifurcation diagrams for c=2�10−8, 5
�10−8, and 1�10−7. For all three of these, the period-
doubling “bubble” in Fig. 9 expands into cascades of period-
doubling bifurcations, that leads to chaotic MMOs. As c in-
creases, the width of the region with complex behavior
broadens as the propensity for overcorrection in I increases.
The chaotic region is broken up by windows of MMO peri-
odic orbits, with the number of MMO windows increasing
with c. Each of these windows corresponds to a different

type of MMO, beginning with 1n orbits �Ls means s small
orbits for every L large orbits� for small values of r0, transi-
tioning through 11 in the middle of the chaotic region, and
ending as n1 orbits, as can be seen best in Fig. 10�c�. The
same chaotic MMO bifurcation structure has been observed
experimentally for the Belousov-Zhabotinski reaction,37 as
well as an electrochemical system.38 These results are also
very reminiscent of results of Petrov et al.24 Other chaotic
MMOs reported recently have a more classical period-
doubling cascade bifurcation structure, and can be interest-
ingly interpreted as spikes triggered by a chaotic
background.22

Figure 11 shows the chaotic trajectory for c=10−7 and
r0=0.17 with the associated time series for I. In Fig. 12, the

FIG. 10. Bifurcation diagram, as in Fig. 9, for �a� c=2�10−8, �b� c=5
�10−8, and �c� c=10−7, all showing period-doubling cascades to chaos and
various periodic windows corresponding to periodic MMOs. The maximal
canard has vpeak�0.65.

FIG. 11. �Color online� Control with c=10−7 and r0=0.17 produces chaotic
MMOs.

FIG. 12. �Color online� Three-dimensional representation of the chaotic
trajectory from Fig. 11, with the �v ,w�-phase plane augmented with a di-
mension for I. The cubic v-nullcline is now the two-dimensional surface S
with fold-line F.
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�v ,w�-phase plane is expanded with a third dimension for the
control variable I, creating a three-dimensional view of the
chaotic trajectory in Fig. 11. The v-nullcline is expanded into
the I-dimension to form a two-dimensional folded surface S,
with the line of local minima of the v-nullcline now referred
to as the fold-line F. This chaotic behavior is not the product
of integration error or other noise, as a map from the max
value of v from one orbit to the next is distinctly one dimen-
sional, as shown in Fig. 13.

We also studied the effects of moving the control circle
so it was not centered on the local minimum of the
v-nullcline. The control strategy still functions when the
circle is displaced by less than half of r0. These results indi-
cate that the control strategy is effective without precise po-
sitioning of the circle, although the specific end canard or
MMO behavior does change when the circle moves. How-
ever, if the circle is displaced so it no longer contains the
local minimum of the v-nullcline, the controller cannot work.

Our control method is robust to large, but infrequent,
changes in system properties. For the FHN model, we use
steps in � to simulate these sudden changes. As shown in
Fig. 14�a�, the control method is capable of responding to
these changes and locating the new canard region. The time
it takes the system to reach the canard window depends on
the value of c, with larger values locating the canard window
more quickly and smaller values finding it more precisely. To
reach the canard region both quickly and precisely, we de-
veloped a strategy for adjusting c depending on the past his-
tory of I. Essentially, if I has settled in and keeps oscillating
over the same region, c is reduced to more accurately deter-
mine the canard window, as shown in Fig. 14�b�. If I is
moving in one direction for a sufficiently long time, c is
increased to reduce the time until the new canard window is
acquired. These determinations of the trend of I are made by
examining the behavior of I over the last 20 orbits. If the
difference between the average value of I for first five orbits
and the last five orbits is significantly smaller than the stan-
dard deviation of I over the orbits, we consider I to have

settled in and reduce c to locate the canard window more
precisely. Conversely, if the change in the average value of I
is an order of magnitude greater than the standard deviation,
c is increased to decrease the settling time. This adaptation of
c requires knowledge of past values of I, but greatly im-
proves the settling time for smaller values of c. In addition,
this adaptation mechanism allows for rapid, precise conver-
gence to the canard region from an initial condition.

The high precision required to achieve tuning to a spe-
cific canard orbit raises the question of whether the method
will work in the presence of noise. One potential source of
noise for the FHN neuron model is a noisy external current,
which would directly affect the v equation. Considering
Gaussian white noise, Eqs. �1�, �2�, and �10� are rewritten

v̇ = − w − v�v − 1��v − a� + I + �2D��t� , �11�

ẇ = ��v − �w� , �12�

İ = c�r0 − r� , �13�

where ��t� represents Gaussian delta-correlated noise with
zero mean and unit variance that enters the system continu-
ously. To simulate the response of our controlled FHN model
to this noise, we use a fourth-order Runge-Kutta method
adapted for noise.39

Under this type of noise, our controller is able to ap-
proach I values close to the canard transition, but is unable to
produce repeated canard-shaped orbits. Figure 15 shows
what happens to the maximal canard in Fig. 7 when a small
amount of noise is injected. To achieve a canard shape, the
trajectory must follow MU. Even small amplitudes of white
noise cause the trajectory to depart from MU and the control
logic is simply not set up to offset these local effects. Instead

FIG. 13. Map of peak value of v in Fig. 11 vs the previous peak. This
one-dimensional map shows that the spread of orbits in Fig. 11 is due to
chaos.

