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a b s t r a c t

In this paper we consider the simultaneous optimization of the controller and plant in a one degree-of-
freedom system. In particular we are interested in optimal trajectories between fixed points connected by
heteroclinic orbits. We find that designing the plant dynamics to have a heteroclinic connection between
target states enables a low energy transfer between the states. We use a nested optimization strategy
to find the optimal plant dynamics and control effort for the transition. Additionally, we uncover plant
optimality conditions which reduce the complexity of the optimization.

Published by Elsevier Ltd
1. Introduction

The traditional practice for designing mechatronic systems
is to first design the structure, sensors, and actuators, followed
by the design of the controller. This design approach has been
referred to as the sequential or single pass strategy (Fathy, Reyer,
Papalambros, & Ulsoy, 2001; Reyer, Fathy, Papalambros, & Ulsoy,
2001; Reyer & Papalambros, 2000). Numerous mathematical and
computational tools exist for optimizing these two subsystems
independently (Athens & Falb, 1966; Rao, 2009). However, it was
proven in Fathy et al. (2001) that this approach does not necessarily
satisfy the system level optimality conditions. To solve the problem
of finding the optimal plant and controller, several strategies
have been proposed. These are classified as iterative, nested, and
simultaneous optimization strategies (Fathy et al., 2001). The
benefit of these strategies is that they yield an optimal system
design, and they have subsequently found their way into a number
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of engineering applications (Eastep, Khot, & Grandhi, 1987;
Grandhi, 1989; Park, 1994; Ravichandran,Wang, & Heppler, 2006).

In this paper, we will consider the energy cost of holding the
state of the system at an initial stationary configuration up to
an initial time at which the control will transfer the state to a
final stationary configuration where it will remain indefinitely.
The problem is to choose the best plant dynamics within an
admissible design space so that the energy cost associated with
the control task is minimized. If it is possible to design the plant
so that the initial and final states are connected by a heteroclinic
orbit (Guckenheimer & Holmes, 1983) then without external
disturbances there will be no cost associated with holding the
systemat the initial and final states. Then,with little effort from the
controller, the plant dynamics will help to carry the state between
equilibria in finite time.

This concept is applicable to systems that perform repetitive
motion between two stationary configurations, or periodic motion
interrupted by periods of motionlessness. This task is common in
automated manufacturing and can be applied to save electrical
energy costs associated with machine actuation. Alternatively,
the ideas presented could be utilized to simultaneously optimize
the mechanical design and reference trajectory for a walking
robot. Other applications in which this concept has already been
applied are in the actuation of electronically controlled engine
valves (Parlikar et al., 2005) and for high speed switching of camera
filters in satellites (Paden, Chen, & Fiske, 2007). In both of these
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applications, the plant was designed to introduce favorable system
dynamics that reduce the required actuation energy. However, in
both cases the plant and controller were designed sequentially
with no guarantee of system optimality. The results presented in
this paper will provide tools for selecting the optimal plant design
from an infinite dimensional space enabling energy savings in
these applications.

Throughout this paper we will restrict our attention to plants
with conservative dynamics. In mechanical systems where power
consumption is a primary consideration, frictional losses are
typically designed to be as low as possible. With the use of rolling
element bearings and immersion in low viscosity fluids such as
air, ohmic losses in an actuator from overcoming friction are
often negligible in comparison to overcoming the inertial forces
associated with the mass of the mechanical components.

In Section 2 we consider the optimal open loop control to
swing around an inverted pendulum to better understand the gains
of actuating a system between the fixed points of a heteroclinic
orbit. Section 3 extends the problem to finding the optimal plant
dynamics aswell as the optimal control. For computing the system-
wide optimization we will use the nested optimization strategy.
An inner loop will optimize the control for each plant design we
consider using optimal control theory. The inner loop optimization
is covered in Section 4. The outer loop numerically optimizes the
plant design by considering the optimal control for each fixed plant
design we consider. To reduce the computational expense of this
optimization we will derive optimality conditions of the optimal
plant design. These conditions are derived in Section 5. In Section 6,
a versatile mechatronic system is introduced that we optimize by
applying the methods outlined. Conclusions and a discussion of
future research are given in Section 7.

2. Heteroclinic orbits and energy efficient motion control

Here we will demonstrate the energy savings associated with
introducing plant dynamics favorable to the control task. In partic-
ular a heteroclinic orbit connecting the target states is introduced
to the plant dynamics. Conceptually, the control will provide a kick
that nudges the state away from the unstable fixed point of the
heteroclinic orbit. Then a trajectory dominated by plant dynamics
transfers the state to a neighborhood of the adjacent unstable fixed
pointwhere another kick from the controller nudges the plant onto
the unstable fixed point.

