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Figure 6. Very large amplitude burst for AX = 0.06, Aw = —0.01, A = 0.1.

5. Conclusion

The bursting mechanism outlined above arises in a natural way in slender
systems supporting oscillations of even and odd parity. The resulting dra-
matic response can lead to material fatigue or, in the fluid context, to the
breakdown of laminar motion into intermittent turbulent bursts. Although
neither development is captured by the “frozen” spatial structure respon-
sible for the burst mechanism, we have invoked such potential applications
in naming this interesting phenomenon.
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Figure 4. Chaotic bursts for A = 0.072.

for these coefficient values possesses an unstable Floquet multiplier in the
p direction and hence has a two-dimensional unstable manifold. These man-
ifolds together describe a single infinite amplitude burst (see Fig. 5). Recur-
rent bursts occur if this unstable manifolds intersects the stable manifold
of the fixed point or its translates (cf. Figs. 2,3). This is a codimension-
one phenomenon, and can be studied using a Shil’nikov-like analysis; this
analysis bears substantial similarity to that carried out by Hirschberg and
Knobloch (1993) for the Shil’nikov-Hopf bifurcation, and is particularly rel-
evant to very large bursts such as those present at AA = 0.06, Aw = —0.01
(Fig. 6). A similar geometrical scenario is responsible for the generation
of chaotic traveling waves in systems with O(2) symmetry (Knobloch and
Moore 1991). In the present case, however, the trajectories typically also
approach close to a A-dependent finite amplitude fixed point and conse-
quently the analysis of the global bifurcations at infinity provides only a
partial description of the bifurcation diagram of Fig. 1. Further details can
be found in Moehlis and Knobloch (1997).
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Figure 5. Heteroclinic cycle involving an infinite amplitude fixed point and an infinite
amplitude limit cycle for A = 0.0974.
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Figure 2. Periodic bursts from successive excursions towards symmetry-related infinite
amplitude fixed points. For this burst sequence A = 0.1, {r) = 0.7.

2 T T T T T 7 T T T T T
0 Pl - ]
18 1
5F .
16 + 4+ .
1.4 - 3r \ -
/ o L |
12t . L |
1 I I I I I ¢ 0 I = I I Ly ¢
0.5 1 15 2 2.5 3 3.5 0.5 1 15 2 2.5 3 3.5

0 1 1 1 1 | 1 1 t
0 20 40 60 80 100 120 140
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fixed point. For this burst sequence A = 0.1253, (r) = 0.75.
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Figure 1. Bifurcation diagram for Ag = 1.0, Br = —2.8, By = 5.0, Cr = 1.0, C; = 1.0
and AA =0.03, Aw = 0.02.

figure solid (broken) lines indicate stable (unstable) solutions; circles, di-
amonds, and squares indicate Hopf, saddle-node, and period-doubling bi-
furcations, respectively. Many period-doubled branches are omitted. The
periodic branches all correspond to periodic bursts since the corresponding
trajectories make periodic excursions towards the invariant plane p = 0, as
shown in Figs. 2 and 3. Note that because the bursts are fast events in the
original time ¢ the average (r) for a sequence of large amplitude bursts may
in fact be quite small. At some values of A, such as A = 0.072, no stable
periodic branches are present, and irregular bursts are found as shown in
Fig. 4. This figure includes a plot of successive maxima against one an-
other; the map appears one-dimensional, and shows unambiguously that
the bursts are chaotic. A number of global bifurcations in which a periodic
solution approaches a finite amplitude fixed point are found to occur near
A = 0.0965 and manifest themselves as cusps in Fig. 1.

Fig. 1 omits a very important class of global bifurcations involving

infinite amplitude solutions, i.e. solutions with p = 0. For these coef-
ficients, 51(0,%,0) = —0.2 with eigenvector (—3.96,—-0.49,1). Moreover,
54(0,%,0) = 0.068 and s_(0,7,0) = —5.87; consequently the infinite am-

plitude fixed point is a saddle point whose unstable manifold forms a struc-
turally stable connection with an infinite amplitude limit cycle around

(0,%,%). This limit cycle is attracting in the p = 0 invariant plane but
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finite amplitude fixed point (p,8,#) = (0,7,0) we obtain

1
s) = —2Ag — Br — CRr, s4 = 3 {BR —3CRr % \/Bf? +8B;Cr —scf +2BRrCR + C;},

with eigenvectors

—2A} —3AgBg — B+ BrCr — C; + AgRCr + BRCr (Cr —2AR — Br)AX + 201 Aw L
(Cr — Bj)AX+ 2(AR + Bgr)Aw '(C; — Br)AA+ 2(AR + Br)Aw’

