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region of quasiperiodic and chaotic behavior was present near onset. When
these oscillations first appear they take the form of relaxation oscillations
in which the surface of the fluid remains flat for a long time before a “large
wave grows, reaches a maximum, and decays, all in a time short compared
with the period”. The duration of the spikes is practically independent
of the forcing amplitude, while the interspike period appears to diverge as
the forcing amplitude decreases. The spikes themselves possess the char-
acteristic asymmetry seen in Figs. 2 and 3. This behavior occurs when
the forcing frequency lies below the resonance frequency of the square con-
tainer, 1.e., precisely when D4-symmetric problem has a subcritical branch.
Irregular bursts are also found, depending on parameters, but these are
distinct from the chaotic states found by Nagata [67] far from threshold
and present even in a square container. Crawford [68, 69] points out that
depending on the mode interaction the dynamics in a square container and
a nonsquare container with D4 symmetry may be substantially different.

5. Discussion. In this article we have seen that there are many differ-
ent mechanisms responsible for bursting in hydrodynamical systems. Thus
no single mechanism can be expected to provide a universal explanation for
the observations. Although the mechanisms we have described all rely on
the presence of global bifurcations there are important differences among
them. For example, the bursts in the wall region of a turbulent boundary
layer described in section 2.1 are due to a (structurally stable) heteroclinic
cycle connecting fixed points with finite amplitude; such a cycle leads to
bursts with a limited dynamical range. In contrast in the mechanism of
section 3 the dynamical range is unlimited. Moreover, the role of the fixed
points is different: in the former the bursts are associated with the ezcur-
stons between the fixed points while in the latter the bursts are associated
with the fixed points. Because of the structural stability of the cycle the
time between successive bursts in the turbulent boundary layer will in-
crease without bound unless the stochastic pressure term is included; such
a stochastic term is not required in the mechanism of section 3. In par-
ticular in this mechanism the duration of the bursts remains finite despite
the fact that they are associated with a heteroclinic connection. This is
because of the faster than exponential escape to “infinity” that is typical
of this mechanism. This is so also for the mechanism described in section
2.2 although our mechanism applies in fully dissipative driven systems and
thus does not rely on the presence of Hamiltonian structure (but it does
require the presence of a reflection symmetry). However, both mechanisms
involve global connections to infinity and hence are capable of describing
bursts of arbitrarily large dynamical range.

This work was supported by NSF under grant DMS-9703684 and by
NASA under grant NAG3-2152.
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Fic. 7. The perturbation ¥ from the trivial state for parameters chosen as for
Fig. 2 except with (a) Aw = 0.1 and (b)) Aw = 0.5. From these and Fig. 6(a) we see
that as Aw 1s increased to large values the bursts fade away and are replaced by smaller
amplitude, higher frequency states.

rectangular container, focusing on the (3,2), (2,3) interaction in this sys-
tem. These modes are degenerate in a square container and only pure and
mixed modes were found in this case. In a slightly rectangular container
the degeneracy between these modes is broken, however, and in this case a
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FiG. 6. The perturbation W from the trivial state represented in a space-time plot
showing (a) a periodic blinking state (in which successive bursts occur at opposite sides
of the container) from the trajectory in Fig. 2, and (b) the periodic winking state (in
which successive bursts occur at the same side of the container) for the trajectory in
Fig. 3.
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Fig. 5. Partial bifurcation diagrams for (a) C = 141 and () C = 09+ 1
with the remaining parameters as in Fig. 2 showing the time-average of v for different
solutions as a function of X. Solid (dashed) lines indicate stable (unstable) solutions.
The branches labeled u, v, w, and gp (quasiperiodic) may be identified in the limit of
large |A| with branches in the corresponding diagrams when AN = Aw = 0 (insets).
All other branches correspond to bursting solutions which may be blinking or winking
states. Circles, squares, and diamonds in the diagram indicate Hopf, period-doubling,
and saddle-node bifurcations, respectively.

spatial case) the Dy symmetry itself would be weakly broken and the mech-
anism described in the previous section could operate. In this connection it
may be interesting that the secondary Hopf bifurcation from spiral vortex
flow found in [39] has just such a Floquet multiplier. However, the required
reflection symmetry is absent.