We consider a single parameterωn as the design variable. In the
following section we broaden the set of allowable plant designs to
an infinite dimensional space. Consider the problem of finding the
minimum energy control torque u(t) to swing around an inverted
pendulum of unit mass. The dynamics will be given by

ẋ1 = x2, ẋ2 = −ω2
n sin(x1)+ u(t). (1)

We want to solve for the minimum energy control effort connect-
ing the initial state, (x1(t0), x2(t0)) = (−π, 0), to the final state,
x1(tf ), x2(tf )


= (π, 0). We consider the state to be in R2 as op-

posed to R × S1. For u(t) = 0 and ωn > 0 there will be a hete-
roclinic orbit connecting the target states. We apply Pontryagin’s
minimum principle (Athens & Falb, 1966) to derive necessary con-
ditions for an optimal control in the formof a boundary value prob-
lem (BVP). The cost functional we minimize is

J[u] =

 tf

t0
[u(t)]2 dt. (2)

The Hamiltonian for this system and the cost functional is

H(x1, x2, u, p1, p2) = u2
+


p1
p2


,


x2

−ω2
n sin(x1)+ u


, (3)
Fig. 1. A simple pendulum with a control torque u(t) swinging the pendulum
through a rotation of 2π between unstable equilibria.

where p1 and p2 are the co-state variables. Then the canonical
equations provide optimality conditions:

∂H
∂u

= 0,

∂H
∂p1

= ẋ1,

∂H
∂p2

= ẋ2,

∂H
∂x1

= −ṗ1,

∂H
∂x2

= −ṗ2,

(4)

which yield:

ẋ1 = x2,

ẋ2 = −ω2
n sin(x1)− p2/2,

ṗ1 = p2ω2
n cos(x1),

ṗ2 = −p1,
u = −p2/2,
(x1(t0), x2(t0)) = (−π, 0),
x1(tf ), x2(tf )


= (π, 0).

(5)

The case ωn = 0 is considered as a basis of comparison with
various values of ωn.

The shooting method in conjunction with the Nelder–Mead
simplex method (Nelder &Mead, 1965) was implemented to solve
(5) for t0 = 0 and tf = 10. ωn was varied in (5) to demonstrate
the benefit of the heteroclinic orbit introduced by the pendulum
dynamics. Figs. 1 and 2 illustrate the significant reduction in
control effort as ωn is increased.

3. Problem statement

It is clear that introducing a heteroclinic orbit connecting the
target configurations for point to point control reduces the energy
cost. With this in mind we now investigate the simultaneous
optimization of the plant and control where the set of admissible
plant designs is an infinite dimensional space. Specifically we
consider a subset of continuous functions on the interval [x0, xf ].

Consider a system of the form

ẋ1 = x2, ẋ2 = αf (x1)+ u(t), (6)
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Fig. 2. As ωn is varied from the values 0, 0.1, 0.3, 0.5, and 1, one can see in (a) the
significant reduction in control effort required for the point-to-point control. The
effect on the state trajectory can be seen in (b).

with α > 0. A trajectory produced under the influence of αf and u
will be considered admissible if it satisfies:
(x1(t), x2(t)) = (x0, 0) ∀t ∈ (−∞, t0],
(x1(t), x2(t)) = (xf , 0) ∀t ∈ [tf ,∞).

(7)

That is, up to time t0 the state is held at (x0, 0). The control then
transfers the state to (xf , 0), by time tf . The statemust then remain
there indefinitely. We will assume without loss of generality that
x0 < xf .

3.1. Conditions of an admissible system design

Here we define the conditions on the control effort, u, and the
plant dynamics, f , for an admissible systemdesign.We require that
the control effort remain bounded and piecewise continuous; Ω
will denote the set of admissible controls for which these conditions
hold. We require the plant dynamics to satisfy the constraint (8)
everywhere on the interval


x0, xf


excluding finitely many points.

g(x) ≤ ψ(f (x), f ′(x), . . . , f (n)(x)) ≤ h(x). (8)
It will be required that f be n times piecewise continuously
differentiable, and f ′ be Lipschitz continuous (if n is less than
2 the constraint is satisfied everywhere). The functions g and
h are continuous real valued functions defined on


x0, xf


. The

function ψ is a continuous real valued function from Rn into R.
The functions g , h andψ , as well as the dimension, n, ofψ are to be
determined by the particular application. Assume g(x) ≤ h(x)∀x ∈

[x0, xf ] so that theremay exist an admissible f . For each x ∈ [x0, xf ],
ψ is evaluated at (f (x), f ′(x), . . . , f (n)(x)) and must satisfy (8).

The construction of this constraint captures a broad range of
design constraints. However, it does not capture all constraints that
could be placed on the plant design space. For example, integral
constraints such as a constraint on the Lp norm (for a finite p) of f
cannot be expressed in this form. Some examples of constraints
that can be expressed in this way are the uniform norm of f or
any of its derivatives. We can consider the case when there is no
constraint other than Lipschitz continuity of f ′ by letting ψ = 0.
These constraintsmay appear inmechanical systems as limitations
on the rate at which f changes in order to control dynamic loads or
to satisfy geometric constraints. We define the set F as the set of all
f satisfying (8) with Lipschitz continuous first derivative.

An ordered pair (f , u) ∈ F × Ω will be referred to as a system
design, and a system design will be called admissible if a solution
to (6) passing through (x0, 0) at t0 is an admissible state trajectory.
The cost associated with an admissible system design is

J[u, f ] =


∞

−∞

[u(t)]2 dt. (9)

An admissible system design (f ∗, u∗) is optimal if J[u∗, f ∗
] ≤ J[u, f ]

for all admissible system designs. The problem is to find the optimal
system design.

