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of notation. For someone like me, reading
(all right, skimming) the book from cover
to cover, this deficiency is ameliorated by
Brualdi’s very patient repetition of main
definitions (from Chapters 1-2) at the be-
ginnings of sections where they are actually
used. Someone like my straw mathemati-
cian, on the other hand, will scan the in-
dex in vain for such key search words and
phrases as conjugate partition, degree se-
quence, elementary doubly stochastic ma-
trix, simplez, and total support. And, while
words like contraction and symmetric in-
terchange appear (under matrix and inter-
change, respectively), they are not always
to be found where one first looks.

A very minor quibble, having nothing to
do with the straw mathematician, is that
references are given by number according
to a list at the chapter’s end. As a practi-
cal matter, it is much easier to find, e.g.,
Brualdi and Ryser (1991) in the bibliogra-
phy than references to the same book as
[4] in Chapter 1, [5] in Chapter 2, [13] in
Chapter 3, [19] in Chapter 4, and so on.
For one thing, it is generally easier to find a
bibliography at the end of a book than a list
of references at the end of a chapter. For
another, Brualdi and Ryser (1991) is identi-
fiable wherever it may appear, whereas [4],
[5], [13], [19], and so on, are less useful.

Nearing the end of its career, a swan,
if ancient beliefs are credible, sings a song
of exceptional grace and beauty. Moderns
have adapted that image to refer to the fi-
nal lasting achievement, e.g., of a composer,
performer, civilization, or culture. Apart
from his still youthful vigor, the most com-
pelling reason not to think of this wonderful
book as Richard Brualdi’s swan song is the
possibility, gleaned from a hopeful reading
between the lines of its preface, that this
may be, not the last, but the second volume
in a to-be-continued series.
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Neurons are the cells that form the basic
structural unit of the nervous system. There
are roughly 10! neurons in the human
brain, and these have a variety of shapes,
sizes, and electrophysiological properties.
Neurons receive inputs from other neurons
via chemical and electrical synapses, and
can respond by generating an action poten-
tial, or a spike, which is then communicated
to other neurons. Ultimately, the interac-
tion of neurons through such action poten-
tials allows each of us to (1) receive sensory
information from inside or outside our body,
such as seeing the letters on this page; (2)
interpret this information, such as recogniz-
ing visual stimuli as words, understanding
the concepts the words convey, and relating
these to concepts you have learned or re-
member; and (3) initiate motor responses if
necessary, such as turning to the next page
when you’re done reading this page, or to
the next book review if you lose interest in
reading this one.

Neurons are also dynamical systems:
there is a set of variables that describe the
state of a neuron, and a rule that describes
how these variables evolve. (Well, it may
not always be clear what all of the rele-
vant variables are, or what the precise rule
is—more on this later.) The most influen-
tial model of the dynamics of a neuron is
the Hodgkin-Huxley equations [1], which
in space clamped form (i.e., without spatial
dependence) are a set of four coupled, non-
linear ordinary differential equations which

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



398 BOOK REVIEWS

came from careful consideration of the dy-
namics of the squid giant axon. Models in
the style of the Hodgkin—Huxley equations
are referred to as conductance-based mod-
els, and they treat the neuronal membrane
as an equivalent electrical circuit, with the
membrane, protein molecules embedded in
the membrane, and ionic pumps modeled
as a capacitor, nonlinear resistors, and bat-
teries, respectively. A conductance-based
model consists of differential equations de-
scribing the time evolution of the voltage
across the membrane and gating variables,
the latter controlling the rate of flow of dif-
ferent ions across the membrane through the
protein molecules. Different conductance-
based models typically include different
ionic currents, which can lead to different
properties and dynamics for the neurons.
As the book under review persuasively
illustrates, the theory of dynamical sys-
tems provides powerful tools for developing
and analyzing conductance-based and other
related models of neurons, including iden-
tifying mechanisms for their behavior and
making experimental predictions. Such an
approach is not new: as the author read-
ily acknowledges, the book builds upon
pioneering work found in [2, 3, 4] and else-
where. But many of the results and insights
are new. Indeed, the book is a tour de force
on the use of dynamical systems concepts to
understand the dynamics of single neurons.