1
0,——<B Cr++/B%2 4+8B;C; —8C2 4+ 2BRrC c2 5.1,
( 2(01_31){ rt+ Cr \/R+ 1Cr Fas rCR + R} )

The corresponding results for (0, 7, 7) follow from the parameter symme-

try ¢ — —C'. Since s; can be negative and the corresponding eigenvector
has a nonzero component in the p direction, a trajectory starting near the
stable manifold will approach infinite amplitude. Moreover, since the eigen-
vectors of the remaining eigenvalues lie in the invariant plane p = 0 such a
trajectory will evolve, after reaching infinite amplitude, in this plane until
it encounters a fixed point (limit cycle) possessing an unstable eigenvalue
(Floquet multiplier) that ejects it from it. This is our picture of the bursting
mechanism, and we now substantiate it with explicit computations.

4. Genesis of a burst

As an illustrative example, consider the following parameter values:
Ap =10, Br=-28, Bry=5.0 Cr=10, C7=1.0,

with A treated as the bifurcation parameter. We do not need to specify
A which enters into the equation for © only. When AX = Aw = 0, the
(po,5,%) and @ = 0 fixed points are supercritical, while the (pg, 5,0) is
subcritical; all are unstable. For these parameter values nonsymmetric fixed
points do not exist. For A > 0 there is, in the associated spherical system,
a stable periodic solution surrounding the (po, 5, %) fixed point.

As symmetry breaking parameters we choose AXA = 0.03 and Aw = 0.02.
The results of a detailed numerical study of these parameter values are
summarized in the remarkable bifurcation diagram shown in Fig. 1. This
figure shows

T
<r >= l/ rahf:TL (12)
T Jo Jo 7 pdr

as a function of the bifurcation parameter A for finite amplitude fixed points
and finite amplitude periodic solutions only. Here T is the appropriate pe-
riod of the solution in the original time ¢, and T, is the period of the
solution to equations (7-9) found in terms of the rescaled time 7. In the
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(a)if A <0, F(bp, o) < 0 then r — 0,

(b) if AF'(fg, ¢o) < 0 then r — 75 > 0,

(c)if A > 0, F(6y, ¢0) > 0 then r — oc.
Provided case (b) holds, there are three types of fixed points (6g, ¢o) with
nontrivial symmetry which exist for all coefficient values (Swift, 1988). In
addition there are open regions of coefficient space with nonsymmetric fixed

points (that is, fixed points with trivial isotropy) and others with a unique
limit cycle (8*(7),¢*(7)). For the limit cycles we define

F=g [T RE ) o, ()

where T’ is the period, and conclude (cf. van Gils and Silber 1995) that
(a)if A < 0,F < 0 then 7 — 0,
(b) if \F < 0, there exists a nonzero, finite 7(7) with r(r +T,) = r(7),
(c)if A >0,F > 0 then r — .
Because the associated spherical system (8,9) is two-dimensional, no com-
plex dynamics is possible unless the S! normal form symmetry is broken,
as in the Faraday system. We do not pursue this possibility here, and in-
stead focus on the effects of breaking the D4 symmetry. We find that the
possibilities (c) are responsible for the bursts present in this system.

3.2. THE IMPERFECT SYSTEM A)X # 0 AND/OR Aw # 0

For the equations with broken D4 symmetry (AX # 0 and/or Aw # 0)
only the fixed points with even and odd parity remain as primary branches;
the analogs of the remaining primary branches may bifurcate in secondary
bifurcations from these, and are most easily found numerically (Landsberg
and Knobloch 1996). However, there is another class of fixed points as well;
these are crucial for understanding the bursting behavior. Their existence
follows from the restriction of equations (7-9) to the invariant subspace p =
0. The resulting equations are identical to equations (8,9) with AXA = Aw =
0; thus the fixed points of the associated spherical system that governs
the dynamics of the perfect system continue to have significance for the
imperfect system but now correspond to infinite amplitude fixed points.
Infinite amplitude nonsymmetric fixed points and infinite amplitude limit
cycles may also exist depending on the values of the parameters, exactly
as in the perfect problem. Indeed, for AN = Aw = 0, infinite amplitude
fixed points are amplitude-stable for A > 0, F'(6y, ¢o) > 0, while infinite
amplitude limit cycles are amplitude-stable for A > 0, F > 0.