3.2. Existence of a control with bounded cost

The existence of a bounded cost control effort when f (x0) = 0
and f (xf ) = 0 is easily proven by construction. Choose x1(t) to be
a C2

[t0, tf ] trajectory satisfying (7). Solving for u(t) in (6) yields

u(t) = ẍ1(t)− f (x1(t)). (10)

It follows from the continuity of f and compactness of [t0, tf ] that
u(t) is bounded on [t0, tf ]. Since f (x0) = 0 and f (xf ) = 0, u(t) = 0
for t ∉ [t0, tf ]. Thus, (9) is bounded.

4. Optimality conditions for the control

Recall that in Section 2 we implemented classical optimal
control techniques to compute the minimum energy trajectory
between the fixed points of a heteroclinic orbit. Here wewill apply
the same techniques to (6) to derive the necessary conditions of
an optimal u on [t0, tf ] for a fixed αf in the form of a BVP. This
will allow us to find the optimal control for a fixed plant αf .
This approach will be used to run the inner loop of the system
optimization.

To be clear, we are considering the dynamical system

ẋ1 = x2, ẋ2 = αf (x1)+ u(t), (11)

with α > 0 and the cost functional

J[u] =

 tf

t0
[u(t)]2 dt, (12)

and boundary conditions

(x1(t0), x2(tf )) = (x0, 0),
(x1(tf ), x2(tf )) = (xf , 0).

(13)
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The Hamiltonian for this system is then

H(x1, x2, u, p1, p2) = u2
+


p1
p2


,


x2

αf (x1)+ u


. (14)

From (4) we arrive at necessary conditions on an optimal u in the
form of a BVP:

ẋ1 = x2,
ẋ2 = αf (x1)− p2/2,
ṗ1 = −αp2f ′(x1),
ṗ2 = −p1,
u = −p2/2,
(x1(t0), x2(t0)) = (x0, 0),
x1(tf ), x2(tf )


= (xf , 0).

(15)

4.1. Continuous dependence on parameters

It is shown in Oniki (1973) that if there is a unique optimal
control at a particular parameter valueα0, then the optimal control
and state trajectory are differentiable with respect to α at α0. Thus,
they also depend continuously on α at α0. Then given ε > 0 there
exists α sufficiently close to α0 such that:

∥z(t, α)− z(t, α0)∥ < ε ∀t ∈ [t0, tf ], (16)

where z = (x1, x2, p1, p2)T .

4.2. Properties of the solution to (15) for small α

Wenowpoint out an important property of the solution to (15).
Let α = 0. A unique solution,


x̃1, x̃2, p̃1, p̃2


, to the system when

α = 0 is computed easily since (15) becomes linear. In particular
we are interested in x̃2:

x̃2(t) =
6(t − t0)(tf − t)(xf − x0)

(tf − t0)3
. (17)

From (17) we see that x̃2(t) > 0 on (t0, tf ). Since, solutions depend
continuously onα atα = 0. Then for any ε > 0 there exists |α| > 0
such thatx2(t)− x̃2(t)

 < ε ∀t ∈ [t0, tf ], (18)

where x2(t) satisfies (15). It follows that for α sufficiently small,
x2(t) > 0 ∀t ∈ (t0, tf ) by the following argument: suppose that
there is no such α > 0. Then for all α > 0, ∃t∗ ∈ (t0, tf ) such that
x2(t∗) ≤ 0. From (17), x̃2(t∗) > 0. Thus, for some ε > 0, x̃2(t∗) −

x2(t∗) = ε. This is a contradiction of (16). For the remaining part of
the paper we consider α to be small enough for this property to hold.

Next, x2(t) > 0 ∀t ∈ (t0, tf ) and ẋ1 = x2 implies that x1 is
one-to-one on [t0, tf ]. This is also proven by contradiction. Suppose
that x1 is not one-to-one on


t0, tf


. Then there are two distinct

points τ1 and τ2 in

t0, tf


for which x1(τ1) = x1(τ2) (assume

without loss of generality that τ1 < τ2). Since x2 is continuous, x1 is
differentiable. So by application of Rolle’s Theorem (Rudin, 1964)
there exists a time τ ∗

∈ (τ1, τ2) ⊆ (t0, tf ) where ẋ1(τ ∗) = 0, and
thus x2(τ ∗) = 0. This is a contradiction of the previous observation
that x2(t) > 0 ∀t ∈ (t0, tf ).

To demonstrate the monotonicity of the x1 trajectory solving
(15), we consider the minimum energy control for (5) with initial
conditions (x1(t0), x2(t0)) = (0, 0) instead of (x1(t0), x2(t0)) =

(−π, 0) (i.e. the minimum energy pendulum swing up problem).
This problem is solved numerically using the same scheme as in
Section 2. By varying ωn we see that below some critical value, the
x1 trajectory is monotonic. Fig. 3 shows how the minimum energy
swing up exhibits oscillations for larger values of ωn.

