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a b s t r a c t

The collective behavior of biological oscillators has been recognized as an important problem for
several decades, but its control has come into limelight only recently. Much of the focus for control
has been on desynchronization of an oscillator population, motivated by the pathological neural
synchrony present in essential and parkinsonian tremor. Other applications, such as the beating of
the heart and insulin secretion, require synchronization, and recently there has been interest in
forming clusters within an oscillator population as well. In this article, we use a formulation that
allows us to devise control frameworks to achieve all of these distinct collective behaviors observed
in biological oscillators. This is based on the Fourier decomposition of the partial differential equation
governing the evolution of the phase distribution of a population of identical, uncoupled oscillators.
Our first two control algorithms are Lyapunov-based, which work by decreasing a positive definite
Lyapunov function towards zero. Our third control is an optimal control algorithm, which minimizes
the control energy consumption while achieving the desired collective behavior of an oscillator
population. Motivated by pathological neural synchrony, we apply our control to desynchronize an
initially synchronized neural population. Given the proposed importance of enhancing spike time
dependent plasticity to stabilize neural clusters and counteract pathological neural synchronization,
we formulate the phase difference distribution in terms of the phase distribution, and prove some of
its fundamental properties, and in turn apply our control to transform the neural phase distribution
to form clusters. Finally, motivated by eliminating cardiac alternans, we apply our control to phase
shift a synchronous cardiac pacemaker cell population. For the systems considered in this paper, the
control algorithms can be applied to achieve any desired traveling-wave phase distribution, as long
as the combination of the initial phase distribution and phase response curve is non-degenerate. To
demonstrate the effectiveness of our control for each of these applications, we show that a population
of 100 phase oscillators with the applied control mimics the desired phase distribution.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Populations of nonlinear oscillators are found in a variety
of applications from physics, chemistry, biology, and engineer-
ing [1–4]. The collective behavior of such oscillators varies, and
includes synchronization, desynchronization, and clustering. For
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example, synchronization in beta cells is crucial for efficient in-
sulin secretion [5], the beating of the heart is regulated by con-
stant pacing of synchronized cardiac pacemaker cells [6,7], and
neural synchrony is essential in visual and odor processing [8,
9], and also in learning and memory recall [10,11]. However,
synchronization can be detrimental as well. For example, patho-
logical neural synchronization in the thalamus and the subtha-
lamic nucleus (STN) brain region is hypothesized to be one of
the causes of motor symptoms for essential and parkinsonian
tremor, respectively [12,13]; this motivates the goal of design-
ing a control input to desynchronize an oscillator population.
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Recently there has also been focus on achieving partial syn-
chrony through clustering instead of complete neural desynchro-
nization [14–16]. One motivation behind such clustering is to
rewire neural connections by enhancing spike time dependent
plasticity which potentiates intra-cluster synaptic connections
and depresses inter-cluster connections. This potentially helps in
long-term stabilizability of the clusters in the presence of noise.

Such diversity of collective behavior has motivated researchers
to develop specific control techniques to achieve different be-
haviors. For example, [17–19] develop control to promote syn-
chrony, [20–22] develop control to promote desynchronization,
and [14,15] develop ways to promote clustering. We note that
some of these previously proposed algorithms to promote collec-
tive behavior are based on individual neuron models [22–25], and
some can face implementation challenges if they require observ-
ability of phases of all neurons at all times [25], or demand initial
phases to be sufficiently close [22,26]. There are also population-
level algorithms for desynchronization in the literature which
use multiple inputs [20,26,27], making experimental implemen-
tation challenging because they require multiple electrodes to be
implanted in a small region of brain tissue.

In this article we overcome these difficulties by developing
unified control frameworks which can achieve all of the collective
behaviors mentioned above using a single control input. Our
algorithms are based on phase reduction, a classical reduction
technique based on isochrons [28], which has been instrumental
in the development of many of the above control algorithms. It
reduces the dimensionality of a dynamical system with a periodic
orbit to a single phase variable, and captures the oscillator’s
phase change due to an external perturbation through the phase
response curve (PRC). This can make the analysis of high dimen-
sional systems more tractable, and their control [22,23,26,29–31]
experimentally implementable; see e.g., [29,32–34].

The algorithms presented in this paper use a partial differ-
ential equation (PDE) formulation which governs the evolution
of the probability distribution of phases (phase distribution) of
a population of identical, uncoupled oscillators [26,35]. We use
Fourier analysis to decompose this PDE into a system of ordi-
nary differential equations (ODEs) governing the evolution of the
Fourier coefficients of the phase distribution. Thus, to transform
the phase distribution of an oscillator population to a desired
distribution, we drive the corresponding Fourier coefficients to
the Fourier coefficients of the desired distribution. Our first two
algorithms are Lyapunov-based, which work by decreasing the
L2 norm difference between the current and the desired phase
distributions. Note that a related control algorithm has been
published in [36], where we did not employ Fourier analysis to
decompose the PDE into a systems of ODEs, but like the present
first two algorithms it also decreases the L2 norm difference
between the current and the desired phase distributions. This for-
mulation in Fourier space makes our algorithm suitable for using
a pseudospectral method for more accurate numerical simulation
of the PDEs, which enables us to realize new control objectives
and applications discussed in Section 6. Such a formulation also
allows us to obtain the degenerate set of phase distributions and
phase response curves for which the control would not work. For
the control formulation in [36], we employed a method of lines
type approach for numerically simulating our PDEs, but numerical
dissipation present in this approach limited the versatility of
control, especially when going from a uniform phase distribution
to a synchronous distribution.

Our third algorithm is an optimal control algorithm, which
unlike the previous two algorithms, minimizes the control energy
consumption while achieving the desired control objective. We
formulate it by constructing a cost function in terms of the Fourier
coefficients of the phase distribution. This formulation results

in high dimensional Euler–Lagrange equations that we solve as
a two point Boundary Value Problem (BVP) numerically. Since
the BVP is high dimensional, we construct a modified Newton
Iteration method that is effective for our problem. To demon-
strate the effectiveness of our control algorithms for each of
the applications considered, we apply them to a population of
100 uncoupled phase oscillators, and show that the population
of phase oscillators with the applied control mimics the de-
sired phase distribution. Other control algorithms based on the
probability distribution of phases include [22,37,38].

This article in organized as follows. In Section 2, we give back-
ground on phase reduction, and the partial differential equation
for the phase distribution. In Section 3, we develop a pseudospec-
tral framework to write distributions as a finite Fourier series,
and devise a Lyapunov-based control algorithm to control their
Fourier coefficients. We construct a degenerate set of phase distri-
butions and phase response curves for which the devised control
would not work in Section 4. In Section 5, we detail the pseu-
dospectral method used for numerical simulations throughout
the article. In Section 6, we demonstrate versatility of our control
through several diverse applications and show the corresponding
simulation results. In the same section, we formulate the phase
difference distribution and prove some of its properties. In Sec-
tion 7, we devise another Lyapunov-based control to take into
account the effect of white noise on the oscillator population. We
develop our optimal control algorithm in Section 8 and compare
it with our Lyapunov-based algorithm. Section 9 summarizes
our work and concludes by suggesting future extensions and
tools needed for experimental implementation of our algorithms.
Appendix A lists the mathematical models used in this article. The
modified Newton Iteration method for solving a high dimensional
BVP is detailed in Appendix B.

We note that beyond using a formulation in terms of Fourier
series, other improvements and extensions with respect to [36]
include the formulation of the degenerate set, the use of a
pseudospectral method for more accurate numerical simulations,
formulation of the phase difference distribution, novel applica-
tions including the incorporation of the phase difference distri-
bution and plasticity into the control set-up, extension of the
control algorithm to account for the presence of noise, and the
formulation of an optimal control algorithm.

2. Background

In this section, we give background on the key concepts of
phase reduction, phase response curves, and the partial differen-
tial equation for the evolution of the phase density. These will be
crucial for the formulation of our control algorithms in Section 3.