The Dynamical Systems Approach to Un-
derstanding Neurons. Suppose that a neu-
ron is resting, with the voltage difference
across the membrane staying constant in
time. In dynamical systems terms, this
corresponds to the neuron being at a sta-
ble equilibrium. Furthermore, suppose that
when a small perturbation is made (for ex-
ample, a current input from an electrode
or due to other neurons) the neuron un-
dergoes a small excursion before returning
to the resting state. However, if a larger
perturbation is made, the neuron fires an
action potential before returning to the the
resting state. As the book argues, such ex-
citability occurs when the system is near a
bifurcation, that is, a qualitative change in
the dynamics as a parameter is varied. Fur-
thermore, the book describes how different
details of the dynamics of excitable neu-
rons can be classified according to the type

of bifurcation that the system is close to,
and how this affects the neuron’s compu-
tational properties. This includes a careful
treatment of the question of whether or not
thresholds exist for perturbations leading
to action potentials for excitable neurons.
Action potentials can also occur period-
ically in time for a neuron, for example,
when a sufficiently large constant current
is injected. In dynamical systems terms,
this corresponds to the neuron being in
a stable periodic orbit. The frequency of
spiking depends on the amount of current
which is injected; for some neurons this can
be arbitrarily small, while for others there
is a nonzero minimum spiking frequency.
Again, the book illustrates how these and
other properties can be understood in terms
of the type of bifurcation involved, in this
case, the one leading to periodicity. It also
shows how excitable and periodically spik-
ing neurons can be understood by consid-
ering the nullclines for the model, which
are the surfaces on which the derivative of
one of the variables equals zero. (Equilib-
ria exist at intersections of nullclines for all
variables.) This is particularly true when
the model is planar and the nullclines cor-
respond to one-dimensional curves.
Neurons can also display bursting behav-
ior, in which two or more spikes are followed
by an interval without spikes, which might
then repeat. In many cases, such bursting
can be understood in terms of a dynamical
system with fast-slow behavior, specifically,

1) &= f(z,u),
(2) u = pg(z,u),

where x € R™ describe fast variables re-
sponsible for spiking, u € R* describe slow
variables which modulate the spiking, and
1 < 1 represents the time-scale separation
between the fast and slow variables. For
p = 0, the slow variables u can be viewed
as parameters for the fast  subsystem, and
bifurcations of the fast subsystem can be
determined. When g is small but finite,
the u variables evolve slowly, and it may be
possible to interpret the dynamics of the full
system as “drifting” along the bifurcation
diagram of the fast subsystem found for
© = 0. Building on the work by the author
of [3] and others, the author classifies the
types of bursting behavior in terms of the
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bifurcations, in the above interpretation,
which initiate and terminate spiking. Com-
plementary treatments of bursting neurons
are given in [5].

Models for Neurons. The book also pro-
motes the use of several different classes
of models for neurons. Before evaluating
these, let me editorialize a bit on the ques-
tion, “Is a given model of a neuron a good
model?” Ideally one would like to accu-
rately capture the entire electrophysiology
of the neuron. Indeed, if this is all modeled
correctly, presumably the behavior of the
model will give the correct behavior of the
real neuron. But this is not always possi-
ble. Despite their cleverness and hard work,
experimentalists may not have worked out
all of the currents that are relevant to the
behavior of a particular type of neuron. Or,
even if they have, the data may represent
an “average” over different neurons or dif-
ferent operating conditions, rather than the
dynamics of a “real” neuron. Furthermore,
models for these currents are not derived
from “first principles”: they are really the
result of fitting data, and should thus be
viewed as empirical descriptions. This point
was very nicely stated in Hodgkin and Hux-
ley’s paper (on page 541 of [1]):

The agreement [of the model and
the experiments] must not be taken
as evidence that our equations are
anything more than an empirical de-
scription of the time-course of the
changes in permeability to sodium
and potassium. An equally satis-
factory description of the voltage
clamp data could no doubt have
been achieved with equations of very
different form, which would proba-
bly have been equally successful in
predicting the electrical behavior of
the membrane.