The purpose of this example is to demonstrate that the per-
turbation parameter (ωn in this case) may be large before the op-
Fig. 3. Minimum energy trajectories for the fixed time pendulum swing up
problem. Solutions are computed for ω2

n equal to 0.5, 1, 2, and 4.

timal x1 trajectory loses its monotonicity. Additional numerical
experiments suggest that the critical value of the perturbation pa-
rameter depends not only on the plant dynamics but also on the
transition time and target configurations. For example, in the pen-
dulum swing around problemdiscussed in Section 2 solving for the
optimal control with ω2

n = 4 and a transition time (tf − t0) = 5
yields a monotonic x1 trajectory while in the swing up problem it
does not.

5. Optimality conditions for the plant

With a procedure to optimize the inner loop (control) of the
nested optimization we now consider the optimization of the
plant. For each plant design considered wemust numerically solve
a BVP to find the optimal control effort for that plant design. Thus
evaluating the cost of a particular plant design is computationally
expensive. For this reason the plant dynamics must be optimized
efficiently. Theorem 5will provide optimality conditions for an op-
timal plant design. The following lemmas are needed for the proof
of Theorem 5.

Lemma 1. If a pair (f ∗, u∗) is optimal, then f ∗(x0) = 0 and f ∗(xf ) =

0; and if no such plant design is admissible, then all designs have
unbounded cost.
Proof. Suppose f ∗(x0) ≠ 0. (An analogous argument holds for
f ∗(xf ) ≠ 0.) Then u(t) = −f ∗(x0) ∀t ∈ (−∞, t0) so that the cost
(17) is unbounded. This is a contradiction since we have already
established the existence of a bounded cost solution when there is
an admissible design with f ∗(x0) = 0 and f ∗(xf ) = 0. �

Lemma 2. Suppose u∗ is an optimal control for the system. Then there
is no interval (τ1, τ2) ⊆ (t0, tf ) where u∗(t) = 0 for all t ∈ (τ1, τ2).
Proof. Suppose there exists a time interval (τ1, τ2)where u∗(t) =

0 for t ∈ (τ1, τ2). Then u̇∗(t) = 0 for t ∈ (τ1, τ2) as well. Since
u∗

= −p2/2, then p2(t) = 0 and ṗ2(t) = 0 for t ∈ (τ1, τ2). From
(15) it follows that p1(t) = 0 and ṗ1(t) = 0 for t ∈ (τ1, τ2), the
co-states will be zero for all t > τ1. Then the motion of the system
for t > τ1 is governed by

ẋ1 = x2, ẋ2 = αf (x1). (19)

From Lemma 1 and (19) the terminal state (xf , 0) will be a fixed
point of the system. Recall that x1(t) is one-to-one on [t0, tf ] and
x(tf ) = xf . So for t ∈ (τ1, τ2), x1(t) ≠ xf . Then x1(t) cannot reach
the fixed point at xf in finite time. Hence, such a control would lead
to an inadmissible trajectory. �

Lemma 3. If u ∈ Ω , φ ∈ Cn(t0, tf ) and ⟨u, ϕ⟩L2[t0,tf ] > 0, then for

all ε ∈


−2⟨u,φ⟩

∥φ∥2
, 0


, ∥u + εφ∥L2[t0,tf ] < ∥u∥L2[t0,tf ]. (If ⟨u, φ⟩ < 0

then the statement is instead true for ε ∈


0, −2⟨u,φ⟩

∥φ∥2


.)
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Proof. For brevity the subscript L2[t0, tf ] will be dropped from
norms and inner products for the remaining part of this calculation.

∥u + εφ∥
2

= ⟨u + εφ, u + εφ⟩

= ⟨u, u⟩ + 2 ⟨u, εφ⟩ + ⟨εφ, εφ⟩

= ∥u∥2
+ 2ε ⟨u, φ⟩ + ε2 ∥φ∥

2 .

Notice that the right hand side of the equation is quadratic in ε. The
quadratic equation 0 = 2ε ⟨u, φ⟩ + ε2 ∥φ∥

2 is convex with zeros
at ε =

−2⟨u,φ⟩

∥φ∥2
and ε = 0. Without loss of generality, assume that

⟨u, φ⟩ > 0. Then 0 > 2ε ⟨u, φ⟩ + ε2 ∥φ∥
2 for all ε greater than

−2⟨u,φ⟩

∥φ∥2
and less than 0. Then we conclude that

∥u + εφ∥
2 < ∥u∥2

∀ε ∈


−2 ⟨u, φ⟩

∥φ∥
2 , 0


. �

Definition 4. Define the norm ∥·∥Ď on Cn
[x0, xf ] by:

∥f ∥Ď ≡ max

max {|f (x)|} , . . . ,max

f (n)(x)
∀x ∈ [x0, xf ].

Theorem 5. If an optimal design (f ∗, u∗) exists, then the con-
straint (8) is active for all x ∈ [x0, xf ] excluding finitely many points.

Proof. The proof is by contradiction. Suppose that (f ∗, u∗) is the
optimal design, and that for some p ∈ [x0, xf ], (8) is not active. Then
by the continuity of ψ there exists a closed interval [a, b] contain-
ing the point p such that, h(x1) < ψ(f (x1), f ′(x1), . . . , f n(x1)) <
g(x1)∀x1 ∈ [a, b]. Again, by the continuity of ψ there exists a
δ > 0 such that for all x1 ∈ [a, b], h(x1) < ψ(f (x1) ± ε, f ′(x1) ±

ε, . . . , f n(x1) ± ε) < g(x1) (by ±ε we mean the ball in Rn of ra-
dius ε, centered at


f (x1), f ′(x1), . . . , f n(x1)


in the uniformnorm).