Of particular interest is the Faraday system in a nearly square con-
tainer. In this system gravity-capillary waves are excited on the surface
of a viscous fluid by vertical vibration of the container, usually as a re-
sult of a subharmonic resonance. Simonelli and Gollub [66] studied the
effect of changing the shape of the container from a square to a slightly
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Fi1G. 4. Time series and peak-to-peak plot showing bursts from chaotic rotations at
A = 0.072. This solution describes a chaotic blinking state because the trajectory makes
successive visits to different but symmetry-related infinite amplitude u solutions.

ations, we conclude that bursts will not be present if L is too small or ¢ too
large. It is possible that the burst amplitude can become large enough that
secondary instabilities not captured by the Ansatz (3.1) can be triggered.
Such instabilities could occur on very different scales and result in turbulent
rather than just large amplitude bursts. It should be emphasized that the
physical amplitude of the bursts is 0(6%) and so approaches zero as € | 0,
cf. eq. (3.1). Thus despite their large dynamical range (i.e., the range of
amplitudes during the bursts) the bursts are fully and correctly described
by the asymptotic expansion that leads to eqs. (3.2). In particular, the
mechanism 1s robust with respect to the addition of small fifth order terms

[53].

4. Other systems with approximate D, symmetry. There are a
number of other systems of interest where an approximate D4 symmetry
arises in a natural way. These include overstable convection in small aspect
ratio containers with nearly square cross-section [59, 60] and more gener-
ally any partial differential equation on a nearly square domain describing
the evolution of an oscillatory instability, cf. [61]. Other systems in which
our bursting mechanism might be detected are lasers [62], spring-supported
fluid-conveying tubes [63] and dynamo theories of magnetic field genera-
tion in the Sun [64, 65]. More interesting is the possibility that large scale
spatial modulation due to distant walls may produce bursting in a fully
nonlinear state with D4 symmetry undergoing a symmetry-breaking Hopf
bifurcation. As an example we envisage a steady pattern of fully nonlinear
two-dimensional rolls. With periodic boundary conditions with period four
times the basic roll period the roll pattern has D4 symmetry since the pat-
tern is preserved under spatial translations by 1/4 period and a reflection.
If such a pattern undergoes a secondary Hopf bifurcation with a spatial
Floquet multiplier exp iw/2 the Hopf bifurcation breaks D4 symmetry. If
the invariance of the basic pattern under translations by 1/4 period is only
approximate (this would be the case if the roll amplitude varied on a slow
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Fi1G. 3. As for Fig. 2 but showing stable periodic librations at A = 0.1253.

role as traveling waves in convection [57, 58]. In slender systems, such as
the convection system described above or a long Taylor-Couette appara-
tus, a large aspect ratio L is required for the presence of the approximate
D4 symmetry. If the size of the Dy symmetry-breaking terms AX, Aw is
increased too much the bursts fade away and are replaced by smaller ampli-
tude, higher frequency states (see Fig. 7). Indeed, if Aw > A) averaging
eliminates the C' terms responsible for the bursts [3]. From these consider-
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FiG. 1. Numerically obtained approzimate heteroclinic cycles for AX = 0.03, Aw =
002, A=1-1.5¢, B=—-28+5%, and (¢)C =1+1, (b)) C = 0.9+ 1 present at (a)
XA = 0.0974 and (b) X\ = 0.08461. The + signs indicate infinite amplitude u states
responsible for the bursts, while the squares indicate infinite amplitude v states and the
diamonds finite amplitude states.