So let’s instead suggest that a good model
should reproduce the “important” behav-
ior of the neuron, say, the quantitative (or
at least qualitative) features of the time
series of the voltage across the membrane
in response to different types of stimuli.
It should also lead to the identification of
mechanisms which explain the neuron’s be-
havior, and it should make predictions that
can be experimentally tested.

One class of models that the book dis-
cusses is that of minimal models. For exam-
ple, a minimal model for periodic spiking
could be obtained by starting with a model
which has a stable periodic orbit and re-
moving gating variables or currents until
one obtains a model which also displays pe-
riodic spiking, but would not if any more
gating variables or currents were removed.
Minimal models are often planar, and can
be understood from the geometry of the
nullclines. Since different currents can lead
to similar nullclines, it is not surprising
that different electrophysiological models
can have similar dynamics. But although
such minimal models are useful for illustrat-
ing key mechanisms for neuronal behavior
while retaining electrophysiologically rele-
vant variables, the approach seems too cav-
alier to be ultimately satisfying. First of all,
one might feel uneasy about removing cur-
rents that biologists know are present and
believe to be important. More importantly,
it is not clear if a minimal model will cor-
rectly capture the response properties of the
neuron to different types of stimuli. So min-
imal models might be useful for pedagogy,
but maybe not for serious modeling.

On the other hand, the following simple
phenomenological model discussed in depth
holds much greater promise:

(3) v=1+v"—u,
(4) = a(bv — u),

with the additional rule that if v > 1, then
the variables are reset as

(5) v c, u <+ u+d.

Here, v € R is a voltage-like variable, u € R
is a phenomenological variable which mod-
els slow currents that modulate the spiking,
and a, b, ¢, and d are dimensionless parame-
ters. This model can be viewed as a gener-
alization of integrate-and-fire models, but
has the advantage that it dynamically cap-
tures the upstroke of an action potential,
although not the downstroke. The book
shows that, by tuning the parameters, it is
possible to make this model display a huge
variety of experimentally observed neuronal
behaviors. Indeed, it is claimed that this
model can quantitatively reproduce “sub-
threshold, spiking, and bursting activity of
all known types of cortical and thalamic
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neurons in response to pulses of DC cur-
rent.” A bonus is that, as a planar model,
it is possible to geometrically interpret the
dynamical mechanisms for these behaviors.
In my opinion, this model deserves further
study and wider use.

This book also briefly discusses canonical
models for families of neurons that share
common properties. Here, “a model is
canonical for a family if there is a piecewise
continuous change of variables that trans-
forms from the family into this one.” This
might not be an invertible change of vari-
ables, but the canonical model retains many
important features of the family, and thus
allows one to study universal properties of
families of neurons. The canonical model
framework is developed in more detail in [6].

Pedagogy. This book covers both neu-
roscience and dynamical systems theory
starting from the basics, and the typical
SIAM Review reader will only rarely be
overwhelmed by the biological descriptions.
(For example, I found the explanations of
the behavior of the minimal models in terms
of electrophysiology to be a bit tedious.) Of
course, it would be helpful if the reader had
some background in neuroscience and dy-
namical systems, but it is not necessary.
The text has an informal style that makes
it quite readable. Also, there are summaries
and exercises at the end of the chapters, in-
cluding some graded as being M.S. or Ph.D.
level. Notably, detailed solutions are given
at the end of the book for nearly all of the
non-M.S. or non-Ph.D. exercises! This pro-
vides a great way to check if you understand
the material.

As might be expected for a book about
the “geometry of excitability and bursting,”
there are many figures. Actually, this is an
understatement: there are over 400 figures,
which are all of high quality. Many of the
figures illustrate the phase space geometry
of a certain model, or give comparisons of
experimental and computed time series of
a neuron’s voltage. There are also some
“fun” figures, such as pictures of pioneers
of the dynamical systems approach to neu-
roscience, including John Rinzel on a mo-
torcycle and Bard Ermentrout with a parrot
on his head. There are also cartoons of the
author in different situations, for example,

in the following actual conversation with his
boss. Author: “I am a mathematician. All T
need is paper, a pencil, and a trash basket!”
Boss: “Too bad you’re not a philosopher,
you wouldn’t need the trash basket!”