Consider any φ ∈ Cn
[a, b] where φ(x) = 0 for x1 ∉ (a, b). Then for

δ satisfying 0 < δ ≤ ε/ ∥φ∥Ď , h(x) < C(f (x1) ± δφ(x1), f ′(x1) ±

δφ′(x1), . . . , f n(x1)± δφn(x1)) < g(x1)∀x1 ∈ [a, b].
Now suppose we wanted to maintain the same trajectory as in

the optimal design with the plant design perturbed by δφ. Then
the control effort must be modified to account for the change in
the plant design. That is,

αf ∗(x∗

1(t))+ u∗(t)
= αf ∗(x∗

1(t))+ δαφ(x∗

1(t))+ u∗(t)+ η(t),
⇒ η(t) = −δαφ(x∗

1(t)).

Since x1(t) is one-to-one on [t0, tf ] it is not difficult to construct
φ so that


u∗(t), αφ(x∗

1(t))

L2(t0,tf )

≠ 0. For example, one could

choose φ to satisfy sgn

φ(x∗

1(t))


= sgn (u∗(t)) while x1(t) is on
the interval (a, b). Define ta and tb by x∗

1(ta) = a, x∗

1(tb) = b. From
Lemma 2 u(t) ≠ 0 for all t on [ta, tb]. It then follows from the
construction of φ and the properties of u that u∗(t)φ(x∗

1(t)) > 0
on [ta, tb] which implies


u∗(t), αφ(x∗

1(t))

L2(t0,tf )

> 0. Now ap-
plying Lemma 3 we know that we can find ε ≤ δ/ ∥φ∥Ď such
that ∥u∗

− εαφ∥L2(t0,tf ) < ∥u∗∥L2(t0,tf ) and thus, ∥u∗
+ η∥L2(t0,tf ) <

∥u∗∥L2(t0,tf ). Then there exists a perturbation from our optimal
plant design with a lower cost control. This is a contradiction, and
hence the constraints on f must always be active, except possibly
at finitely many points. �

It immediately follows from the proof of Theorem 5 and the
definition of an optimal system design that if the plant has no
constraints other than a Lipschitz continuous first derivative, then
an optimal system design does not exist.

The optimality conditions proven in Theorem5 reduce the com-
putational expense of optimizing the plant design by restricting the
Fig. 4. An actuator provides the control force to the systemwhile the camassembly
provides the desired nonlinear dynamics. The center two pivots allow the cam
follower to track the cam profile while the outer pivots are linked together (not
shown) so the distance between the two is fixed. This design feature prevents radial
loads from being transmitted to the drive shaft as a result of small differences in
spring rate of the two springs.

optimization to a subset of F . The subset of the plant design space F
where the optimality conditions are satisfied will be denotedF .
6. Applications to mechatronics

In this section the techniques presented in this paper are
applied to the optimization of a simple mechatronic system.
The design concept that is shown is intended to provide linear
actuation of a mass between two configurations. This mechanism
could in practice be a subsystem to a more complex mechanical
system. For example in an automated assembly process, an end
effector could be modeled by the mass in Fig. 4 which places a
component onto an assembly. For simplicity, only linear motion
is considered in this example but more complex motion could be
engineered while maintaining a single degree-of-freedom.

6.1. Description of the device

Consider the mechatronic system shown in Fig. 4 for linear
actuation of a mass between two configurations.

A conventional linear actuator provides a control force directly
to the mass through a rigid connection. Coupled in parallel to the
actuator is a cam and springmechanism intended to project a force
in the direction of motion that assists the control by appropriate
design of the cam. The cam is fixed to the shaft that drives themass.
The cam followers are preloaded against the cam by coil springs
and their motion is constrained so that they can only move normal
to the motion of the mass. We will assume the cam followers are
frictionless and of negligible mass.

6.2. Equations of motion

The displacement x1 shown in Fig. 4measures the configuration
of the system. The state of the system can be described by the
ordered pair (x1, x2) where x1 gives the configuration and x2
the velocity. It will be assumed that the mass of the payload
is much larger than the mass of any other moving parts. The
mechanism provides a force f (x1) on themass that depends on the
configuration. The linear actuator provides the control force u(t)
on the mass. The resulting equations of motion are then
ẋ1 = x2, ẋ2 = f (x1)+ u(t). (20)
Now we will calculate how the choice of cam will affect the
dynamics and derive the design constraints. Let k be the combined
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Spring
Force

Contact
Force

H (x1)

p(s)

S x1

Fig. 5. The cam profile, p(s), and the cam follower path, H(x1), are distinguished.
By varying the contact angle a component of the contact force is projected in the
direction of motion x1 .

spring constant of the springs providing force to the cam followers.
Let H(x1) be the displacement of the center of each cam follower
away from the rigid shaft with respect to the configuration. Note
that themechanism is symmetric, so each of the cam followerswill
be of equal distance from the shaft at any particular configuration.
Let H(x0) = 0 (recall that x0 is one of the target configurations
described in Section 3). Let r be the radius of the cam follower,
and let p(s) describe the cam profile with respect to the contact
location s. By examining Fig. 5 it is clear that s is not always equal
to x1. However, it is not difficult to compute p(s) given H(x1) and
vice versa, so it is sufficient to design the mechanism in terms of
H(x1) and compute p(s) for the manufacture of the cams.