We now focus on the physical manifestation of the bursts. In Fig. 6
we show the solutions of Figs. 2 and 3 in the form of space-time plots using
the approximate eigenfunctions

fe(z) = {e_w'l'” + ew_ix} cos TL—CE,

where ¥ = 0.15+ 0.025¢, L = 80 and —% <z< % The bursts in Fig. 6(a)
are generated as a result of successive visits to different but symmetry-
related infinite amplitude u solutions, cf. Fig. 2; in Fig. 6(b) the generating
trajectory makes repeated visits to the same infinite amplitude u solution,
cf. Fig. 3. The former state is typical of the blinking state identified in
binary fluid and doubly diffusive convection in rectangular containers [54]-
[56]. Tt is likely that the irregular bursts reported in [2] are due to such
a state. The latter is a new state which we call a winking state; winking
states may be stable but often coexist with stable chevron-like states which
are more likely to be observed in experiments in which the Rayleigh number
is ramped upwards (see Fig. 5).

The bursts described above are the result of oscillations in amplitude
between two modes of opposite parity and “frozen” spatial structure. Con-
sequently the above burst mechanism applies in systems in which bursts
occur very close to threshold. This occurs not only in the convection exper-
iments already mentioned but also in the mathematically identical Taylor-
Couette system where counterpropagating spiral vortices play the same
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—2(A + AXcos 0)p?

(3.4) ;Z_H =sinf[cos )(—Br + Cr cos 2¢) — Crsin 2¢] — 2A\ psin 6
T

(3.5) Z_(ﬁ = cos0(Br — Crcos2¢) — Crsin 2¢ + 2Aw p,
T

where A = Ap + @A, etc. There is also a decoupled equation for ¥(t) so
that fixed points and periodic solutions of equations (3.3-3.5) correspond,
respectively, to periodic solutions and two-tori in equations (3.2). In the
following we measure the amplitude of the disturbance by r = |z4|? +
|z_|? = p~1; thus p = 0 corresponds to infinite amplitude states. Eqgs. (3.3-
3.5) show that the restriction to the invariant subspace ¥ = {p = 0}
is equivalent to taking AX = Aw = 0 in (3.4,3.5). The resulting Dy-
symmetric problem has three generic types of fixed points [51]: u solutions
with cosf = 0,cos2¢ = 1; v solutions with cos# = 0,cos2¢ = —1; and
w solutions with sinf = 0. In the binary fluid context the u, v and w
solutions represent mixed parity traveling wave states localized near one of
the container walls, mixed parity chevron (or counterpropagating) states,
and pure even (6§ = 0) or odd (# = m) parity chevron states, respectively
[3]. Depending on A, B and C the subspace ¥ may contain additional fixed
points and/or limit cycles [51]. In our scenario, a burst occurs for A > 0
when a trajectory follows the stable manifold of a fixed point (or a limit
cycle) P; € X that is unstable within X. The instability within X then kicks
the trajectory towards another fixed point (or limit cycle) P, € . If this
point has an unstable p eigenvalue the trajectory escapes from X towards a
finite amplitude (p > 0) state, forming a burst. If AX and/or Aw # 0 this
state may itself be unstable to perturbations of type P; and the process
then repeats. This bursting behavior is thus associated with a codimension
one heteroclinic cycle between the infinite amplitude solutions P; and P
[52, 53]. Examples of such cycles are shown in Fig. 1. Since in such cycles
the trajectory reaches infinity in finite time the heteroclinic cycle actually
describes bursts of finite duration [53].

For the heteroclinic cycle to form it is required that at least one of the
branches in the D4-symmetric system be subcritical (P;) and one super-
critical (P;). Based on the He/*He experiments, we focus on parameter
values for which the u solutions are subcritical and the v, w solutions su-
percritical when AXA = Aw = 0 [1]. When AX and/or Aw # 0 two types of
oscillations in (6, ¢) are possible: rotations (see Fig. 2) and librations (see
Fig. 3). For A > 0 these give rise, under appropriate conditions, to se-
quences of large amplitude bursts arising from repeated excursions towards
the infinite amplitude (p = 0) u solutions. Trregular bursts are also readily
generated: Fig. 4 shows bursts arising from chaotic rotations. Figs. 5(a,b)
provide a partial summary of the different solutions of eqs. (3.3-3.5) and
their stability properties; much of the complexity revealed in these figures
is due to the Shil’nikov-like properties of the heteroclinic cycle [52, 53].