It is also worth noting that key papers
and books from the Soviet literature are
cited, a great service to those of us who
would find it difficult to navigate through
this body of work.

Final Thoughts. The book under review
claims that it is “more ambitious, focused,
and thorough in dealing with neurons as
dynamical systems” than other books on
mathematical and computational neuro-
science, such as [7, 8, 9]. This is certainly
true, and it succeeds in showing that the
concepts of dynamical systems theory (such
as equilibria, periodic orbits, nullclines, sta-
bility, and bifurcations) provide a powerful
framework for understanding the behavior
of neurons geometrically.

A “weakness” of the book is that it fo-
cuses too exclusively on the dynamics of
single neurons. (It should be noted that
although the book seems exhaustive—and
to some it might seem exhausting—in this
regard, it is not complete in its treatment of
single neurons. Most notably, neurons typi-
cally have a complex branched spatial struc-
ture which affects their dynamics, a point
mentioned in the book but not developed in
detail.) Yes, single neurons are interesting
and important, but all of the amazing things
that our brains do are the result of the inter-
actions of networks of neurons. As has been
amply demonstrated in research by many
people, dynamical systems techniques can
also be used to help to understand such net-
works. Having said this, a very good chap-
ter on “Synchronization” is available from
the author’s website—apparently some of
the reviewers and the publisher felt that it
was “off-topic” for a book about single neu-
rons, and that its inclusion with the rest of
the book would make it too long. This on-
line chapter primarily covers phase models
for neurons, including isochrons, phase re-
sponse curves, and phase-difference models
for weakly coupled neurons. This is impor-
tant material presented in a very readable
way, but after such a thorough treatment of
single neurons, one naturally wants more.
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Overall, the focus on single neurons limits
the book’s usefulness as a textbook for a
general course on mathematical or compu-
tational neuroscience.

A final point: the author of the book un-
der review is the Editor-in-Chief of Scholar-
pedia [10], an online encyclopedia focused
primarily on neuroscience and dynamical
systems, and which could be viewed as an
“unofficial supplement” to the book. (Dis-
closure: I have coauthored several articles
for Scholarpedia.) Each Scholarpedia arti-
cle is initially authored by an expert on the
topic and refereed, but then can be edited
by anyone, with the edits incorporated into
the article upon approval of the curator of
the article (typically the original author).
This setup allows the articles to continually
evolve and improve. A quick surf around
this site shows that there are many topics
that should be of interest to mathematical
neuroscientists but that are not covered by
the book under review. Fair enough. What
the book does cover, it covers very well. It
and Scholarpedia deserve a wide audience!
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Alwyn Scott (1931-2007) completed this
summary of his life’s study in December
2006 and, sadly, he died shortly thereafter.
This history book wonderfully summarizes
ideas that were so important to him in a way
that is largely accessible to “general read-
ers who would understand science and for
university undergraduates who would be-
come researchers in or teachers of science.”
It also displays his humanity, charm, and
broad-reaching interests and knowledge.
The 1087 references he lists will give those
seeking more information much opportu-
nity to do so, in addition to consulting his
more technical monographs Nonlinear Sci-
ence: Emergence and Dynamics of Coherent
Structures (Oxford University Press, 2003)
and Neuroscience: A Mathematical Primer
(Springer, 2002) and The Encyclopedia of
Nonlinear Science (Routledge, 2005) that
he edited. His 1961 MIT thesis on the dy-
namics of Esaki (tunnel) junctions required
a nonlinear model and his subsequent en-
gineering work on active solid-state devices
led him to study the sine-Gordon equation.
By the 1980s, Al was highly active at Los
Alamos and elsewhere in the vigorously
developing, highly interdisciplinary, and
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