2.1. Phase reduction

Phase reduction is a classical technique to describe the dynam-
ics near a periodic orbit. It works by reducing the dimensionality
of a dynamical system to a single phase variable θ [2,3]. Consider
a general n-dimensional dynamical system given by

dx
dt

= F (x), x ∈ Rn, (n ≥ 2). (1)

Suppose this system has a stable periodic orbit γ (t) with period
T . For each point x∗ in the basin of attraction of the periodic orbit,
there exists a corresponding phase θ (x∗) such that

lim
t→∞

⏐⏐⏐⏐x(t) − γ

(
t +

T
2π

θ (x∗)
)⏐⏐⏐⏐ = 0, (2)
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where x(t) is the flow of the initial point x∗ under the given
vector field. The function θ (x) is called the asymptotic phase of
x, and takes values in [0, 2π ). For neuroscience applications, we
typically take θ = 0 to correspond to the neuron firing an action
potential. Isochrons are level sets of this phase function, and it
is typical to define isochrons so that the phase of a trajectory
advances linearly in time both on and off the periodic orbit, which
implies that

dθ
dt

=
2π
T

≡ ω (3)

in the entire basin of attraction of the periodic orbit. Now con-
sider the system

dx
dt

= F (x) + U(t), x ∈ Rn, (4)

where U(t) ∈ Rn is an infinitesimal control input. Phase reduction
can be used to reduce this system to a one-dimensional system
given by [35,39–41]:

θ̇ = ω + U(t)TZ(θ ). (5)

Here Z(θ ) ≡ ∇γ (t)θ ∈ Rn is the gradient of phase variable θ

evaluated on the periodic orbit and is referred to as the (infinites-
imal) phase response curve (PRC). It quantifies the effect of an
infinitesimal control input on the phase of a periodic orbit.

In this article we consider control inputs of the form U(t) =

[u(t), 0, . . . , 0]T . This comes into phase reduction as θ̇ = ω +

Z1(θ )u(t), where Z1(θ ) is the first component of the PRC. Without
loss of generality, we will do away with the subscripts and write
the first component of PRC as Z(θ ). Thus the phase reduction is
written as

θ̇ = ω + Z(θ )u(t). (6)

Note that such a control input is motivated by the applications
we consider in this article, where only one of the elements of the
state vector is affected directly by the control input. The control
algorithm in this article can be formulated for a more general
control input as well, but as a matter of convenience, we only
consider control input of the above form.

2.2. Phase density equation

Given a population of noise-free, identical, uncoupled oscil-
lators all receiving the same control input, it is convenient to
represent the population dynamics in terms of its probability
distribution ρ(θ, t), with the interpretation that ρ(θ, t)dθ is the
probability that an oscillator’s phase lies in the interval [θ, θ+dθ )
at time t . This evolves according to the advection equation [26,35,
36]

∂ρ(θ, t)
∂t

= −
∂

∂θ
[(ω + Z(θ )u(t)) ρ(θ, t)] . (7)

The desired final probability distribution ρf (θ, t) will be taken to
be a traveling wave which evolves according to [36]

∂ρf (θ, t)
∂t

= −ω
∂ρf (θ, t)

∂θ
. (8)

Note that (8) is of the same form as (7) with u(t) = 0. Since these
are probability distributions, it is necessary that

∫ 2π
0 ρ(θ, t)dθ =∫ 2π

0 ρf (θ, t)dθ = 1
In Section 3, we will show how these two equations can be

used to devise our control algorithms.

3. Control algorithm

In this section, we devise a control algorithm to change the
probability distribution of a population of oscillators. We do this
by approximating the probability distribution as a finite Fourier
series and controlling its Fourier coefficients. This algorithm can
be applied to a network of noise-free, identical, uncoupled oscil-
lators to achieve any desired traveling-wave probability distribu-
tion, as long as the combination of phase distributions and the
phase response curve is non-degenerate. A related control algo-
rithm was given in [36], but here we formulate the algorithm in
terms of Fourier coefficients; this is better suited for determining
the control input using a pseudospectral method which does not
have numerical dissipation unlike the method of lines approach
used in [36].

3.1. Fourier decomposition

To devise our control laws, we use the approximation of a
finite Fourier series to write the phase distributions and the PRC
as

ρ(θ, t) =
1
2π

+

N−1∑
l=1

[Al(t) cos(lθ ) + Bl(t) sin(lθ )] , (9)

ρf (θ, t) =
1
2π

+

N−1∑
l=1

[
Ãl(t) cos(lθ ) + B̃l(t) sin(lθ )

]
, (10)

Z(θ ) = C0 +

N−1∑
l=1

[Cl cos(lθ ) + Sl sin(lθ )] . (11)

Here N is a large number, so the effect of the omitted higher
order Fourier modes is negligible. Writing the distribution this
way automatically ensures that the phase distribution is 2π-
periodic, and that the total probability

∫ 2π
0 ρ(θ, t)dθ = 1 at all

times. Multiplying Eq. (9) by cos(kθ ) and sin(kθ ) on both sides
and integrating from 0 to 2π with respect to θ , we obtain

Ak(t) =
1
π

∫ 2π

0
ρ(θ, t) cos(kθ )dθ,

Bk(t) =
1
π

∫ 2π

0
ρ(θ, t) sin(kθ )dθ.

Taking the derivative with respect to time of the above equations,

Ȧk(t) =
1
π

∫ 2π

0

∂ρ(θ, t)
∂t

cos(kθ )dθ

= −
1
π

∫ 2π

0

∂

∂θ
[(ω + Z(θ )u(t)) ρ(θ, t)] cos(kθ )dθ,

Ḃk(t) =
1
π

∫ 2π

0

∂ρ(θ, t)
∂t

sin(kθ )dθ

= −
1
π

∫ 2π

0

∂

∂θ
[(ω + Z(θ )u(t)) ρ(θ, t)] sin(kθ )dθ.

Integrating these equations by parts and imposing periodic
boundary conditions, we obtain

Ȧk(t) = −kωBk − IkA(t)u(t), (12)
Ḃk(t) = kωAk + IkB(t)u(t), (13)

where

IkA(t) =
k
π

∫ 2π

0
Z(θ )ρ(θ, t) sin(kθ )dθ, (14)

IkB(t) =
k
π

∫ 2π

0
Z(θ )ρ(θ, t) cos(kθ )dθ. (15)
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Similarly we obtain following equations for time derivatives of Ãk
and B̃k:
˙̃Ak(t) = −kωB̃k(t), (16)
˙̃Bk(t) = kωÃk(t). (17)

3.2. Control design

If for all k, Ak(τ ) = Ãk(τ ) and Bk(τ ) = B̃k(τ ), the phase
distribution ρ would be equal to the desired distribution ρf at
time τ . This motivates us to take our Lyapunov function as the
sum of the squared differences of the Fourier coefficients of the
current and the desired distribution:

V (t) =
1
2

N−1∑
k=1

[(
Ak(t) − Ãk(t)

)2
+
(
Bk(t) − B̃k(t)

)2]
. (18)

Thus the Lyapunov function is non-negative, and is zero only
when ρ(θ, t) = ρf (θ, t). Its derivative in time evolves as

V̇ (t) = I(t)u(t), (19)

where I(t) is given by the sum

I(t) =

N−1∑
k=1

[(
Bk(t) − B̃k(t)

)
IkB(t) −

(
Ak(t) − Ãk(t)

)
IkA(t)

]
. (20)

Then by taking the control input u(t) = −PI(t), where P is
a positive scalar, we get the time derivative of the Lyapunov
function, V̇ (t) = −PI(t)2 as a negative scalar. Thus, according
to the Lyapunov theorem, the control law u(t) = −PI(t) will
decrease the Lyapunov function until the current probability dis-
tribution becomes equal to the desired distribution. Here we
do not consider the degenerate systems where I(t) ≡ 0 when
ρ(θ, t) ̸= ρf (θ, t) (see Section 4 for such a system).