6 E. KNOBLOCH, J. MOEHLIS

pattern-forming instability, but are present only when the symmetry of the
system is weakly broken. Such bursts are typically not associated with
turbulence and are therefore easier to describe. Convection in binary fluid
mixtures provides a good example. In 3He/*He mixtures in a container
with dimensions in the ratio 34 : 6.9 : 1 Sullivan and Ahlers [2] observed
that immediately above threshold (¢ = (Ra— Ra.)/Ra. = 3x10~%) convec-
tive heat transport may take place in a sequence of irregular bursts of large
dynamic range despite constant heat input. Numerical simulations of the
two-dimensional equations with no-slip boundary conditions in a container
of aspect ratio I = 16 suggests that these bursts involve the interaction
between the first odd and even modes of the system [45]. An identical
description applies to the counterrotating finite length Taylor-Couette sys-
tem near onset of spiral vortex flow. In both cases we consider a slender
system of large (but finite) aspect ratio with left-right reflection symme-
try undergoing an oscillatory instability from the trivial state. In such a
system the first two unstable modes typically have opposite parity under
reflection; moreover, because the neutral stability curve for the unbounded
system has a parabolic minimum these typically set in in close succession
as the bifurcation parameter is increased. Near threshold the perturbation
from the trivial state takes the form

(3.1  U(z,yt) = Re {z3 fi(z,y) + 2 f(2,9)} + O(e),

where ¢ € 1, fi(—z,y) = £f+(z,y), and y denotes transverse variables.
The complex amplitudes z4 (¢) then satisfy the normal form equations [3]

(3.2) iy = A AXFi(w + Aw)|zg + A(|z4 > + |22 P24
+B|Z:|:|2z:|: —}—C’Eizi.

In these equations the nonlinear terms have identical (complex) coefficients
because of an approximate interchange symmetry between the odd and
even modes when I > 1. The resulting Dy symmetry (the symmetry
group of a square) is weakly broken whenever AX # 0 and/or Aw # 0, a
consequence of the finite aspect ratio of the system [3]; in the absence of
endwalls AX = Aw = 0 and the D4 symmetry is exact. Here, as elsewhere
[46]-[50], the introduction of small symmetry-breaking terms is responsible
for the possibility of complex dynamics in a system that would otherwise
behave in a regular manner.
To identify the bursts we introduce the change of variables

1 6 = 7 .
— o Tsin| — 4 — 4 — | eHEe+Y)/2
Zy =p 5111(2—}—4:}:4)6

1

and a new time-like variable 7 defined by dr/dt = p=!. In terms of these

variables equations (3.2) become
dp

(3.3) = —p[2Ar + Br(1 + cos? )+ Cr sin? 6 cos 2¢]
T
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first state consists of spiral vortices of either odd or even parity with respect
to midheight. Slightly above onset the flow resembles interpenetrating
spirals (IPS) and these may be intermittently interrupted by bursts of
turbulence which fill the entire flow field [38]. In an unbounded system
with periodic boundary conditions numerical simulations [39] show that
the TIPS flow consists of coexisting modes with different axial and azimuthal
wavenumbers. This flow is confined primarily to the vicinity of the inner
cylinder where the axisymmetric base flow is subject to an inviscid Rayleigh
instability. For spatially periodic spiral vortex flow Coughlin and Marcus
[39] identify a secondary Hopf bifurcation with the same m = 4 as the basic
spiral vortex flow but four times the axial wavelength. This bifurcation thus
breaks the symmetry of the spiral vortex flow. The secondary instability
grows in amplitude and ultimately provides a finite amplitude perturbation
to the inviscidly stable flow near the outer cylinder and this triggers a
turbulent burst throughout the whole apparatus. During a burst small
scales are generated throughout the apparatus leading to a rapid collapse
of the turbulence and resumption of the IPS flow; the process can then
repeat.