We can now compute the force that this setup produces in the
direction of motion. A simple calculation yields

f (x1) = k(H(x1)+ δ0)H ′(x1), (21)

where δ0 is the deflection of the spring at the initial configuration.
We will assume that δ0 ≫ H(x1) throughout the interval [x0, x1]
so that k(H(x1)+ δ0) is approximately a constant F0:

f (x1) = F0H ′(x1). (22)

The results are unchanged without this assumption, but the
calculations become tedious.

Note that the curvature of the cam follower path is given by

κ(x1) = H ′′(x1)/

1 +


H ′(x1)

23/2
. (23)

In reference to Fig. 6, we see that the minimum curvature of the
path taken by the cam follower is −1/r at a corner in the cam
profile. The maximum curvature of ∞ takes place as the curvature
of the cam equals the curvature of the follower. To control impact
and Hertzian contact stress the constraints are modified by adding
a tolerance, ε > 0. The constraint on curvature is then

− 1/(r + ε) ≤ κ(x1) ≤ 1/ε. (24)

We can now express the constraint on the curvature of the cam
follower path in terms of the force projected in the direction of
motion. Combining (23) and (24), the constraint on curvature in
terms of the cam follower path is

−
1

r + ε
≤

H ′′(x1)
1 + [H ′(x1)]2

3/2 ≤
1
ε
. (25)

Substitution of (22) yields

−
F0

r + ε
≤

f ′(x1)
1 +


f (x1)
F0

2
3/2 ≤

F0
ε
. (26)
H

(a)

(b)

x1

Fig. 6. An illustration of the limitations on the cam follower path’s curvature. As the
cam follower passes over a corner, it attains its minimum curvature. Alternatively,
as the cam profile’s curvature becomes equal to the curvature of the cam follower,
the curvature of the cam follower’s path becomes unbounded.

Observe that this constraint takes the form of Eq. (8). Additionally,
to apply the results of the previous section to this problem, for f (x1)
satisfying (26) to be an admissible plant design we also require
that f ′(x1) be Lipschitz. Without this restriction, H(x1) could be
chosen to have fixed curvature (think of a circular arc). This would
be admissible but f (x1) could grow unbounded on the interval
[x0, xf ]. This would lead to unbounded contact stress between
the cam surface and cam follower. Requiring Lipschitz continuity
eliminates this possibility.

Before moving on to the cam profile optimization it is worth
making some remarks on the assumptions made up to this point
regarding the mechanism dynamics. We have assumed that the
cam follower and coil spring are massless. It is also assumed that
there is sufficient preload in the coil spring to achieve constant
spring force. In making these assumptions, the calculations are
simplified and the possibility of separation between the cam and
follower is eliminated. In practice it is necessary to verify the
validity of this assumption after designing the follower profile
H(x1) and the trajectory x1(t). Separation will occur if the contact
force between the cam and follower is not greater than zero. A
more sophisticated model for the contact force P between the cam
and follower projected normal to the x1 direction is the following:

P(t) = mf
d2

dt2
(H(x1(t)))+ kL

∂ψ(y, t)
∂y


y=L
. (27)

Here mf is the follower mass, k is the spring constant, L is the
relaxed length of the spring, and ψ(y, t) is the deflection of the
spring at each time t and location y along the length of the
spring. The mass of the spring ms is also needed to determine
the wave speed of the coil spring when analyzing the spring
vibrations. The term mf

d2

dt2 (H(x1(t))) is determined directly from
the follower profile H(x1) and the optimal trajectory x1(t). The
term kL ∂ψ(y,t)

∂y


y=L

requires solving the partial differential equation

d2ψ

dt2
=


L2k
ms


∂2ψ

∂y2
,

ψ(0, t) = 0,
ψ(L, t) = δ0 + H(x1(t)),

ψ(y, 0) =
δ0y
L

+ H(x1(0)).

(28)

If P(t) becomes negative, then the cam follower will separate from
the cam causing undesirable system behavior. Observe that F0 is
an approximation to k(H(x1(t)) + δ0) which is an approximation
to P(t). By comparing each of these terms, the assumptions made
during the design process can be individually validated.
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6.3. Control objective

The control objective is to maintain the state (x1, x2) = (x0, 0)
on (−∞, t0). Then on [t0, tf ] the control must transfer the state
to (x1, x2) = (xf , 0). The control then holds the system at (xf , 0)
on


tf ,∞


. The goal is to design f (x1) and u(t) subject to the

constraints so that this task is completed while minimizing the
energy cost.