For both experimental and numerical reasons, it is more prac-
tical to have a bounded control input, so we take a ‘‘clipped’’
proportional control law

u(t) = max (min (umax, −PI(t)) , umin) . (21)

Here umax and umin are the upper and lower bounds of the con-
trol input, respectively. The max, and min operators find the
maximum and minimum of two scalars, respectively.

4. Degenerate set

Note that for certain systems where ρ(θ, t) ̸= ρf (θ, t), Eq. (20)
gives I(t) ≡ 0 for all time t , and the probability distribution
ρ(θ, t) would not converge to the desired distribution ρf (θ, t).
Here we derive the set of such phase distributions and PRCs that
leads to this degeneracy, and give an example of such a system.

We can re-write I(t) as

I(t) =
1
π

∫ 2π

0

N−1∑
k=1

k
[(
Bk(t) − B̃k(t)

)
cos(kθ )

−
(
Ak(t) − Ãk(t)

)
sin(kθ )

]
Z(θ )ρ(θ, t)dθ

=
1
π

∫ 2π

0

(
∂ρ

∂θ
−

∂ρf

∂θ

)
Z(θ )ρ(θ, t)dθ. (22)

Now expanding ρ(θ, t), ρf (θ, t), and Z(θ ) into their complex
Fourier series,

ρ(θ, t) =

N−1∑
k=1−N

ak(t) exp(ikθ ), ρf (θ, t) =

N−1∑
k=1−N

ãk(t) exp(ikθ ),

Z(θ ) =

N−1∑
k=1−N

ck exp(ikθ ),

where

a±k(t) =
Ak(t) ∓ iBk(t)

2
, ã±k(t) =

Ãk(t) ∓ iB̃k(t)
2

,

c±k =
Ck ∓ iSk

2
, k = 1, . . . ,N − 1,

a0(t) = A0(t), ã0(t) = Ã0(t), c0(t) = C0(t),

we can write I(t) from Eq. (22) as

I(t) =

N−1∑
p=1−N

N−1∑
q=1−N

N−1∑
r=1−N

[
ip
(
ap(t) − ãp(t)

)
cqar (t)

×
1
π

∫ 2π

0
exp (i(p + q + r)θ) dθ

]
. (23)

Thus the degenerate set of phase distributions and PRCs can be
written in terms of their respective Fourier coefficients as∑
p∈M

N−1∑
q=1−N

N−1∑
r=1−N

[
i2p

(
ap(t) − ãp(t)

)
cqar (t)δp+q+r,0

]
≡ 0 (24)

for all time t , whereM is the subset of integers ranging from 1−N
to N − 1 for which ap(t) ̸= ãp(t), and δp+q+r,0 is the Kronecker
delta, which is equal to 1 ∀ p + q + r = 0, and is 0 otherwise.

4.1. Degenerate system example

As an example degenerate system, we consider the Type I PRC
near a SNIPER bifurcation given by [35]

Z(θ ) =
2
ω

(1 − cos(θ )) .

Thus c0 = 2/ω, c±1 = 1/ω, while rest of the PRC Fourier
coefficients are 0. We take the desired distribution as a uniform
distribution,

ρf (θ, t) =
1
2π

.

Thus ã0(t) = 1/2π , while rest of the Fourier coefficients for ρf
are 0 for all times. For the degenerate set, I ≡ 0, and thus ρ(θ, t)
is a traveling wave moving in the +θ direction. We take it as

ρ(θ, t) =
sin2(θ − ωt)

π
.

It is a physically realistic distribution since ρ(θ, t) ≥ 0, and∫ 2π
0 ρ(θ, t)dθ = 1. Thus a0(t) = 1/2π, a±2(t) = − exp(∓i2ωt)

/4π , while rest of its Fourier coefficients are 0.
There are only two nonzero cases to consider in the summa-

tion of the degenerate set (Eq. (24)):

p = 2, q = 0, r = −2;

i2(2)
(

−
exp(−i2ωt)

4π
− 0

)(
2
ω

)(
−

exp(i2ωt)
4π

)
=

i
2ωπ2 ,

p = −2, q = 0, r = 2;

−i2(2)
(

−
exp(i2ωt)

4π
− 0

)(
2
ω

)(
−

exp(−i2ωt)
4π

)
= −

i
2ωπ2 ,

I(t) =
i

2ωπ2 −
i

2ωπ2 = 0.

Thus as I is zero even though the phase distributions are not
equal, this is a degenerate system. This can also be verified by
analytically evaluating the integral in Eq. (22) to be zero, i.e.,

I(t) =
4

ωπ3

∫ 2π

0
sin3(θ − ωt) cos(θ − ωt)(1 − cos θ )dθ

=
4

ωπ3

[
cos(θ − 2ωt) − cos(2θ − 2ωt)

8
+

cos(3θ − 2ωt)
24
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−
cos(3θ − 4ωt)

48

+
cos(4θ − 4ωt)

32

−
cos(5θ − 4ωt)

80
+

3
32

]⏐⏐⏐⏐2π
0

= 0.

Note that such degeneracy arises due to the inherent simplic-
ity and symmetry present in the system under consideration,
and thus should not be considered a limitation of the devised
control law. ‘‘Real world’’ systems would have more than two
Fourier modes and some sort of asymmetry, which would avoid
degeneracy.

5. Numerical methods

Here we give details on the numerical methods we use for the
simulation results that we present in the next section. Since we
are dealing with periodic probability distributions in θ , we take
the initial (and, later, the desired distributions) as a von Mises
distribution [42]

ρ(θ, 0) =
eκ cos(θ+θ0)

2πI0(κ)
, (25)

with I0(κ) the modified Bessel function of first kind of order
0. For such a distribution, the mean is θ0, and the variance is
1 − I1(κ)/I0(κ), where I1(κ) is the modified Bessel function of
first kind of order 1. The variance decreases as κ increases, and
so the distribution becomes narrower and taller. To demonstrate
the effectiveness of our control algorithm, we apply the control
input given by Eq. (21) to a population of 100 phase oscillators

Θ̇i(t) = ω + Z(Θi(t))u(t), i = 1, 2, . . . , 100. (26)

For the case where initial distribution ρ(θ, 0) is a uniform dis-
tribution (κ = 0), we take the initial value of phase oscillators
Θi(0) = 2π (i−1)/100, and for a non-zero κ , we use the command
randraw('vonmises', [Theta_0, kappa], 100 ) from the circular
statistical toolbox developed for Matlab in [43] to initialize the
phase oscillators corresponding to a von Mises distribution
(Eq. (25)).

We discretize θ into a uniform mesh with 2N = 128 grid
points. We choose this grid size for a good spatial resolution
of the probability distribution, and efficient computation of the
fast Fourier transform algorithm. For computing the PRCs of the
various models presented in next section, we use the XPP pack-
age [44] with a time step T/N . We scale the PRC computed by
this package by ω, as we consider PRC as Z(θ ) =

∂θ
∂x , whereas

the computed PRC from the XPP package is Z̃(t) =
∂t
∂x [35,41].

Then we use the Matlab command fft to compute the Fourier
coefficients of the initial distribution ρ(θ, 0). Note that the fft

command computes coefficients of the complex Fourier series
given as

ρ(θ, 0) =

N∑
k=1−N

ak(0) exp(ikθ ),

giving an output [a0, a1(0), . . . , aN (0), a1−N (0), a2−N (0), . . . ,
a−1(0)] × 2N . From these coefficients, we then compute the
coefficients of the real Fourier series

ρ(θ, 0) = A0 +

N−1∑
k=1

Ak(0) cos(kθ ) + Bk(0) sin(kθ ),

as

A0 = a0,
Ak(0) = (ak(0) + a−k(0)),
Bk(0) = i(ak(0) − a−k(0)).

The same procedure is adopted to compute real Fourier coeffi-
cients of ρf (θ, 0) (Ãk(0), B̃k(0)) and the PRC (Ck, Sk).