FIG. 14. �a� The control variable I first locates the initial canard window for
�=1.0. After it achieves a lock, � is reduced to 0.985 and I then tunes to the
new canard window at I=0.057 64, as confirmed by simulations. �b� The
control strength c is varied based on recent history of I, as described in the
text.
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of canard shapes, Eqs. �11�–�13� produce noisy MMOs even
for tiny noise strengths. For our system, larger �smaller� val-
ues of noise strength D move the fork in Fig. 15 lower
�higher� on MU. Note that it is possible to produce similar
results to those from previous studies of noise-induced
spiking14,18 using our method: choose a small value for r0

�say, 0.12� and, in the absence of noise, the control will pro-
duce small periodic orbits; with noise, the system will spo-
radically produce large orbits.

To tune to maximal canard orbits in the presence of
noise, perhaps an alternative control method could be devel-
oped based on deviation of the orbit from MU. This would
have the potential to overcome continuous noise, but would
require either specific prior information about the canard sys-
tem or an adaptive memory.

While the control circle method cannot produce repeated
canard shaped trajectories in the presence of noise, it does
tune the system to be close to the canard transition. When the
system is operating near the canard regime, it is still sensitive
to changes in system properties and can detect them, as we
will now show.

V. SENSING

We now suppose that the control method described
above is being used to tune the system to be near the canard
regime. We will demonstrate with several examples that such
a system can be used to rapidly detect a very small change in
the system parameter �. This relies on the fact that even
rather small perturbations to system properties shift the po-
sition of the canard transition so that the system will produce
only small or large periodic orbits, which can then be distin-
guished from the system’s behavior in the canard regime.

First, consider the control parameters r0=0.234 and c
=10−8, which give the maximal canard trajectory in the sense
of maximizing the distance over which the trajectory is close

to MU �see Fig. 7�. When � is decreased by one part in
100 000, the trajectory immediately begins tracing out a
small periodic orbit, which can be easily distinguished from
the canard orbit �see Fig. 16�. After � is restored to its origi-
nal value, the system slowly returns to tracing out the maxi-
mal canard trajectory. There are no issues with hysteresis
associated with this return.

Even when the system is not tuned to give the maximal
canard, it is possible to detect very small changes in �: con-
sider the control parameters r0=0.17 and c=10−7, which give
the chaotic MMO shown in Figs. 11 and 12. As shown in
Fig. 17, when � is increased by a small amount, the trajec-
tory immediately begins tracing out a large periodic orbit,

FIG. 15. �Color online� Noisy MMO produced using c=10−8, r0=0.234 and
noise strength D=10−11. This is the same controller that produced the maxi-
mal canard in Fig. 7. With noise, the controller can only find the general
location of the canard window; the continuous noise precludes repeated
canard trajectories.

FIG. 16. �Color online� Here the control parameters are chosen as in Fig. 7
�i.e., r0=0.234 and c=10−8� so that the system initially traces out the maxi-
mal canard trajectory, as shown by the thin black line up to t=2500. The
thick, red lines in the middle of the figure show that the system responds by
tracing out small periodic orbits when � is decreased by 1�10−5 from its
original value �=1. This is to be compared with the dashed lines which
correspond to how the time series would have evolved had � not changed.
After � returns to its original value, the system evolves according to the thin
black line. The control will slowly retune the system to the maximal canard
trajectory.

FIG. 17. �Color online� The chaotic system from Fig. 11 with r0=0.17 and
c=10−7 is able to detect a change �here, an increase� in � of 3�10−4. As in
Fig. 16, the thick, red lines in the middle of the figure show the behavior for
the new value of �, to be compared with the dashed lines which correspond
to how the time series would have evolved had � not changed. After �
returns to 1.0, the system slowly returns to its prior behavior.
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which can be easily distinguished from the chaotic MMO.
When � returns to its original value, the system evolves back
to chaotic MMO behavior.

Finally, this setup can be used to detect small changes in
� even when the control parameters do not give the maximal
canard, and when small noise is present: see Fig. 18 for
results with the same control parameters as in Fig. 17, but
with noise added. Simulations �not shown� confirm the ex-
pected result that when the noise strength is made larger, the
size of changes in � that such a sensor can reliably detect is
reduced.

If � remains at its new value, the control, which always
remains on, will cause the system to eventually evolve to the
canard regime for the new parameter value. The sensor will
then be ready to detect a subsequent change to the parameter
value. If this is desired, it might be beneficial to use the
adaptive method as shown in Fig. 14 to more rapidly con-
verge to the new canard regime.

VI. CONCLUSION

We have demonstrated a novel technique for controlling
the FHN model to be in the canard regime. With the addition
of a differential equation regulating the parameter I, so that I
now acts as a slow control variable, the model self-tunes to
give canardlike orbits. Indeed, when properly tuned, our con-
tinuous, memoryless method produces repeated maximal ca-
nard trajectories. MMOs, including chaotic trajectories, were
observed for suboptimal control setups. While our method
can relocate the precise canard region when one of the pa-
rameters in the FHN model changes, it can only find the
general vicinity of the canard region when subjected to con-
tinuous white noise. Furthermore, we demonstrated that a
sensor tuned with such control could detect tiny changes to
the operating parameters of the system without the hysteresis
issues associated with operating at a subcritical Hopf bifur-
cation. We note that this control strategy will not stabilize
unstable canards; for example, on a branch of periodic orbits
arising from a subcritical Hopf bifurcation.21

In future work, several enhancements to the controller
could prove beneficial. Adding an integral term to Eq. �10�
could enable the system to more quickly locate the canard
orbit when initialized far from the canard region. Adding
damping might achieve a similar result and reduce the preva-
lence of MMOs by shrinking the oscillations in I for larger
values of c. Several changes would be necessary to counter-
act continuous white noise, but a controller that estimated the
location of MU and reduced deviations away from that mani-
fold might prove successful. It would also be interesting to
investigate generalizing this control strategy for higher di-
mensional systems exhibiting canards, using a control cylin-
der with axis along the fold-line or a hypersphere.
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