As discussed in Section 3, in a finite Taylor-Couette apparatus there
is a natural mechanism for generating bursts. This mechanism does not
operate 1n the axially periodic system, however, and here bursts may be
related to the way the secondary instability breaks the symmetry of spiral
vortex flow (cf. Section 4).

2.5. Burstsin neural systems. In neural systems, bursting refers to
the switching of an observable such as a voltage or chemical concentration
between an active state characterized by rapid (spike) oscillations and a rest
state. Models of such bursting typically involve singularly perturbed vector
fields in which system variables are classified as being “fast” or “slow”
depending on whether or not they change significantly over the duration
of a single spike. The slow variables may then be thought of as slowly
varying parameters for the equations describing the fast variables [40]-[44].
As the slow variables evolve it 1s possible for the state of the system in the
fast variables to change from a stable periodic orbit (corresponding to the
active state) to a stable fixed point (corresponding to the rest state) and
vice versa; such transitions are often associated with a region of bistability
for the periodic orbit and the fixed point but need not be. Mechanisms by
which such transitions can occur repeatedly have been classified [40]-[43].
Behavior of the time interval between successive spikes near a transition
from the active to the rest state is discussed in [44]; in this paper the
presence of a subcritical Hopf-homoclinic bifurcation is also identified as a
mechanism for the transition from the active to the rest state.

3. A new mechanism for bursting. In many systems bursting
arises as a result of the interaction between spontaneous and forced sym-
metry breaking. The resulting bursts occur very close to onset of the
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ing flow is characterized by intermittent bursting [23]-[30]. A burst occurs
when the system evolves from a coherent vortex-like modulated traveling
wave (MTW) to a spatially disordered state following transfer of energy
from large to small scales. The system then relaxes to the vicinity of an-
other symmetry-related MTW state, and the process continues with bursts
occurring irregularly but with a well-defined mean period.

The details of what actually happens appear to depend on the value
of k because the symmetry of the equation describing the evolution of the
Kolmogorov flow depends on k. With 27-periodic boundary conditions in
each direction this symmetry is Da;+SO(2). In the simplest case, k = 1,
this symmetry group is isomorphic to O(2)xZ,. However, for k = 1 we
must restrict attention to perturbations in # with period larger than 27 in
order that the Kolmogorov flow be unstable [31]-[33] and such perturbations
are not allowed with 27-periodic boundary conditions. Alternatively, we
may consider the domain {—7 < z < 7,—7/k <y < w/k} with k > 1 for
which the symmetry group is O(2)xZ3 and perturbations may grow. The
unstable modes are then either even or odd under the reflection (z,y) —
(—z, —y) with respect to a suitable origin. Mode interaction between these
two modes can result in the following sequence of transitions [15]: the
Kolmogorov flow loses stability to an even mode, followed by a steady state
bifurcation to a mixed parity state. This state loses stability in a further
steady state bifurcation to a traveling wave which in turn loses stability
at a Hopf bifurcation to a MTW. The MTW two-torus terminates in a
collision with the two circles of pure parity states forming an attracting
structurally stable heteroclinic cycle connecting them and their quarter-
wavelength translates. In this regime the behavior would resemble that
found in the numerical simulations, with higher modes kicking the system
away from this cycle. Indeed this sequence of transitions echoes the results
obtained by She and Nicolaenko for & = 8. While it is likely that the
k = 1 scenario is relevant to these calculations because of the tendency
towards an inverse cascade in these two-dimensional systems, it must be
mentioned that the careful analysis of the £ = 2 case by Armbruster et
al. [30] shows that while a heteroclinic cycle of the required type does indeed
form 1t is not structurally stable. The case ¥ = 4 has also been studied
[34] and a similar sequence of transitions found. However, despite much
work a detailed understanding of the bursts in this system remains elusive,
although as argued above simulationson {—7 < z < 7,—7w/k <y < w/k}
could shed new light on the problem, cf. [35]. We mention here that closely
related problems arise in convection in rotating straight channels [36] and
in natural convection in a vertical slot [37]. In both of these cases the linear
eigenfunctions are either even or odd with respect to a rotation by =.