To evolve these coefficients over time, ODEs given by Eqs. (12),
(13), (16), (17) are evolved in time using a fourth order Runge–
Kutta method with a fixed time step dt = T/(8N). In order
to maintain spectral accuracy, the integrals given by Eqs. (14)–
(15) are evaluated in Fourier space, i.e., we take the FFT of the
integrand using Matlab command fft, and divide the first term
of FFT by N to get the numerical value of the integral at every
time step.

6. Applications

In this section, we apply the control law devised in the previ-
ous section to manipulate the population density of uncoupled
noise-free oscillators to achieve control objectives in a diver-
sity of applications. These applications are desynchronizing an
initially synchronized neuron population for the treatment of
parkinsonian and essential tremor, forming neuron clusters from
an initial desynchronized neuron population to maximize neural
plasticity, and eliminating cardiac alternans by phase shifting
a synchronized population of cardiac pacemaker cells. For all
these applications, we consider underactuated dynamical systems
with only one degree of actuation: the control input vector is
U(t) = [u(t), 0, . . . , 0]T . We make this assumption because in
most conductance-based models of neurons and cardiac pace-
maker cells, we can only give a single control input in the form
of a current to one of the elements of the state vector, which
corresponds to the voltage across the cell membrane.

6.1. Desynchronizing neurons

Parkinsonian and essential tremor affect millions of people
worldwide, causing involuntary tremors in various parts of the
body, and disrupting the activities of daily living. Pathological
neural synchronization in the STN and the thalamus brain region
is hypothesized to be one of the causes of motor symptoms
of parkinsonian and essential tremor, respectively [12,13]. Deep
brain stimulation (DBS), an FDA approved treatment, has proven
to alleviate these symptoms [45,46] by stimulating the STN or
the thalamus brain regions with a high frequency, (relatively)
high energy pulsatile waveform, which has been hypothesized to
desynchronize the synchronized neurons; see, e.g., [16,21]. This
has motivated researchers to come up with efficient model de-
pendent control techniques [20,22,47] which not only desynchro-
nize the neurons but also consume less energy, thus prolonging
the battery life of the stimulator and preventing tissue damage or
side effects caused by the pulsatile stimuli.

Thus, inspired by this treatment of parkinsonian and essential
tremor, we employ our algorithm to desynchronize an initially
synchronized population of neurons. Here we use our algorithm
to change the probability distribution of synchronized neurons
with mean π and κ = 52, into a uniform distribution (κ = 0). As a
proof of concept, we use the two-dimensional reduced Hodgkin–
Huxley model [4,48] for calculating the PRC. For details of this
model, see Appendix A.1. Under zero control input, this model
gives a stable periodic orbit with time period T = 8.91 ms. The
top middle panel of Fig. 1 shows the corresponding PRC. We take
the control parameters P = 1000, umin = −5, umax = 5, and
simulate until t = 10T . From the top and bottom left panels of
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Fig. 1. Desynchronizing control: In the top left panel, the solid (resp., red dashed) lines show the probability distribution ρ(θ, t) (resp., ρf (θ, t)) at various times.
The top middle panel shows the PRC, while the bottom left and middle panels show the Lyapunov function V (t) (18), and the control input, respectively. The top
(resp., bottom) right panels show 100 phase oscillators at time t = 0 ms (resp., t = 10T ms). Here T = 8.91 ms.

Fig. 1, we see that the control input is able to flatten out the bell
shaped probability distribution, and thus decrease the Lyapunov
function towards zero. For t > 10 ms, we see that decay rate
of Lyapunov function decreases, and thus the Lyapunov function
asymptotically decreases towards zero. This can be explained
from Eqs. (19)–(21) where we see that control input (decay rate
of Lyapunov function) depends on the (square of the) difference
between current coefficients and desired coefficients. Thus as the
coefficients get closer to their desired value, the magnitude of
the control input decreases significantly, which decreases the rate
of decay of the Lyapunov function. The top right panel of Fig. 1
shows 100 phase oscillators synchronized with mean π , and κ =

52 extracted through the Matlab circular statistical toolbox. We
apply the control input from the middle bottom panel of Fig. 1
to them in an open loop manner. The bottom right panel of the
same figure shows the same oscillators at time t = 10T . We see
that the control input is able to desynchronize these oscillators
almost perfectly. In transforming the probability distribution, the
total control energy consumed (

∫ 10T
0 u2dt) comes out to be 141.78

units.

6.2. Clustering neurons for maximizing neural plasticity

An adult human brain is composed of hundreds of billions
of neurons, and each of these neurons is connected to other
neurons. Neural plasticity is a significant factor in forming specific
connections by wiring neurons that fire together [49]. Spike time
dependent plasticity (STDP) is one type of long-term plastic-
ity, which wires neurons that fire together over a long period
of time, thus helping in the regulation of neural synchrony.
However, increased neural synchrony is a hallmark of several
neurological disorders as discussed in the previous section, and
STDP can resynchronize a desynchronized neural population over
time in the presence of noise [50]. Thus, desynchronizing con-
trol, as considered in the previous section, may not be the best
long-term solution. Recent results [16] suggest another hypoth-
esis that DBS works by forming neural clusters instead of com-
plete desynchronization. Coordinated Reset, a method which
promotes clustering, has shown to have long lasting effects even
after the control stimulus is turned off [20,51]. This further

motivates clustering as an alternative desynchronizing strategy
for the treatment of parkinsonian and essential tremor. This
would not only reduce neural synchrony but also promote clus-
tering over long periods of time by re-wiring of neuron connec-
tions through STDP. We demonstrate this by first defining the
phase difference distribution, and then the STDP curve.

6.2.1. Phase difference distribution
Given a phase distribution ρ(θ, t) governing the probability of

a population of oscillators at phase θ and time t , a correspond-
ing phase difference distribution ρd(φ, t) governs the probability
that the phase difference between any two set of oscillators in
the population is φ at time t , where φ ∈ [0, 2π ). We only
consider uncoupled oscillators which evolve independently from
each other in this article. Thus the probability that the phase
difference between any two oscillators is φ at time t can be given
by the integral of the products of the phase distribution and the
phase distribution shifted by φ at times t over the entire domain:

ρd(φ, t) =

∫ 2π

0
ρ(θs, t)ρ(θs + φ, t)dθs. (27)

The phase difference distribution satisfies∫ 2π

0
ρd(φ, t)dφ = 1. (28)

This can be shown from Eq. (27):∫ 2π

0
ρd(φ, t)dφ =

∫ 2π

0

[∫ 2π

0
ρ(θs, t)ρ(θs + φ, t)dθs

]
dφ

=

∫ 2π

0

[∫ 2π

0
ρ(θs + φ, t)dφ

]
ρ(θs, t)dθs

=

∫ 2π

0
1 · ρ(θs, t)dθs

= 1.

Note that phase difference distribution for a time-dependent trav-
eling wave ρf (θ, t) governed by Eq. (8), is stationary and does not
depend on time. This can be proven by taking the time derivative
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of Eq. (27):

dρd

dt
=

∫ 2π

0

[
∂ρf (θs, t)

∂t
ρf (θs + φ, t)

+ρf (θs, t)
∂ρf (θs + φ, t)

∂t

]
dθs

= −ω

∫ 2π

0

[
∂ρf (θs, t)

∂θs
ρf (θs + φ, t)

+ρf (θs, t)
∂ρf (θs + φ, t)

∂θs

]
dθs

= −ω ρf (θs, t)ρf (θs + φ, t)
⏐⏐2π
0

+ω

∫ 2π

0
ρf (θs, t)

∂ρf (θs + φ, t)
∂θs

dθs

−ω

∫ 2π

0
ρf (θs, t)

∂ρf (θs + φ, t)
∂θs

dθs

= 0.