It is a simple matter to obtain the eigenvalues sy, s1 of the fixed points
(p, 8, ¢) of equations (7-9) and the corresponding eigenvectors. For the in-
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neglect all interchange symmetry-breaking contributions to the nonlinear
terms. In terms of new variables defined by

sp = 2 cos(/2) I, o = g7 2gin(g/2)el =42, (6)

and a new time 7 defined by dr/dt = p~!, these equations take the more
convenient form

d
d—p = —p[2AR + Br(1+ cos® ) + Cgsin® 0 cos 2¢] — 2(A + AX cos8)p® (7)
.
ae . .
7, = sin flcos 0(—Br + Crcos2¢) — Crsin2¢] — 2AAsinfp  (8)
.
d¢ .
7, = cos 6(B; — Crcos2¢) — Crsin 2¢ 4+ 2Awp, (9)
-

where A = Ar+iAj, etc. Equations (7-9) are invariant under the operations
6 — 0+ 27 and ¢ — ¢ + 7, symmetries which are related to the (broken)
D4 x S' symmetry of the full system. A consequence of these symmetries is
that if (po, o, ¢o) is a fixed point of equations (7-9), then so are the points
(po,bo + mm,pg + 2nm), where m and n are integers. This is so also for
periodic solutions. We say that such fixed points and periodic solutions are
symmetry-related.

The behavior of the decoupled variable ¥ may be found by solving
the appropriate differential equation for ¢ evaluated at the solutions to the
three-dimensional system. In particular, ) (modulo 47) is periodic for fixed
points and periodic solutions to the three-dimensional system; thus, fixed
points and periodic solutions in the three-dimensional system correspond
to periodic solutions and tori in the full four-dimensional system (4,5),
respectively. In the following we use the variable r = p=! = |22 +|2_|? as
a useful measure of the energy in a burst.

3. Fixed points and periodic solutions of the three-dimensional
system

3.1. THE PERFECT SYSTEM AX = Aw =0

The D4-symmetric equations AA = Aw = 0 have been analyzed by Swift
(1988). In this case the (6(7),#(7)) equations decouple from the rest, and
describe dynamics on the surface of a sphere of variable radius. For fixed
points (6o, ¢o) of this two-dimensional system this radius becomes constant
as T — oo, and depends on the quantity

F(0,¢) = 2AR + Br(1+ cos® ) + Crsin® 8 cos 2¢. (10)

Specifically,
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diagnostics that demonstrate convincingly that they involve primarily two
adjacent modes of opposite parity. These results provide the primary mo-
tivation for studying the Hopf bifurcation with broken D, symmetry.

2. Derivation of the Equations

In this section we sketch the derivation of the amplitude equations describ-
ing the interaction of adjacent Hopf modes in a one-dimensional container
of length I with identical boundary conditions at x = +1/2. Such a sys-
tem has a reflection symmetry about z = 0; the primary Hopf modes are
either even or odd under under this reflection (Dangelmayr and Knobloch
1991). We consider the interaction of an even mode with an adjacent odd
mode in the formal limit I, — oo. Let (24, z_) be the complex amplitudes
of the two modes. The requirement that a reflected state also be a state
of the system translates into the requirement that the amplitude equations
be equivariant with respect to the group action

K1 (z4,2-) — (24, —2-). (1)

Moreover, as argued by Landsberg and Knobloch (1996), the equations for
the formally infinite system cannot distinguish between the two modes, i.e.
in this limit the amplitude equations must also be equivariant with respect
to the group action

Kot (24,2-) — (2=, 24). (2)
These two operations generate the group Dy = (k1,k2). For a container
with large but finite length, this symmetry will be weakly broken; in par-
ticular, the even and odd modes may become unstable at slightly differ-
ent Rayleigh numbers and with slightly different frequencies. The resulting
equations are thus close to those for a 1:1 resonance, but with a special
structure dictated by the proximity to D, symmetry. Because of the nor-
mal form symmetry

6 (2q,2-) — €924, 22), o €1[0,2m), (3)

the resulting equations have an additional S symmetry. If these equations
are truncated at third order we obtain (Landsberg and Knobloch 1996)

Zp = AN i(w+ Aw)ep + A(lz4 [P+ 2= )24 + Blag P2 + 0222 (4)

o= A= Adti(w—Aw)lzm+ A2 + 2= |*) 2= + Blz—[P2- + Cz_2% (5)