2.4. Bursts in the Taylor-Couette system. The Taylor-Couette
system consists of concentric cylinders enclosing a fluid-filled annulus. The
cylinders can be rotated independently. In the counterrotating regime the
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A related “punctuated Hamiltonian” approach to the evolution of two-
dimensional turbulence has met with considerable success [18, 19]. For
their description Newell et al. divide the instantaneous states of the flow
into two categories, a turbulent soup (TS) characterized by weak coherence,
and asingular (S) state characterized by strong coherence, and suppose that
the TS and S states are generalized saddles in an appropriate phase space.
Furthermore, they suppose that in the Hamiltonian limit the unstable man-
ifold of TS (S) intersects transversally the stable manifold of S (TS). If the
constant energy surfaces are noncompact (i.e. unbounded), the evolution
of the Hamiltonian system may take the system into regions of phase space
with very high (“infinite”) velocities and small scales. These regions are
identified with the S states and high dissipation. In such a scenario the
strong dissipation events are therefore identified with excursions along het-
eroclinic connections to infinity. Perturbations to the system (such as the
addition of dissipative processes) may prevent the trajectory from actually
reaching infinity, but this underlying unperturbed structure implies that
large excursions are still possible.

Newell et al. apply these ideas to the two-dimensional nonlinear
Schrédinger equation (NLSE) with perturbations in the form of special
driving and dissipative terms which act at large and small scales, respec-
tively. Here S consists of “filament” solutions to the unperturbed NLSE
which become singular in finite time and represent coherent structures
which may occur at any position in the flow field. When the solution
is near S a large portion of the energy is in small scales; for the perturbed
equations the dissipative term then becomes important so that the filament
solution is approached but collapses before it is reached. This leads to a
spatially and temporally random occurrence of localized burst-like events
for the perturbed equation. The rate of attraction at S is determined by
the faster than exponential rate at which the filament becomes singular,
while the rate of repulsion at S is governed by the dissipative process and
hence is unrelated to the rate of attraction.

This bursting mechanism shares characteristics with that described
in [20] in which solutions of a single complex Ginzburg-Landau equation
with periodic boundary conditions undergo faster than exponential burst-
ing due to a destabilizing nonlinearity and collapse due to strong nonlinear
dispersion (see also [21]). A study of a generalization of Burger’s equa-
tion modeling nonlocality effects suggests the presence of burst-like events
through a similar scenario [22].

2.3. Bursts in the Kolmogorov flow. The Kolmogorov flow u =
(ksin ky, 0) is an exact solution of the two-dimensional incompressible Nav-
ier-Stokes equation with unidirectional forcing f at wavenumber k: f =
(vk3sin ky,0). With increasing Reynolds number Re = v~ this flow be-
comes unstable, and direct numerical simulation with 2#-periodic boundary
conditions shows that for moderately high Reynolds numbers the result-
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is often characterized by intermittent bursting events involving low speed
streamwise “streaks” of fluid. Specifically, let 21, z5, and z3 be the stream-
wise, wall normal, and spanwise directions with associated velocity compo-
nents U + uy,us, and usg, respectively; here U(xz) is the mean flow. In a
“burst” the streak breaks up and low speed fluid moves upward away from
the wall (u; < 0, uz > 0); this is followed by a “sweep” in which fast fluid
moves downward towards the wall (u; > 0,us < 0). After the burst/sweep
cycle the streak reforms, often with a lateral spanwise shift.