Here, the first equality follows from the Leibniz rule from elemen-
tary calculus, and the third equality follows from the previous line
by applying integration by parts and imposing periodic boundary
conditions. Thus, this proves that the phase difference distribu-
tion for a time-dependent traveling wave is independent of time.
For such a traveling wave phase distribution, we write the phase
difference distribution as being independent of time:

ρd(φ) =

∫ 2π

0
ρf (θs, t)ρf (θs + φ, t)dθs. (29)

The Fourier coefficients for the phase difference distribution
can be calculated as follows:

ρd(φ) =

∫ 2π

0

(
1
2π

+

N−1∑
k=1

[
Ãk(t) cos(kθs) + B̃k(t) sin(kθs)

] )

×

(
1
2π

+

N−1∑
l=1

[
Ãl(t) cos(l(θs + φ))

+B̃l(t) sin(l(θs + φ))
] )

dθs.

By expanding cos(l(θs + φ)) and sin(l(θs + φ)), and making use of
the orthogonality of cos kθs and sin kθs, we obtain

ρd(φ) =
1
2π

+ π

N−1∑
k=1

(
Ãk

2
(t) + B̃k

2
(t)
)
cos(kφ). (30)

From this formulation of the phase difference distribution in
terms of the Fourier coefficients of the desired phase distribution,
one can easily verify that ρd(φ) is 2π-periodic,

∫ 2π
0 ρd(φ)dφ = 1,

and ρd(φ) is independent of time, which can be seen by taking
the time derivative of Eq. (30):

ρ̇d(φ) = π

N−1∑
k=1

2
(
Ãk(t) ˙̃Ak(t) + B̃k(t) ˙̃Bk(t)

)
cos(kφ)

= π

N−1∑
k=1

2kω
(
−Ãk(t)B̃k(t) + Ãk(t)B̃k(t)

)
cos(kφ)

= 0

Another property that the phase difference distribution has is that
it always has a local maximum at zero phase difference. This can
easily be verified from Eq. (30), as dρd(0)

dφ = 0 and d2ρd(0)
dφ2 < 0.

6.2.2. Spike time dependent plasticity stabilizes clusters
STDP is an asymmetric form of Hebbian learning [52] that

modifies synaptic connections between neurons when they fire
repeatedly in a causal manner [53–55]. At the single synapse
level, STDP potentiates (resp., depresses) the synaptic strength
for repeated pre-synaptic action potentials arriving just before
(resp., after) the post-synaptic action potential. At the popula-
tion level, STDP strengthens the synaptic connections between
neurons that fire action potentials synchronously and weakens
those connections in the out of phase neurons [50]. Plasticity
is known to be an important factor in the formation of neural
pathways in initial brain development, as well as later in learning
and memory storage. Since we consider uncoupled oscillating
neurons in this article, we reformulate STDP in terms of the phase
difference φ between two neurons instead of their spike time
difference; the distribution of interspike intervals is same as the
phase difference distribution for uncoupled oscillating neurons.
If the phase difference φ ∈ [0, π ), the STDP would increase
the synaptic weight, and if the phase difference φ ∈ [π, 2π ),
STDP would depress the synaptic weight. We call this increase
or decrease of synaptic weights as a function of phase difference
the STDP curve given as

S(φ) =

{
pe−

φ
τp , φ ∈ [0, π )

−de
φ−2π

τd , φ ∈ [π, 2π )
. (31)

We take the parameters p = 0.0096, d = 0.0053 from [54],
while τp = 0.2, τd = 0.365 are taken so that the integral of the
resulting STDP curve (

∫ 2π
0 S(φ)dφ) is zero [56]. The top left panel

of Fig. 2 shows the STDP curve S(φ) with the above parameters.
Let us suppose that we start with a desynchronized popula-

tion. The average rate of synaptic connection change between any
two neurons in the population is given by [50]

∆c =

∫ 2π

0
ρd(φ)S(φ)dφ. (32)

A uniform phase distribution (desynchronized population) would
result in a uniform phase difference distribution, which would
lead to a zero average synaptic change. On the other hand, if we
promote neural clustering, STDP would potentiate intra-cluster
synaptic connections and depress inter-cluster connections. This
would thus potentially help in long-term stabilizability of clusters
in the presence of noise. We demonstrate this by taking two
clusters and calculating the average synaptic change (32) intra-
and inter-cluster. Thus we take the desired phase distribution as
a bi-modal distribution, which can be realized as a sum of two
uni-modal von Mises distributions

ρf (θ, t) =
eκ cos(θ+π/2)

+ eκ cos(θ+3π/2)

4πI0(κ)
, (33)

where κ = 52. From this we calculate the phase difference
distribution from Eq. (29) or (30), which can then be used to
calculate the average synaptic change from Eq. (32). The bottom
left, right, and top right panels of Fig. 2 show the desired phase
distribution, phase difference distribution, and the product of
the phase difference distribution with the STDP curve respec-
tively. The average synaptic change for intra- and inter-cluster is
calculated as

∆cintra−cluster =

∫ π
2

0
ρd(φ)S(φ)dφ +

∫ 2π

3π
2

ρd(φ)S(φ)dφ

= 3.62 × 10−4, (34)

∆cinter−cluster =

∫ 3π
2

π
2

ρd(φ)S(φ)dφ = −3.96 × 10−7. (35)
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Fig. 2. The top left panel shows the spike time dependent plasticity curve S(φ). The bottom left (resp., right) panel shows the desired phase (resp., phase difference)
distribution. The top right panel shows the change in synaptic weight between two neurons as a function of their phase difference.

Fig. 3. Clustering control: In the top left panel, the solid (resp., red dashed) lines show the probability distribution ρ(θ, t) (resp., ρf (θ, t)) at various times. The bottom
left and middle panels show the Lyapunov function V (t) (18), and the control input, respectively. The top (resp., bottom) right panels show 100 desynchronized
(resp., clustered) phase oscillators at time t = 0 ms (resp., t = 3T ms). Here T = 8.91 ms.

Thus STDP would strengthen synapse in each cluster and weaken
them between the two clusters, thereby potentially maintaining
clusters over a long period of time. This motivates us to transform
an initially desynchronized phase distribution (κ = 0) into a bi-
modal phase distribution (33). As a proof of concept, here we
again use the two-dimensional reduced Hodgkin–Huxley model
for calculating the PRC. We take the control parameters P =

1200, umin = −15, umax = 15, and simulate until t = 3T . The
results are shown in Fig. 3. From the top and bottom left panels
of Fig. 3, we see that the control input is able to transform an
initial uniform distribution into a bi-modal distribution, and thus
the Lyapunov function decreases towards zero. As the Fourier
coefficients of the current and desired distribution get closer, the
control input decreases in magnitude, which decreases the rate
of decay of the Lyapunov function. The top right panel of Fig. 3
shows 100 desynchronized phase oscillators (Θi(0) = 2π (i −

1)/100) to which the control input from the middle bottom panel
of Fig. 3 is applied in an open loop manner. The bottom right

panel of the same figure shows the oscillators at time t = 3T .
We see that the control input is able to separate the desyn-
chronized oscillators into two distinct clusters corresponding to
the bi-modal phase distribution. In transforming the probability
distribution, the total control energy consumed (

∫ 3T
0 u2dt) comes

out to be 152.59 units.

6.3. Eliminating cardiac alternans

The collection of cells in the Sinoatrial node called cardiac
pacemaker cells elicit periodic electrical pulses which polarize a
collection of excitable and contractile cells called myocytes. In the
process of depolarizing, myocytes contract and propagate action
potentials to the neighboring cells. This well-coordinated process
of excitation/depolarization and contraction enables the heart
to pump blood throughout the body. Under normal conditions,
with constant pacing by the cardiac pacemaker cells, the action
potential duration (APD), that is the time for which an action
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Fig. 4. Phase shifting cardiac pacemaker cells: In the top left panel, the solid (resp., red dashed) lines show the probability distribution ρ(θ, t) (resp., ρf (θ, t)) at
various times. The top middle panel shows the PRC, while the bottom left and middle panels show the Lyapunov function V (t) (18), and the control input, respectively.
The top (resp., bottom) right panels show 100 phase oscillators at time t = 0 ms (resp., t = 3T ms). Here T = 340.8 ms. Note that in the absence of control input,
the oscillators would have a mean of π/2 at t = 3T .

potential lasts in a myocyte cell, also remains constant. However,
under some conditions, this 1:1 rhythm between pacing and the
APD can become unstable, bifurcating into a 2:2 rhythm of al-
ternating long and short APD, known as alternans [57]. Alternans
is observed to be a possible first step leading to fibrillation [58].
Thus, a number of researchers have worked on suppressing alter-
nans as a method of preventing fibrillation, thereby preventing
the need for painful and damaging defibrillating shocks. Many
of these methods [59–62] operate by exciting the myocardium
tissue externally with periodic pulses, and changing the period
according to the alternating rhythm. However, such a control
requires excitation at several sites in the tissue [63].