6.4. Applying the plant optimality conditions

The following calculation uses Lemma 1 to find a condition on
the curvature of the cam follower path: xf

x0

H ′′(x1)
1 + [H ′(x1)]2

3/2 dx1

=
H ′(xf )

1 +

H ′(xf )

2 −
H ′(x0)

1 + [H ′(x0)]2
. (29)

Making a substitution from (22) we have xf

x0

H ′′(x1)
1 + [H ′(x1)]2

3/2 dx1

=
f (xf )/F0

1 +

f (xf )/F0

2 −
f (x0)/F0

1 + [f (x0)/F0]2
. (30)

Then applying Lemma 1 we have xf

x0

H ′′(x1)
1 + H ′(x1)2

3/2 dx1 = 0. (31)

This is a useful constraint to place on the design space.
Next, Theorem 5 with (26) implies

f ′(x1)
1 +


f (x1)
F0

2
3

= −
F0

r + ε

or ∀x ∈ [x0, xf ].
f ′(x1)

1 +


f (x1)
F0

2
3

=
F0
ε
.

(32)

An equivalentway to express this condition is to express it in terms
of the curvature of the cam follower path.

κ(x) = −
1

r + ε
or κ(x) =

1
ε

∀x ∈ [x0, xf ]. (33)

Now since κ(x) is limited to two values for this problem, (31) can
then be written in the form xf

x0
κ(x) dx = a


1
ε


− b


1

ε + r


= 0, (34)

where a and b describe the total length in x1 that have κ(x1) = 1/ε
and κ(x1) = −

1
ε+r , respectively. Next we can solve for a and b

using

a + b = xf − x0. (35)

Combining (34) and (35) yields

a = ε
(xf − x0)
r + 2ε

, b = (xf − x0)− ε
(xf − x0)
r + 2ε

. (36)
6.5. A hypothesis

Wenowmake the hypothesis that an optimal plantwill connect
the target states with a heteroclinic orbit, and that the variation
in potential energy of the plant across [x0, xf ] will be maximized.
The hypothesis applies specifically to the optimization of this
example since in general the constraints on the plant design may
not allow for a heteroclinic orbit to connect the initial and the
final configuration. This hypothesis is based on the observations in
Section 2 that when a heteroclinic orbit was introduced between
the target states (via the pendulum potential), the energy cost
associated with the point-to-point control decreased. Moreover,
the cost continued to decrease as the change in potential energy
across [−π, π] was increased. In the context of this example we
will now show that a heteroclinic orbit will connect (x0, 0) and
(xf , 0) if and only if the following constraints are satisfied:

0 = H(x0) = H(xf ) = H ′(x0) = H ′(xf ),
H ′′(x0) > 0, H ′′(xf ) < 0. (37)

If 0 = H(x0) = H(xf ) the potential energy of the spring is the
same at (x0, 0) and (xf , 0), and thus the total energy is the same.
Then if 0 = H ′(x0) = H ′(xf ), (x0, 0) and (xf , 0)will be fixed points
of equal total energy. Finally, if H ′′(x0) > 0 and H ′′(xf ) < 0 then
(x0, 0) and (xf , 0) will be saddle points. Since the plant dynamics
conserve the total mechanical energy (without the influence of
the control), (x0, 0) and (xf , 0)will be connected by a heteroclinic
orbit. Conversely, suppose that any one of the conditions in (37)
is not satisfied. Then one of the following will occur: at least one
target state will not be unstable, or at least one target state will not
be an equilibrium of the plant, or the target states will not be on
the same level set of the conserved quantity (mechanical energy).

Now consider the follower curvature satisfying the plant
optimality conditions and that connects the target states with a
heteroclinic orbit:

κ(x1) =



−
1

r + ε
∀x1 ∈


x0,

xf − x0
2

−
ε(xf − x0)
2(r + 2ε)


∀x1 ∈

1
ε


xf − x0

2
−
ε(xf − x0)
2(r + 2ε)

,
xf − x0

2
+
ε(xf − x0)
2(r + 2ε)


−

1
r + ε

∀x1 ∈


xf − x0

2
+
ε(xf − x0)
2(r + 2ε)

, xf


.

This is the unique plant design satisfying both the optimality
conditions and the hypothesis. This is understood most easily by
examining Figs. 8 and 9.

Without a proof of the hypotheses, numerical methods are
implemented to validate the optimality of the plant design.

6.6. Numerical validation of optimal plant design

When the setF , defined in Section 5, is considered we see that
κ(x1) is not necessarily continuous. There can be any finite number
of discontinuities in κ(x1) on [x0, xf ]. To numerically validate the
optimality of the design in Section 6.5 we will approximate the
design space by describing κ(x1) in the following way: κ(x1)
will have M square pulses of equal length a

M , and there can be
no overlap of the square pulses. An example of an admissible
curvature of this kind is shown in Fig. 7. The location of each pulse
will be described by the design variable yi. The constraint that the
pulses can have no overlap can be expressed as:

gi(y) ≡ yi − yi+1 +
a
M

≤ 0 i = 0, 1, 2, . . . ,M − 1. (38)

The vector y in (38) is the M-tuple of values yi. The problem has
now been approximated by one that can be analyzed numerically.
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a

b

Fig. 7. An example of κ(x) in the approximation to the design space where the
resulting plant would be admissible and satisfy the necessary conditions given in
Lemma 1 and Theorem 5.

Table 1
The numerical values chosen for the optimization problem.

x0 xf t0 tf F0 ε r Mass M

0 1 0 1.5 1 0.1 0.8 1 5

Table 2
Central difference approximation for the gradient of the cost functional evaluated
at the candidate solution.