A low-dimensional model of the burst/sweep cycle was developed by
Aubry et al. [6]; further details and later references may be found in
[7, 8]. To construct such a model the authors used a Karhunen-Loeve
decomposition of the experimental data to identify an energetically dom-
inant empirical set of eigenfunctions, hereafter “modes”. The model was
constructed by projecting the Navier-Stokes equation onto this basis and
consists of a set of coupled ODEs for the amplitudes of these modes. The
fixed points of these equations are to be associated with the presence of
coherent structures. There are two types, related by half-wavelength trans-
lation. Numerical integration of the model reveals that these fixed points
are typically unstable and that they are connected by a heteroclinic cy-
cle. In such a cycle the trajectory visits the vicinity of one unstable fixed
point to the other and back again. In the model of Aubry et al. this
heteroclinic cycle is found to be structurally stable, i.e. it persists over a
range of parameter values. This is a consequence of the O(2) symmetry of
the equations inherited from periodic boundary conditions in the spanwise
direction. Moreover, for the parameter values of interest this cycle is ai-
tracting, 1.e., it attracts all nearby trajectories. Since the transition from
one fixed point to the other corresponds to a spanwise translation by half
a wavelength the recurrent excursions along such a heteroclinic cycle can
be identified with the burst/sweep cycle described above. However, since
this cycle is attracting, the time between successive bursts will increase as
time progresses. This 1s not observed and Aubry et al. appeal to the pres-
ence of a random pressure term modeling the effect of the outer fluid layer
to kick the trajectory from heteroclinic cycle. In the language of Busse
[9] such a pressure term results in a statistical limit cycle, with the burst-
ing events occurring randomly in time but with a well-defined mean rate.
The resulting temporal distribution of the burst events is characterized by
a strong exponential tail, matching experimental observations. Attracting
structurally stable heteroclinic cycles occur in a number of problems of this
type, i.e., mode interaction problems with O(2) symmetry [10]-[15].

2.2. Heteroclinic connections to infinity. A distinct mechanism,
also involving heteroclinic connections, has been investigated by Newell et
al. [16, 17] as a possible model for spatio-temporal intermittency in tur-
bulent flow. The authors suggest that such systems may be viewed as
nearly Hamiltonian except during periods of localized intense dissipation.
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Abstract. Different mechanisms believed to be responsible for the generation of
bursts in hydrodynamical systems are reviewed and a new mechanism capable of gen-
erating regular or irregular bursts of large dynamic range near threshold is described.
The new mechanism is present in the interaction between oscillatory modes of odd and
even parity in systems of large but finite aspect ratio, and provides an explanation for
the bursting behavior observed in binary fluid convection by Sullivan and Ahlers.

1. Introduction. Bursts of activity, be they regular or irregular, are
a common occurrence in physical and biological systems. In recent years
several models of bursting behavior in hydrodynamical systems have been
described using ideas from dynamical systems theory. In this article we
provide a brief overview of these mechanisms and then describe a new
mechanism [1] which provides an explanation for the bursting behavior ob-
served in experiments on convection in *He/*He mixtures [2]. This mech-
anism operates naturally in systems with broken D4 symmetry undergoing
a Hopf bifurcation from a trivial state. This symmetry may be present
because of the geometry of the system under consideration (for example,
the shape of the container) but also appears in large aspect ratio systems
with reflection symmetry [3]. In either case bursting arises as a result of the
nonlinear interaction between two nearly degenerate modes with different
symmetries, one of which is subcritical and the other supercritical.

2. Mechanisms producing bursting. As detailed further below
bursts come in many different forms, distinguished by their dynamic range,
duration and recurrence properties. Particularly important for the pur-
poses of the present article is the question of whether the observed bursts
occur close to the threshold of a primary instability or whether they are
found far from threshold. In the former case a dynamical systems approach
is likely to be successful: in this regime the spatial structure usually re-
sembles the eigenfunctions of the linear problem and it is likely that only
a small number of degrees of freedom participate in the burst. In addition
the equations governing the evolution of the instability are often highly
symmetric [4] and these symmetries favor global bifurcations which serve
as likely candidates for bursting mechanisms. In contrast, bursts found far
from threshold usually involve many degrees of freedom but even here some
progress 1s sometimes possible.

2.1. Bursts in the wall region of a turbulent boundary layer.
The presence of coherent structures in a turbulent boundary layer is well
established (see, e.g., [5]). The space-time evolution of these structures
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