In [31], we developed a novel strategy to suppress alternans by
changing the phase of the pacemaker cells. The control strategy
was based on a single oscillator model to change the phase of a
single cell. However for an effective cardiac alternans elimination,
we need to consider the entire population of cardiac pacemaker
cells which oscillate in synchrony. So, here we aim to phase
shift the population of cardiac pacemaker cells using the control
algorithm we developed in Section 3.2. Such a control strategy
could eliminate the need to excite the tissue at multiple sites.
The amount of phase change required to eliminate alternans
depends on the discrete APD dynamics [31]. Here we advance
the phase by π/4 as an example. For the PRC calculation, we
consider phase reduction of the 7-dimensional YNI model of
SA node cells in rabbit heart proposed in [64]. The model is
of Hodgkin–Huxley type with 6 gating variables and a trans-
membrane voltage variable on which the control input acts. For
details of the model, see Appendix A.2. With this model we get
a stable periodic orbit with time period T = 340.8 ms. We
start with a synchronous population distribution with mean π/2
and κ = 52. In order to phase shift this distribution by π/4,
we take the target population distribution ρf (θ, t) with same κ
value but an initial mean of 3π/4. Thus our control algorithm
will push the distribution ρ(θ, t) forward until it matches with
the desired distribution ρf (θ, t). We take the control parameters
P = 5, umin = −1, umax = 1 and apply control input until t = 3T .
From the top and bottom right panels of Fig. 4, we see that the
control input is able to phase shift the probability distribution,
and thus decreases the Lyapunov function towards zero. In doing
so, it changes the shape of the distribution slightly. The top right

panel of Fig. 4 shows 100 phase oscillators synchronized with
mean π/2, and κ = 52 extracted through the Matlab circular
statistical toolbox. We apply the control input from the middle
bottom panel of the figure to those in an open loop manner. The
bottom right panel of the same figure shows the oscillators at
time t = 3T . We see that the control input is able to phase shift
these oscillators by π/4. The slight change in shape of the phase
distribution is reflected in the final position of phase oscillators,
where handful of the oscillators get spread relative to the main
cluster. In shifting the phase of the probability distribution, the
total control energy consumed (

∫ 3T
0 u2dt) comes out to be 3.21

units.
Here we mention another application for which shifting the

phase of an oscillator population is desired: phase shifting cir-
cadian oscillators for the treatment of jet lag. Neurons in the
suprachiasmatic nucleus (SCN) of the brain are responsible for
maintaining the circadian rhythm in mammals. This rhythm is
synchronized with the external day and night cycle under normal
conditions. A disruption between these two rhythms can happen
due to multiple reasons, such as travel across time zones, starting
a night shift job, working in extreme environments (space, earth
poles, underwater), etc. Such asynchrony can lead to several
physiological disorders [65,66], thus motivating researchers to try
to develop ways to remove it. In [31], we developed a strategy to
eliminate this asynchrony by changing the phase of a single SCN
neuron by using a light stimulus as the control input, since light
is known to affect the circadian rhythm [67]. This would change
the phase of the circadian rhythm so that it gets aligned with the
external cycle after the end of the controlled oscillation. However
for a better alignment of the circadian rhythm with the external
environment, we need to phase shift the entire population of
SCN neurons which oscillate in synchrony, which can be achieved
by our control algorithm. This is very similar to the previous
application of phase shifting cardiac pacemaker cells.

7. Addition of white noise

So far we have demonstrated that our control is effective for
a population of uncoupled, noise-free oscillators. However, real
systems are subjected to noise; thus, in this section we modify
our control to take this into account.
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Fig. 5. Clustering Control in presence of noise: In the top left panel, the solid (resp., red dashed) lines show the probability distribution ρ(θ, t) (resp., ρf (θ, t)) at
various times. The bottom middle and left panels show the control input (42), and the Lyapunov function V (t) (18), respectively. The top (resp., bottom) right panels
show 100 desynchronized (resp., clustered) phase oscillators at time t = 0 ms (resp., t = 3T ms). Here T = 8.91 ms.

Given M noisy, uncoupled oscillators with dynamics given by

dxj
dt

= F (xj) +

[
u(t) +

√
2Dηj(t), 0, . . . , 0

]T
, j = 1, . . . ,M.

(36)

Here each oscillator receives a common input u(t) modified by a
different realization of Gaussian white noise

√
2Dηj(t) with zero

mean, variance 2D, and with ⟨ηi(t)ηj(t ′)⟩ = δijδ(t − t ′). Letting θj
be the phase of the jth oscillator, to leading order in the noise
strength Ito’s formula gives [68]

θ̇j = ω + Z(θ )
[
u(t) +

√
2Dηj(t)

]
, j = 1, . . . ,M. (37)

Assuming M is large and noise perturbations are small, the pop-
ulation dynamics can be represented in terms of its phase distri-
bution ρ(θ, t) with stochastic averaging [37,69]:

∂ρ(θ, t)
∂t

= −
∂

∂θ
[(ω + Z(θ )u(t)) ρ(θ, t)] +

B2

2
∂2ρ(θ, t)

∂θ2 , (38)

where

B2
=

2D
2π

∫ 2π

0
Z2(θ )dθ.

As before, the desired final probability distribution ρf (θ, t) is
taken to be a traveling wave which evolves according to Eq. (8).
To devise our control laws, we use the approximation of a finite
Fourier series to write the phase distributions (Eqs. (9), and (10)).
The Fourier coefficients of the desired phase distribution evolve
as before (Eqs. (16), and (17)), whereas the Fourier coefficients of
phase distribution evolve as

Ȧk(t) = −kωBk − IkA(t)u(t) −
B2

2
k2Ak(t), (39)

Ḃk(t) = kωAk + IkB(t)u(t) −
B2

2
k2Bk(t). (40)

7.1. Control design

Here as well we take the Lyapunov function as the sum of
squared differences of the Fourier coefficients of the current and
the desired distributions (Eq. (18)). Its derivative in time evolves
as

V̇ (t) = I(t)u(t) + G(t), (41)

where

G(t) = −
B2

2

N−1∑
k=1

k2
[
Ak(t)

(
Ak(t) − Ãk(t)

)
+ Bk(t)

(
Bk(t) − B̃k(t)

)]
,

and I(t) is given by Eq. (20). Then by taking the control input

u(t) = −PI(t) −
G(t)
I(t)

, (42)

where P is a positive scalar, we get the time derivative of the
Lyapunov function to be a negative scalar. Thus, according to the
Lyapunov theorem, the control law (42) will decrease the Lya-
punov function until the current probability distribution becomes
equal to the desired distribution. Here we do not consider the
degenerate case where I(t) ≡ 0 when ρ(θ, t) ̸= ρf (θ, t) (see
Section 4 for cases when I(t) ≡ 0 when ρ(θ, t) ̸= ρf (θ, t)).