∂ J
∂y1

∂ J
∂y2

∂ J
∂y3

∂ J
∂y4

∂ J
∂y5

0.0650 0.0875 0.0350 0.1175 −1.0875

To validate the candidate plant design the following numerical
experiment was conducted to check the Karush–Kuhn–Tucker
(KKT) condition (Rao, 2009), which is an optimality condition that
is frequently used in constrained optimization problems.

6.7. Numerical results

Table 1 shows the values chosen for the numerical experiment.
To compute the cost of a candidate plant design the optimal con-
trol effort for that particular plant was computed by solving (15)
numerically using a shooting method with the Nelder–Mead sim-
plexmethod to find boundary conditions for the co-state variables.
Next the control effort generated by the solution is used to calcu-
late the cost of the design according to the cost functional (9).

In order to check the KKT condition it is necessary to
numerically compute the gradient of the cost functional with
respect to the parameters of the approximated plant design space.
The approach taken is to use a central difference approximation
to find the derivative of the cost in the direction of each design
variable. For this experiment the dimension of the approximated
design space is five. Clearly by the construction of this candidate
solution all constraints of (38) are active, so the KKT conditions can
x

Fig. 8. Plot of optimal cam curvature satisfying the KKT conditions. a indicates the
location x =

xf −x0
2 −

ε(xf −x0)
2(r+2ε) and b indicates the location x =

xf −x0
2 +

ε(xf −x0)
2(r+2ε) .

be expressed as

∂ J
∂yi

+

M−1
j=1

λj
∂gj
∂xi

= 0 i = 1, 2, . . . ,M,

λj > 0 j = 1, 2, . . . ,M − 1.

(39)

If we define G as

G =



∂g1
∂x1

∂g2
∂x1

· · ·
∂gM−1

∂x1
∂g1
∂x2

∂g2
∂x2

...
. . .

∂g1
∂xM

∂gM−1

∂xM


, (40)

then (39) can be written as

Gλ = ∇J. (41)

We can then solve for λ:

λ =

GTG

−1
GT

∇J. (42)

Combining the numerical values from Table 2 into (42), the
solution for λ is

λ = [0.2215 0.4655 0.6570 0.9310].

Since all values of λ are greater than zero, the KKT conditions
are satisfied. The numerical results suggest that the proposed
plant design along with a control satisfying (15) will indeed yield
the optimal system design. Fig. 8 plots the curvature of this
design. The resulting cam, plotted in Fig. 9, illustrates how the
constraints described in Fig. 6 are active throughout the cam
followers path. It is clear by examining Fig. 9 that the optimal cam
design is the one which attains the greatest decrease in spring
deflection between the target stateswhile satisfying the optimality
conditions. Equivalently, this is the design which maximizes the
change from potential to kinetic energy during a switch. Without
any influence from the control, the state trajectories would lie on
the level sets of the plant Hamiltonian. In Fig. 10 we see how the
optimal control gives rise to a trajectory thatmakes use of the plant
dynamics to execute the control objective.

7. Discussion and conclusions

System optimization plays an important role in improving
the performance of existing technologies. While the sequential
design method can produce satisfactory system performance, it is
not guaranteed to yield an optimal system design. In this paper
we considered a nested optimization strategy to simultaneously
optimize the plant and control, where both were elements of
an infinite dimensional space. This presented a computationally
expensive optimization even with just a one degree-of-freedom
system.
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(c)

(b)
(a)

Fig. 9. An illustration of the optimal cam follower path. The dotted anddashed lines
show the cam follower path at maximum and minimum curvatures respectively.
Arrow (a) indicates the cam profile for the corresponding cam follower path. Arrow
(b) indicates the systemconfiguration determined by the center of the cam follower,
while arrow (c) indicates the contact location of the cam follower with the cam
surface for the illustrated configuration.

x2

x0 x1
xf

Fig. 10. The optimal state trajectory (in bold) is plotted over the level sets of the
Hamiltonian (mechanical energy) of the optimal plant design to demonstrate how
the optimal trajectory tends to follow the natural motion of the plant.

The primary result of this paper was to present necessary con-
ditions of an optimal system design to reduce the complexity of
the numerical optimization. We began by studying point-to-point
control of a plant with pendulum dynamics. It was shown numer-
ically that by increasing the natural frequency, the energy cost of
actuating the system between unstable equilibria decreased. This
provided the intuition that a mass can be actuated between two
configurations with less energy when the two configurations are
connected by a heteroclinic orbit.

Then we considered the problem of optimizing the plant and
control within infinite dimensional spaces and found that a system
optimality conditionwas that the optimal plant could not lie on the
interior of the design space. This result was applied to optimize an
electromechanical system with minimal numerical investigation.

There are a number of problems that could be a point of fur-
ther research. It would be interesting to investigate properties of
the critical value for which the optimal trajectory loses its mono-
tonicity. It may be the case that for certain problems, such as ones
with heteroclinic orbits connecting target states, that the optimal
trajectory is alwaysmonotonic and the critical value is unbounded.
Another problem that would open the door to additional applica-
tions would be to generalize the results to systemswith n degrees-
of-freedom, andm constraints of the form of (8).
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