Here Aw measures the difference in frequency between the two modes at
onset, and A\ measures the difference in their linear growth rates. Un-
der appropriate nondegeneracy conditions (which we assume here) we may
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sphere in phase space, together with two other decoupled equations (Swift
1988). When the D4 symmetry is broken by turning the domain into a rect-
angular one, albeit with a nearly square cross-section, this decoupling no
longer occurs, and the dynamics becomes fundamentally three-dimensional.
A closely related problem is provided by the Faraday system in a nearly
square container. In this system, gravity-capillary waves are excited on the
surface of a viscous fluid by vertical vibration of the container, usually as
a result of a subharmonic resonance. Because of the parametric forcing the
51 symmetry is now absent, but the amplitude equations describing the
interaction of roll-like states oriented parallel to the sides continue to have
approximate D4 symmetry. In a square container, careful experiments by
Simonelli and Gollub (1989) uncovered no chaotic dynamics in this system.
On the other hand, in a rectangular but nearly square container the situa-
tion is quite different. Here Simonelli and Gollub uncovered the presence of
a new class of oscillations, hereafter called “bursts”. These are oscillations
in the amplitudes of the two competing modes in which the energy builds up
to a high value before undergoing an abrupt collapse to a small amplitude
state. Such bursts can occur either periodically or irregularly, depending
on parameters. It is this behavior that is of interest in the present paper.
Similar behavior was also noted in experiments on convection in He®/He*
mixtures at cryogenic temperatures (Sullivan and Ahlers 1988). In these
experiments, performed in a 34 : 6.9 : 1 cell, the heat transport through
the system exhibited irregular large amplitude bursting only 0.03% above
threshold for the convective instability. Here, however, the origin of the
approximate D, symmetry is quite different. Because of the slender shape
of the container we may idealize the system as effectively two-dimensional.
Such a system will undergo an oscillatory instability to either a mode of
even or odd parity with respect to reflection in the extended direction. In
the (formal) limit in which the aspect ratio of the system is allowed to
become large, the distinction between even and odd modes is lost, and the
amplitude equations describing the interaction of these two modes acquire
an additional “interchange” symmetry (Landsberg and Knobloch 1996). As
discussed further below, this interchange symmetry together with the re-
flection generates the group Dy. In a finite container this symmetry is never
exact, however, since one or other of the two competing modes sets in first.
Consequently the mode interaction in a system of large but finite extent
is described by the normal form equations for the Hopf bifurcation with
broken D, symmetry. This picture is supported by numerical simulations
of the partial differential equations describing two-dimensional binary fluid
convection in systems with aspect ratio I = 16.25 (Jacqmin and Heminger
1994). These simulations also reveal the presence of bursts, typically ir-
regular and sometimes of very large amplitude, but in addition provide
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1. Introduction

A thorough understanding of imperfections is critical for many engineering
applications. At the linear level, local imperfections can trap modes and be
responsible for a new class of potential instabilities. At the weakly nonlinear
level, imperfections are known to play an important role near degeneracies
in parameter space. Nominally symmetric systems are always degenerate
in this sense since the presence of symmetries typically eliminates certain
terms from the amplitude equations describing the evolution of instabilities
in such systems. Consequently, such systems are almost always sensitive to
small symmetry-breaking imperfections. Particularly dangerous are imper-
fections that destroy continuous symmetries, such as translation or rotation
invariance. Such imperfections are typically responsible for the introduction
of global bifurcations into the dynamics, and these are likely to be respon-
sible for the appearance of chaos in the imperfect system (Knobloch 1996).
However, in certain cases the loss of discrete symmetry can have a similar
effect, at least if the symmetry group is large enough. This is the case in
the class of systems discussed below.

We consider here systems with approximate Dy symmetry undergoing
a Hopf bifurcation. This symmetry arises frequently in applications. As an
example, consider a system of partial differential equations defined on a
square domain, and suppose that the equations (and boundary conditions)
are invariant under reflections and rotations of the square by 90°. A Hopf
bifurcation in such a system will be described by the amplitude equations
for the Hopf bifurcation with D4 symmetry. In normal form these equations
have an additional S' phase shift symmetry which allows an essentially com-
plete discussion of their dynamics. In particular, it is possible to show that
the third order truncation of this normal form cannot exhibit chaotic dy-
namics. The proof proceeds by showing that the resulting equations can be
written as a dynamical system defined on the surface of a three-dimensional