7.2. Simulation results

To demonstrate our control in the presence of noise, we use
(42) to transform an initial uniform phase distribution into a
desired bi-modal distribution (33). We take the noise strength√
2D = 0.03 in Eqs. (38) and (37). To simulate the noisy phase

oscillators, we write Eq. (37) as

dθj = ωdt + Z(θ )
[
u(t)dt +

√
2DdWj(t)

]
, j = 1, . . . ,M,

where dWj(t) = ηj(t)dt and Wj(t) is the standard Weiner pro-
cess. We use the second order Runge–Kutta algorithm developed
in [70] to simulate the above equation, and use randn with a
predefined seed in Matlab for generating the standard Weiner
process. In order to be consistent, we evaluate the phase distri-
bution and the control input using a second order Runge–Kutta
method as well. As a proof of concept, here we again use the two-
dimensional reduced Hodgkin–Huxley model for calculating the
PRC. We take the control parameter P = 1200, and simulate until
t = 3T . The results are shown in Fig. 5. From the top left panel, we
see that the control input is able to transform an initial uniform
distribution into a bi-modal distribution, and thus the Lyapunov
function decreases towards zero. The top right panel of Fig. 5
shows 100 desynchronized phase oscillators to which the control
input from the bottom middle panel of Fig. 5 is applied in an open
loop manner. As seen from the bottom right panel of Fig. 5, the
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control input is able to separate the desynchronized oscillators
into two distinct clusters corresponding to the bi-modal phase
distribution. In transforming the probability distribution, the total
control energy consumed (

∫ 3T
0 u(t)2dt) comes out to be 153.30

units. The control input u(t) used for this energy consumption cal-
culation is taken from Eq. (42), and thus is same for all stochastic
realizations with the same noise intensity. The energy consump-
tion is 0.46% more than the similar control without noise. This
is expected as the addition of white noise introduces a diffusion
term in the phase distribution PDE, and thus causes the phase
distribution to decay down towards a uniform distribution with
time. Therefore, the control has to expend additional effort in
transforming the phase distribution into a bi-modal distribution.
We note that non-zero control will be necessary to maintain the
bi-modal distribution for all time.

8. Optimal control of phase distributions

In this section we formulate an optimal control algorithm to
transform the phase distribution ρ(θ, t) into the desired distribu-
tion ρf (θ, t). We do this by controlling the Fourier coefficients of
the phase distribution. We start with the coefficients Ak(0) and
Bk(0) of ρ(θ, t) at time t = 0, and want them to match the
coefficients Ãk(τ ) and B̃k(τ ) of ρf (θ, t) at time t = τ . Thus we pose
the optimal control problem as the following Two Point Boundary
Value Problem (BVP). We take the cost function R as

R =

∫ τ

0

{
u2

+

N−1∑
k=1

[
λkA

(
Ȧk + kωBk + IkAu

)
+λkB

(
Ḃk − kωAk − IkBu

)]}
dt. (43)

The first term in the cost function ensures that the control law
uses a minimum energy input. The second term ensures that the
phase distribution evolves according to Eq. (7), with λkA and λkB
being the Lagrange multipliers. The Euler–Lagrange equations are
obtained from

∂P
∂q

=
d
dt

(
∂P
∂ q̇

)
, q = λkA, λkB, Ak, Bk, u, (44)

where P is the integrand in the cost function R. This gives the
Euler–Lagrange equations for k = 1, . . . ,N − 1:

Ȧk = −kωBk − IkAu, (45)
Ḃk = kωAk + IkBu, (46)

λ̇kA = −kωλkB + HkAu, (47)
λ̇kB = kωλkA + HkBu, (48)

where

u =
1
2

N−1∑
k=1

[λkBIkB − λkAIkA] , (49)

HkA =
1
π

∫ 2π

0
Z(θ )Λ(θ, t) cos(kθ )dθ, (50)

HkB =
1
π

∫ 2π

0
Z(θ )Λ(θ, t) sin(kθ )dθ, (51)

Λ(θ, t) =

N−1∑
l=1

l [λlA sin(lθ ) − λlB cos(lθ )] . (52)

We solve the Euler–Lagrange equations as a two point BVP with
the boundary conditions:

Ak(0) =
1
π

∫ 2π

0
ρ(θ, 0) cos(kθ )dθ,

Bk(0) =
1
π

∫ 2π

0
ρ(θ, 0) sin(kθ )dθ,

Ak(τ ) =
1
π

∫ 2π

0
ρf (θ, τ ) cos(kθ )dθ,

Bk(τ ) =
1
π

∫ 2π

0
ρf (θ, τ ) sin(kθ )dθ.

(53)

Since Ak(0), and Bk(0) are fixed by the problem, the BVP can
be solved by finding appropriate values of λkA(0) and λkB(0).
We formulate a modified Newton iteration method to solve this
high dimensional (2N − 2) BVP. For details of the method, see
Appendix B.

We demonstrate the control by considering the application
of phase shifting a distribution as we did in Section 6.3. Here
as well we consider the YNI model of SA node cells in rabbit
heart. We start with a synchronous population distribution with
mean π/2 and κ = 52. We use our optimal control algorithm to
phase shift this distribution by π/4 in time τ = T . So, we take
the target distribution ρf (θ, t) with same κ value but an initial
mean of 3π/4. We also compute the Lyapunov function V (t) for
comparison with our results from Section 6.3, even though our
optimal control algorithm is not based on this Lyapunov function.
Results are shown in Fig. 6. From the top and bottom left panels of
Fig. 6, we see that the control input is able to phase shift the phase
distribution, and thus decreases the Lyapunov function towards
zero (non-monotonically in this case). The top right panel of Fig. 6
shows 100 phase oscillators synchronized with mean π/2, and
κ = 52 extracted through the Matlab circular statistical toolbox.
We apply the control input from the middle bottom panel of
the figure to them in an open loop manner. The bottom right
panel of the same figure shows the oscillators at time t = T . We
see that the control input is able to phase shift these oscillators
by π/4. In shifting the phase of the probability distribution, the
total control energy consumed (

∫ T
0 u2dt) comes out to be 1.56

units, which is less than half of the energy required for the same
control objective using our Lyapunov-based control algorithm in
Section 6.3. We note that this energy comparison is fair as in
both cases the control input decreases the Lyapunov function by
the same amount (by 99.6%). Thus our optimal control is able to
achieve the control objective while simultaneously minimizing
the amount of total energy required.

9. Conclusion

In this article we developed a framework to control a popula-
tion of uncoupled oscillators by controlling their phase distribu-
tions. By writing the phase distribution as a finite Fourier series,
we were able to decompose the PDE governing the evolution of
the phase distribution into a set of ODEs governing the evolution
of the corresponding Fourier coefficients. We formulated our
control algorithms in Fourier space as well, driving the Fourier
coefficients of the current phase distribution to the Fourier co-
efficients of the desired distribution with a single control input.
For our first Lyapunov-based control algorithm, we constructed
a degenerate set of phase distributions and the phase response
curves in terms of their Fourier coefficients. We extended this
algorithm to take into account the effect of white noise on the
dynamics of the oscillator population. Finally, we formulated an
optimal control algorithm which uses a minimum energy input
to achieve the desired phase distribution. Our control algorithms
are quite flexible; for the systems considered in this paper, they
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Fig. 6. Phase shifting cardiac pacemaker cells through optimal control: In the top left panel, the solid (resp., red dashed) lines show the probability distribution
ρ(θ, t) (resp., ρf (θ, t)) at various times. The top middle panel shows the PRC, while the bottom left and middle panels show the Lyapunov function V (t) (18), and
the control input, respectively. The top (resp., bottom) right panels show 100 phase oscillators at time t = 0 ms (resp., t = T ms). Here T = 340.8 ms. Note that in
the absence of control input, the oscillators would have a mean of π/2 at t = T .

have the potential to drive a system of uncoupled oscillators from
any initial phase distribution to any traveling-wave final phase
distribution, as long as the combination of those distributions is
non-degenerate.

We demonstrated the versatility of our control algorithms by
using them for three distinct applications. First, motivated by the
hypothesis of neural synchronization in the STN and the thalamus
brain region as one of the causes of motor symptoms of parkin-
sonian and essential tremor, respectively, we applied our control
algorithm to drive an initial synchronous phase distribution to a
uniform distribution. For the second application, we defined the
phase difference distribution in terms of the phase distribution,
and proved some of its fundamental properties. This formulation
of the phase difference distribution was essential in demonstrat-
ing the importance of a clustered neural population for enhancing
spike time dependent plasticity, and thus re-wiring of neural
connections for better stability of the partially synchronous clus-
tered state. Motivated by the elimination of cardiac alternans, we
applied our algorithm to control a population of synchronized
cardiac pacemaker cells by advancing their phase distribution by
a specified phase. For all these applications, we demonstrated
the effectiveness of our control by applying the respective con-
trol inputs to a population of 100 uncoupled noise-free phase
oscillators.

We conclude with remarks about the experimental imple-
mentation of these algorithms. Since they require knowledge of
the current Fourier coefficients of the phase distribution, one
would need to measure neuronal/cardiac pacemaker cell activity
in order to back out the phase distribution and hence the Fourier
coefficients in real time. This measurement would require good
spatial and temporal resolution, so for both neuroscience and
cardiovascular experiments we suggest that the use of Micro-
Electrode arrays (MEA) would be a good fit. Note that for in vivo
experiments, fMRI and EEG are unlikely to be the right tools since
fMRI has poor temporal resolution, while EEG is susceptible to
noise and poorly measures neural activity beneath the cortex. An
experimental setup in general will include effects due to coupling,
which are absent in our control algorithm. Our algorithm would
still work on such systems as long as the coupling is weak. If
synchrony is stable with coupling, then it would be harder for our
control algorithm to desynchronize a synchronized population in

the presence of coupling. The addition of noise might make this
even harder if STDP is present, as STDP promotes synchrony in
the presence of noise. However, in the absence of STDP, noise
would make it easier for our control algorithm to desynchronize
a synchronized oscillator population.
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Appendix A. Models

In this appendix, we give details of the mathematical models
used in this article.

A.1. Reduced Hodgkin–Huxley model

Here we list the reduced Hodgkin–Huxley model [4,48,71]
used in Section 6.1:

v̇ =
(
I − gNa(m∞)3(0.8 − n)(v − vNa) − gKn4(v − vK )
−gL(v − vL)) /c + u(t),

ṅ = an(1 − n) − bnn,

where v is the trans-membrane voltage, and n is the gating
variable. I is the baseline current, for which we use the units
µA/cm2, and u(t) represents the applied control current.

an = 0.01(v + 55)/(1 − exp(−(v + 55)/10)),
bn = 0.125 exp(−(v + 65)/80),
am = 0.1(v + 40)/(1 − exp(−(v + 40)/10)),
bm = 4 exp(−(v + 65)/18),

m∞ = am/(am + bm),
c = 1, gL = 0.3, gNa = 120, vNa = 50,

gK = 36 , vK = −77, vL = −54.4, I = 20.

Here, θ = 0 corresponds to the initial condition v = 42.8828,
n = 0.4920.
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A.2. YNI model

Here we list model parameters of the YNI model [64] intro-
duced in Section 6.3. It is given as

v̇ = −
INa + Ik + Il + Is + Ih

C
+ u(t),

ḋ = αd(1 − d) − βdd,
ḟ = αf (1 − f ) − βf f ,
ṁ = αm(1 − m) − βmm,

ḣ = αh(1 − h) − βhh,
q̇ = αq(1 − q) − βqq,
ṗ = αp(1 − p) − βpp,

where v represents the transmembrane voltage, and d, f ,m, h,
q, p are the gating variables, u(t) represents the applied current
as the control input, with parameters

αd =
0.01045(v + 35)

(1 − exp(−(v + 35)/2.5)) +
0.03125v

(1−exp(−v/4.8))

,

βd = 0.00421(v − 5)/(−1 + exp((v − 5)/2.5)),
αf = 0.000355(v + 20)/(−1 + exp((v + 20)/5.633)),
βf = 0.000944(v + 60)/(1 + exp(−(v + 29.5)/4.16)),
αm = (v + 37)/(1 − exp(−(v + 37)/10)),
βm = 40 exp(−0.056(v + 62)),
αh = 0.001209(exp(−(v + 20)/6.534)),
βh = 1/(1 + exp(−(v + 30)/10)),

αq = 0.0000495 +
0.00034(v + 100)

(−1 + exp((v + 100)/4.4))
,

βq = 0.0000845 + 0.0005(v + 40)/(1 − exp(−(v + 40)/6)),
αp = 0.0006 + 0.009/(1 + exp(−(v + 3.8)/9.71)),
βp = 0.000225(v + 40)/(−1 + exp((v + 40)/13.3)),
is = 12.5(exp((v − 30)/15) − 1),
Is = (0.95d + 0.05)(0.95f + 0.05)is,

INa = 0.5m3h(v − 30),
Ih = 0.4q(v + 25),
Ik = 0.7p(exp(0.0277(v + 90)) − 1)/exp(0.0277(v + 40)),
Il = 0.8(− exp(−(v + 60)/20) + 1),
C = 1.

Here, θ = 0 corresponds to the initial condition v = −19.2803,
d = 0.6817, f = 0.0236, m = 0.8540, h = 0.0013, q =

0.0038, p = 0.6592.

Appendix B. Two point BVP with modified Newton iteration

We solve the Euler–Lagrange equations as a two point bound-
ary value problem using a modified Newton iteration method,
which we briefly summarize. Consider a general two point
boundary value problem

ẏ = f (t, y), y ∈ Rn, 0 ≤ t ≤ τ , (B.1)

with the linear boundary condition

B0y(0) + Bτy(τ ) = a, B0, Bτ ∈ Rn×n.

To solve such a boundary value problem, we integrate Eq. (B.1)
with the initial guess c = y(0), and calculate the function g(c):

g(c) = B0c + Bτy(τ ) − a,

where y(τ ) is the solution at time τ with the initial condition c .
If we had chosen the correct initial condition c , g(c) would be

0. Based on the current guess cν , and the g(cν) value, we choose
the next initial condition by the modified Newton Iteration as an
element-wise update

cν+1
i = cν

i −

(
∂gi
∂ci

⏐⏐⏐⏐
cν

)−1

gi(cν), for i = 1, . . . , n (B.2)

where gi, and cν
i represent the ith element of vectors g , and cν

respectively. We compute the derivative Jii =
∂gi
∂ci

⏐⏐⏐
cν

numerically
as

Jii =
g+

i − g−

i

2ϵ
,

where

g+

i = gi (cν
+ eiϵ) ,

g−

i = gi (cν
− eiϵ) ,

ϵ is a small number, and ei is a column vector with 1 in the ith
position and 0 elsewhere.

B.1. Solving Euler–Lagrange equations

For the Euler–Lagrange equations devised in Section 8, Ak(0),
and Bk(0) are fixed by the initial distribution, so the only way
to control the distribution is by choosing appropriate values of
λkA(0) and λkB(0). Thus our BVP can be reduced to 2N − 2
dimensions even though the Euler–Lagrange equations are 4N−4
dimensional. The ith element of the vector c is taken as

ci =

{
λkA(0), for i = k = 1, . . . ,N − 1
λkB(0), for i = k + N − 1 = N, . . . , 2N − 2.

The ith element of the vector g(c) for i = k = 1, . . . ,N − 1 is
taken as

gi(c) = Ak(0) + Ak(τ ) −
1
π

∫ 2π

0

(
ρ(θ, 0) + ρf (θ, τ )

)
cos(kθ )dθ,

and, for i = k + N − 1 = N, . . . , 2N − 2,

gi(c) = Bk(0) + Bk(τ ) −
1
π

∫ 2π

0

(
ρ(θ, 0) + ρf (θ, τ )

)
sin(kθ )dθ.

The derivative Jii is given as

∂gi
∂ci

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂Ak(τ )
∂λkA(0)

, for i = k = 1, . . . ,N − 1

∂Bk(τ )
∂λkB(0)

, for i = k + N − 1 = N, . . . , 2N − 2.

This information is used in Eq. (B.2) to iteratively find the appro-
priate value of the vector c .
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